JPS6267456A - Separation of plasma - Google Patents

Separation of plasma

Info

Publication number
JPS6267456A
JPS6267456A JP60206398A JP20639885A JPS6267456A JP S6267456 A JPS6267456 A JP S6267456A JP 60206398 A JP60206398 A JP 60206398A JP 20639885 A JP20639885 A JP 20639885A JP S6267456 A JPS6267456 A JP S6267456A
Authority
JP
Japan
Prior art keywords
centrifugal force
hollow fibers
blood
hollow
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60206398A
Other languages
Japanese (ja)
Inventor
Seiichi Manabe
征一 真鍋
Hideki Iijima
秀樹 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60206398A priority Critical patent/JPS6267456A/en
Publication of JPS6267456A publication Critical patent/JPS6267456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Centrifugal Separators (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • External Artificial Organs (AREA)

Abstract

PURPOSE:To separate plasma component free from no microorganism particle such as virus without being heated, by performing an ultra filtration of the plasma component simultaneously with a centrifugal separation by a cupro- ammonium cellulose hollow system. CONSTITUTION:A porous cupro-ammonium cellulose porous hollow fiber with the average pore size of 0.02mum to 0.2mum exceeding 10% in the surface vacancy rate is arranged to be aligned in the fiber axial direction with the direction of a centrifugal force and blood components are separated and fractioned by the centrifugal force as driving force while being filled with a fluid to be filtered or already filled therewith. To be more specific, cupro-ammonium cellulose hollow fibers are bundled and bonded inside a container (cylindrical) with an adhesive to form a liquid separator (module). Then, the module thus obtained is so set in a centrifugal machine that a centrifugal force is applied in the axial direction of the hollow fiber. In the module, inflow and outflow ports of a liquid to be filtered lead to the inside of the hollow fiber (hollow section) and a blood is made to flow in at the inflow port to be given the centrifugal force. Then, a filtrate is recovered from a container provided at the outflow port.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、血漿分離方法に関する。更に詳しくは血液中
より、ウィルス等の微生物粒子を混入しない血漿成分を
分離する方法に関するものであり、血液を遠心分離法に
よって血球成分と血漿成分とに分離する過程において、
この分離と同時に血漿成分を銅安セルロース中空糸によ
って限外濾過することによってウィルス等の微生物粒子
を混入しない血漿成分を分離する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a plasma separation method. More specifically, it relates to a method for separating plasma components from blood that do not contain microbial particles such as viruses, and in the process of separating blood into blood cell components and plasma components by centrifugation,
The present invention relates to a method for separating plasma components without contaminating microbial particles such as viruses by ultrafiltering the plasma components through copper ammonium cellulose hollow fibers at the same time as this separation.

人間を含めた動物の血液より血球成分を除去して得られ
る血漿は、そのまま血漿交換療法用の血漿、成分輸血用
の血漿製剤、血漿分画製剤の原料(人間の血液の場合i
るいは組織培養液(動物の血液)、あるいは遺伝子工学
で利用される試薬(動物の血液)に利用される。これら
の利用の際、加熱により滅菌処理することが不可能な場
合が多い。この場合には、血漿中からウィルス等の微生
物粒子の除去が要求される。
Plasma obtained by removing blood cell components from the blood of animals including humans can be used as raw material for plasma exchange therapy, plasma preparations for component transfusion, and plasma fractionation preparations (in the case of human blood, i.
It is used in tissue culture fluid (animal blood) or reagents used in genetic engineering (animal blood). When using these materials, it is often impossible to sterilize them by heating. In this case, it is required to remove microbial particles such as viruses from the plasma.

従来の技術 従来、血液中より血漿を分離する方法として、遠心分離
法および高分子膜による一過法が採用されていた。遠心
分離法では、工業的な用途(血漿分画製剤用など)では
装置が大型で経費も高く。
2. Description of the Related Art Conventionally, centrifugal separation and a transient method using a polymer membrane have been employed as methods for separating plasma from blood. Centrifugal separation requires large equipment and is expensive for industrial purposes (such as for plasma fraction preparations).

血清肝炎ウィルスの混入を完全には防止でき逢い。Contamination with serum hepatitis virus can be completely prevented.

また、この方法では血小板が混入する恐れもある。In addition, this method may cause platelet contamination.

一方、高分子膜による分離では、装置として小型である
こと、採血現場での分離の可能性、あらゆる種類の分画
分子量成分の回収の可能性、ウイルスの除去が期待され
ている。しかし、実際はタンパク質の回収率が低く、目
づまりのため使用中に濾過速度が急速に低下する。特に
凝固因子の回収には微生物の混入を完全に避けねばなら
ないが、従来の高分子膜によるテ過法では、この要求は
完全には満足されていない。ウィルス分離除去を目的と
した濾過では濾過速度が小さく実用的ではない。そのた
め、高分子膜による血液濾過は工業的には利用されてい
ない。
On the other hand, separation using polymer membranes is expected to have a compact device, the possibility of separation at the site of blood collection, the possibility of recovering all kinds of molecular weight fraction components, and the removal of viruses. However, in reality, the protein recovery rate is low and the filtration rate rapidly decreases during use due to clogging. Particularly in the recovery of coagulation factors, it is necessary to completely avoid contamination with microorganisms, but this requirement is not completely satisfied by conventional filtration methods using polymer membranes. Filtration aimed at separating and removing viruses has a low filtration rate and is not practical. Therefore, blood filtration using polymer membranes is not used industrially.

血漿成分中、に混入したウィルスの除去方法としては、
上記の膜分離、金属−ウィルス複合体を形成させた沈殿
法、活性炭素を使用した吸着法、ゲルー過法が知られて
いる。沈殿法では沈殿物の回収のための工程を必要とし
、さらに連続的な除去は困難である。吸着法、ゲルー過
法が適用出来るウィルスの範囲は限られており、また混
入したウィルス粒子数が多い場合、適用が難しい。
As a method for removing viruses mixed in plasma components,
The above-mentioned membrane separation, precipitation method in which a metal-virus complex is formed, adsorption method using activated carbon, and gel filtration method are known. The precipitation method requires a step for recovering the precipitate, and furthermore, continuous removal is difficult. The range of viruses to which the adsorption method and gel filtration method can be applied is limited, and it is difficult to apply the method when there are a large number of contaminated virus particles.

発明が解決しようとする問題点 本発明は遠心分離法および限外濾過法の両者の利点を持
ち、しかも、それぞれの方法の欠点を除去した血漿分離
方法であり、且つ回収される血漿タンパク質中にはウィ
ルス粒子は存在せずそのため加熱滅菌処理を必要としな
い。特に第8および第9凝固因子の分離回収用の血漿を
得る方法を提供するものである。
Problems to be Solved by the Invention The present invention is a plasma separation method that has the advantages of both centrifugation and ultrafiltration, and eliminates the drawbacks of each method. contains no virus particles and therefore does not require heat sterilization. In particular, a method for obtaining plasma for separation and recovery of coagulation factors 8 and 9 is provided.

問題点を解決するだめの手段 本発明は遠心分離による泊漿分離方法において、平均孔
径が0.02μm〜0.2μmで面内空孔率が10チ以
上の銅安セルロース多孔性中空繊維の繊維軸方向′を遠
心力の方向にそろえ、被濾過流体を中空繊維に充填しつ
つ、または充填した状態で遠心力を駆動力として加液成
分を分離分画することを特徴とする血漿分離方−/:!
Aである。
Means to Solve the Problems The present invention provides a method for separating cellulose by centrifugation, in which copper ammonium cellulose porous hollow fibers having an average pore diameter of 0.02 μm to 0.2 μm and an in-plane porosity of 10 μm or more are used. A plasma separation method characterized in that the axial direction' is aligned with the direction of centrifugal force, and the liquid components are separated and fractionated using centrifugal force as a driving force while filling hollow fibers with the fluid to be filtered or in the filled state. /:!
It is A.

本発明の血漿分離分画方法は、上記、特定の平均孔径範
囲と特定の面内空孔率を持つ銅アンモニア法セルロース
(銅安セルロースと略称)多孔性中空繊維の繊維軸方向
を遠心力の方向にそろえ5血液を該中空繊維内部に充填
しつつ、あるいは充填した状態で、遠心力を駆動力とし
て、通液成分を分離分画する方法で構成される。
The plasma separation/fractionation method of the present invention involves applying centrifugal force to the above-mentioned porous hollow fibers of cuprammonium cellulose (abbreviated as copper ammonium cellulose) having a specific average pore diameter range and specific in-plane porosity. It is constituted by a method of separating and fractionating the liquid components while filling the inside of the hollow fiber with blood in the same direction, or in a filled state, using centrifugal force as a driving force.

ここで多孔性中空繊維とは、走査型電子顕微鏡で内壁、
外壁のいずれの面でも孔が明瞭に認められる中空繊維で
ある。
Here, porous hollow fibers are defined by scanning electron microscopy.
It is a hollow fiber with clearly visible pores on either side of the outer wall.

本発明方法に訃ける分離方法には、遠心分離による血球
成分と血漿成分との分離と、流体にかかる遠心力を静水
圧として、多孔性中空繊維による限外濾過法でのウィル
ス等の微生物粒子を血漿成分から除去する分離との両者
を同時に実施する点に特徴がある。
Separation methods that are inferior to the method of the present invention include separation of blood cell components and plasma components by centrifugation, and microbial particles such as viruses by ultrafiltration using porous hollow fibers using centrifugal force applied to the fluid as hydrostatic pressure. It is characterized by the fact that both the separation and removal of blood from plasma components are carried out at the same time.

本発明の特徴の1つは、銅安セルロースを素材高分子と
して採用する点にある。タンパク質と高分子素材との吸
着性に関する相関性を検討した結果、一般的には親水性
素材はどタンパク質の吸着性が少ないことが明らかとな
った。親水性素材としてセルロースが優れている。ここ
でセルロースとは、いわゆる再生セルロースを意味する
。再生セルロースより構成される多孔性中空繊維は、セ
ルロース誘導体(通常セルロースアセテート)多孔性中
空繊維をケン化処理するか、あるいは銅安法で直接中空
繊維を紡糸する方法で作製される。
One of the features of the present invention is that copper ammonium cellulose is employed as the material polymer. As a result of examining the correlation between the adsorption properties of proteins and polymeric materials, it became clear that hydrophilic materials generally have low adsorption properties for proteins. Cellulose is an excellent hydrophilic material. Here, cellulose means so-called regenerated cellulose. Porous hollow fibers made of regenerated cellulose are produced by saponifying porous hollow fibers of a cellulose derivative (usually cellulose acetate) or by directly spinning hollow fibers using the copper ammonium method.

これらの2種の再生セルロース多孔性中空繊維間でタン
パク質の吸着性を比較した結果、セルロース誘導体多孔
性中空繊維をケン化処理したものの方が吸着性が大きい
。また銅安性再生セルロースは、生体への適合性、力学
的強靭性において優れ、しかも同一の空孔率で比較した
際、限外濾過速度が大きい。また蒸気滅菌に伴なう平均
孔径の変化が小さい。銅安セルロースのセルロースの粘
度平均分子量は7 X 10’以上が好ましい。また0
、I NNaOH水溶液中へ溶解する成分が少なければ
少ないほど好ましく、40℃ 48時間o、IN Na
OH水溶液中に浸漬した際、この溶解成分が0.001
%以下であれば、血漿中より微生物除去用として最適で
ある。このような銅安セルロース中空繊維は。
A comparison of protein adsorption properties between these two types of regenerated cellulose porous hollow fibers revealed that the cellulose derivative porous hollow fibers subjected to saponification treatment had higher adsorption properties. In addition, copper ammonium-based regenerated cellulose has excellent biocompatibility and mechanical toughness, and also has a high ultrafiltration rate when compared at the same porosity. Also, the change in average pore diameter due to steam sterilization is small. The viscosity average molecular weight of ammonium cellulose is preferably 7 x 10' or more. 0 again
, IN NaOH aqueous solution contains fewer components, the better.
When immersed in an OH aqueous solution, this dissolved component was 0.001
% or less, it is optimal for removing microorganisms from plasma. This kind of copper ammonium cellulose hollow fiber.

高純度のセルロース原料より銅安セルロース溶液を作製
する際に、セルロースの化学的な分解をおさえ、異物の
混入を防止するために超純水を用いるなどの注意を要す
る。
When preparing a copper ammonium cellulose solution from a high-purity cellulose raw material, care must be taken such as using ultrapure water to suppress chemical decomposition of cellulose and prevent contamination of foreign substances.

本発明方法の第2の特徴は、平均孔径〔後述の4次の平
均孔半径zr4(F、は4次の平均孔半径を本発明では
平均孔径と略称)〕が0.02〜0.2μmで、面内空
孔率が10%以上の多孔性中空繊維を用いる点にある。
The second feature of the method of the present invention is that the average pore diameter [fourth-order average pore radius zr4 (F, the fourth-order average pore radius is abbreviated as average pore diameter in the present invention)] is 0.02 to 0.2 μm. The point is that porous hollow fibers having an in-plane porosity of 10% or more are used.

本発明でいう多孔性中空繊維とは、中空繊維の壁厚部を
電子顕微鏡で観察した際、内外壁厚部全面において、0
.02μm以上の孔が認められる中空繊維を意味する。
The porous hollow fiber as used in the present invention means that when the wall thickness of the hollow fiber is observed with an electron microscope, there is no
.. It means a hollow fiber in which pores of 0.02 μm or more are observed.

平均孔径が0.02μm未満であれば、限外濾過速度が
極端に小さく。
If the average pore diameter is less than 0.02 μm, the ultrafiltration rate is extremely low.

また水溶液中に溶解しているタンパク質t−F液として
の回収率が著しく低下する。例えば、血清アルブミンで
は1回収率が5%未満となる。従って。
Moreover, the recovery rate of the protein dissolved in the aqueous solution as a t-F solution decreases significantly. For example, the recovery rate for serum albumin is less than 5%. Therefore.

平均孔径は、微生物粒子が除去可能な範囲で大きければ
大きいほど良いが、限外濾過時に被濾過流体の供給回路
からの微生物粒子による汚染を避けるため、0.2μm
以下であることが必要である。
The average pore size is preferably as large as possible to remove microbial particles, but in order to avoid contamination by microbial particles from the supply circuit of the fluid to be filtered during ultrafiltration, it is 0.2 μm.
It is necessary that the following is true.

もしB型肝炎ウィルスの存在の可能性がある場合には平
均孔径として0.04μm以下、ATL、ウィルスの存
在の可能性がある場合には平均孔径は0.1μm以下で
ある。また微生物の分離除去を目的とする際、多孔性中
空繊維の面内空孔率は10%以上必要である% 10チ
未満では限外濾過速度は急激に低下する。好ましくは3
0%以上である。限外−過速度に及ぼす面内空孔率の影
響は、10%未満では面内空孔率の約5乗、  10〜
30%では約2乗、30−以上では約1乗に比例して限
外濾過速度は増加する。一方1面内空孔率が80−を越
えると、中空繊維の力学的性質は著しく低下し。
If there is a possibility of the presence of hepatitis B virus, the average pore size is 0.04 μm or less, and if there is a possibility of the presence of ATL virus, the average pore size is 0.1 μm or less. Further, when the purpose is to separate and remove microorganisms, the in-plane porosity of the porous hollow fibers is required to be 10% or more.If the in-plane porosity is less than 10%, the ultrafiltration rate will decrease rapidly. Preferably 3
It is 0% or more. The influence of in-plane porosity on ultra-overspeed is approximately 5th power of in-plane porosity when it is less than 10%, 10~
At 30%, the ultrafiltration rate increases in proportion to approximately the second power, and at 30% or more, the ultrafiltration rate increases in proportion to approximately the first power. On the other hand, when the in-plane porosity exceeds 80, the mechanical properties of the hollow fibers are significantly reduced.

ピンホール等の欠陥部が生じる恐れがある。同一の平均
孔径および面内空孔率で限外濾過速度に及ぼす孔径分布
の影響を検討した結果、74/テ3の値(rgは後述す
る3次の平均孔半径)が小さいほど限外濾過速度が大き
くなる。しかも〒、/〒3≦1.3となると、微生物粒
子の直径の1.1倍の平均孔径の中空繊維で被濾過流体
を静止下で限外濾過(垂直濾過と略称)しても、F液中
には微生物粒子は殆んど観察出来ない。さらに被濾過流
体な流動下で限外−過(平行濾過と略称)するとア4/
テ、≦1.3であれば微生物粒子の直径の1.2倍の平
均孔径の中空繊維を用いた場合、得られたF液中には微
生物粒子は殆んど観察できない。孔径分布の孔径の大き
い部分でのすそひきをなくすれば、γ4/γ、は急速に
小さくすることが出来る。
Defects such as pinholes may occur. As a result of examining the influence of pore size distribution on ultrafiltration rate with the same average pore diameter and in-plane porosity, we found that the smaller the value of 74/Te3 (rg is the tertiary average pore radius, which will be described later), the better the ultrafiltration rate. The speed increases. Moreover, when 〒,/〒3≦1.3, even if the fluid to be filtered is ultrafiltrated (abbreviated as vertical filtration) under static conditions using hollow fibers with an average pore diameter of 1.1 times the diameter of microbial particles, F Almost no microbial particles can be observed in the liquid. Furthermore, if ultra-filtration (abbreviated as parallel filtration) is performed under the flow of the fluid to be filtered, A4/
If ≦1.3, when hollow fibers with an average pore diameter of 1.2 times the diameter of microbial particles are used, almost no microbial particles can be observed in the obtained F solution. By eliminating the skirting in the large pore diameter portion of the pore size distribution, γ4/γ can be rapidly reduced.

本発明方法の第3の特徴は、物質分離の駆動力として遠
心力を駆動力とした限外濾過を行なう点にある。中空繊
維内部の被濾過流体中には大小さまざまな粒子成分が存
在する。粒子の密度は、一般に媒体(水)の密度に比べ
て大きい。そのため遠心力を負荷した初期には、密度が
大きく、質量の大きな粒子成分が選択的に中空繊維の中
空部内で遠心力の方向に沿って移動する。この移動速度
を大きくし、さらに移動中の粒子と中空繊維の中空。
The third feature of the method of the present invention is that ultrafiltration is performed using centrifugal force as the driving force for substance separation. Particle components of various sizes exist in the fluid to be filtered inside the hollow fibers. The density of the particles is generally large compared to the density of the medium (water). Therefore, at the beginning of applying centrifugal force, particle components with high density and large mass selectively move within the hollow portion of the hollow fiber along the direction of centrifugal force. This increases the moving speed and makes the particles hollow and the hollow fibers even more moving.

部を形成する内壁部との衝突の確率を低下させるため、
中空繊維の繊維軸方向を遠心力の方向にそろえることが
必要である。両者の方向の平行性が十分でないと粒子の
上述の移動速度の低下のみでなく、粒子成分の損傷が顕
著となる(血液の場合、溶血など)、遠心力の負荷の初
期には粒子成分の遠心力による移動状態下での濾過(即
ち、平行濾過)の特徴が現われる。遠心力による粒子分
離が進行すると共に垂直濾過の寄与が大きくなる。2種
の濾過方式全採用するために中空繊維内壁部での粒子あ
るいは被濾過流体中に溶解する高分子量物質(被濾過流
体として血液を採用した場合は、タンパク質)による孔
の目づまりが防止できる。
In order to reduce the probability of collision with the inner wall forming the section,
It is necessary to align the fiber axis direction of the hollow fibers with the direction of centrifugal force. If the parallelism between the two directions is not sufficient, not only will the movement speed of the particles decrease as described above, but the damage to the particle components will be significant (hemolysis in the case of blood, etc.). Characteristics of filtration under moving conditions due to centrifugal force (ie, parallel filtration) appear. As particle separation by centrifugal force progresses, the contribution of vertical filtration increases. Since all two types of filtration methods are employed, clogging of the pores by particles on the inner wall of the hollow fibers or by high molecular weight substances (proteins when blood is used as the fluid to be filtered) dissolved in the fluid to be filtered can be prevented.

平行濾過と垂直濾過の効果が発揮できる形態として、多
孔性中空繊維がほぼ放射線状に配置され、円の中心より
被濾過流体(例えば、血液)が供給され、中空繊維の他
端の円の周辺部に血液成分を貯えつつ、血漿成分中のタ
ンパク質を中空繊維によってテ別し、微生物粒子の存在
しない状態で回収すれば、輸血用あるいは分画用血漿が
採集できるO 被済過流体が血液の場合、粘度が高く、また遠心力ある
いは静水圧により負荷できる圧力の限界値が存在する。
In a configuration that can exhibit the effects of parallel filtration and vertical filtration, porous hollow fibers are arranged almost radially, and the fluid to be filtered (e.g., blood) is supplied from the center of the circle, and the periphery of the circle at the other end of the hollow fibers. Plasma for transfusion or fractionation can be collected by separating the proteins in the plasma components using hollow fibers and collecting them in the absence of microbial particles while storing blood components in the blood compartment. In this case, the viscosity is high and there is a limit value of the pressure that can be applied by centrifugal force or hydrostatic pressure.

そのため中空繊維を用いた血液の濾過では、用いる中空
繊維として、内径が200μrrL〜13、壁厚が5〜
50μm、中空繊維の長さが5〜20crnであれば、
濾過速度を大きくし、かつ溶血を防止する観点から好ま
しい。この際、中空繊維の本数として10〜20000
本を束ねた組立て単位(モジュール)で構成し、おのお
のの組立て卑位の血液処理量を200〜5007にすれ
ば輸血用血漿製剤を作製するのにさらに好ましい。この
モジュールを2個直列に結合することにより、おのおの
のモジュールで限外濾過されて得られる戸液成分組成を
かえることもできる。
Therefore, in blood filtration using hollow fibers, the hollow fibers used have an inner diameter of 200 μrrL~13 and a wall thickness of 5~13 μrrL.
50μm, if the length of the hollow fiber is 5~20crn,
It is preferable from the viewpoint of increasing the filtration rate and preventing hemolysis. At this time, the number of hollow fibers is 10 to 20,000.
It is more preferable to produce a plasma preparation for transfusion if it is constructed of assembled units (modules) made up of bundled books, and the amount of blood processed by each assembly is 200 to 5,007. By connecting two of these modules in series, it is also possible to change the component composition of the liquid obtained by ultrafiltration in each module.

本発明方法で使用する中空繊維として、中空繊維を構成
するセルロース分子鎖の繊維軸方向への配向度が60q
b以上であることが好ましい。もしこの配向度が60−
未満では、再生セルロース中空繊維は血液中で膨潤し、
そのため中空繊維が変形するため、被濾過流体の流れが
乱れ、目づまりが起りやすくなる。
The hollow fibers used in the method of the present invention have a degree of orientation of cellulose molecular chains constituting the hollow fibers in the fiber axis direction of 60q.
It is preferable that it is more than b. If this degree of orientation is 60-
The regenerated cellulose hollow fibers swell in the blood,
As a result, the hollow fibers are deformed, which disrupts the flow of the fluid to be filtered, making clogging more likely to occur.

本発明方法で採用される多孔性中空繊維の平均孔半径7
4、面内空孔率s ’F、/’F、および配向度はそれ
ぞれ以下の方法で決定される。
Average pore radius of porous hollow fibers employed in the method of the present invention 7
4. The in-plane porosity s'F, /'F and the degree of orientation are determined by the following methods.

〈平均孔半径γ4〉、く面内空孔率〉および〈γ4/ 
rs > : 中空繊維の壁部の断面を走査型電子顕微鏡で観察し、孔
径の最小な部分を壁厚に対して誤差10チ以内の範囲で
決定する。この最小な部分を通つて中空繊維の繊維軸方
向に平行に、厚さ約0.1μmの超薄切片を作成し、こ
の切片の電子顕微鏡写真をとる。注目する切片の1−尚
りの孔牛径がγ〜γ+drに存在する孔の数をNωdr
と表示すると、3次および4次の平均孔半径(それぞれ
γ3およびra )および面内空孔率Prは次式で定義
される。
<Average pore radius γ4>, in-plane porosity> and <γ4/
rs>: Observe the cross-section of the wall of the hollow fiber with a scanning electron microscope, and determine the portion with the smallest pore diameter within a range of 10 inches of error relative to the wall thickness. An ultra-thin section with a thickness of about 0.1 μm is made parallel to the fiber axis direction of the hollow fiber through this smallest portion, and an electron micrograph of this section is taken. Nωdr is the number of holes whose hole diameter is γ to γ + dr
Then, the third-order and fourth-order average pore radii (γ3 and ra, respectively) and in-plane porosity Pr are defined by the following equations.

Pr(%表示) = glo γ” N (1) dr
 (3)γ4/γ3は(1) 、 (2)式で得られた
γ3.γ4 より直接算出される。平均孔径は2γ4で
与えられる。孔径分布関数Nωは以下のように超薄切片
の電子顕微鏡写真より定める。
Pr (% display) = glo γ” N (1) dr
(3) γ4/γ3 is γ3 obtained from equations (1) and (2). It is directly calculated from γ4. The average pore size is given by 2γ4. The pore size distribution function Nω is determined from an electron micrograph of an ultrathin section as follows.

すなわち、孔径分布を求めたい部分の走査型電子顕微鏡
写真を適当な大きさく例えば、20 cm X20 t
m )に拡大焼付けし、得られた写真上に等間隔にテス
トライン(直線)を20本描く。谷々の直線は多数の孔
を横切る。孔を横切った際の孔内に存在する直線の長さ
を測定し、この頻度分布関数を求める。この頻度分布関
数を用いて、例えば、ステレオロジ(例えば、諏訪紀夫
著1定量形態学”岩波書店)の方法でNωを定める。
That is, take a scanning electron micrograph of the part where you want to find the pore size distribution and take it to an appropriate size, for example, 20 cm x 20 t.
20 test lines (straight lines) are drawn at equal intervals on the resulting photograph. The straight line of the valley crosses numerous holes. Measure the length of the straight line that exists within the hole when it crosses the hole, and find this frequency distribution function. Using this frequency distribution function, Nω is determined, for example, by the method of stereology (for example, "Quantitative Morphology 1" by Norio Suwa, published by Iwanami Shoten).

く配向度〉: 理学電機社MX線発生装置(RU−200PL)とゴニ
オメータ−(SG−9R)、計数管にはシンチレーショ
ンカウンター、計算部には波高分析器(PHA)e用い
、ニッケルフィルターで単色化し2Cu−に4線(波長
λ= 0.1542 nm)で対称透過法で測定し次。
Degree of orientation: Rigaku Denki MX-ray generator (RU-200PL) and goniometer (SG-9R), scintillation counter for the counter, pulse height analyzer (PHA) e for the calculation section, monochromatic with nickel filter. It was then measured using the symmetrical transmission method using 4 lines (wavelength λ = 0.1542 nm) on 2Cu-.

中空繊維試料を平行に束ねて、X線入射方向に直角に理
学電機社製の繊維試料測定装置(回転試料台)に固定し
た。スキャニグ速度4°/分、チャート速度1tW1/
分、タイムコンスタント1〜2秒、ダイパージエントス
リット2Nφ、レシービングスリット縦幅1.9m+g
X横@ 3.511121 S194度30℃、相対湿
度5o%の条件下で、一定回折角度(回折角2θ=21
.5°、(002)面の回折角に対応)で子午線から赤
道線を経て再び子午線に至る180°の範囲の方位角方
向のX線回折強度臼mを測定した。この曲線の半価幅H
(度単位)を読取り、この値を(4)式に代入すれば配
向度が算出できる。
The hollow fiber samples were bundled in parallel and fixed to a fiber sample measuring device (rotating sample stage) manufactured by Rigaku Denki Co., Ltd. at right angles to the X-ray incident direction. Scanning speed 4°/min, chart speed 1tW1/
minutes, time constant 1-2 seconds, dipersient slit 2Nφ, receiving slit vertical width 1.9m+g
X horizontal @ 3.511121 S 194 degrees Under the conditions of 30℃ and relative humidity 5o%, a constant diffraction angle (diffraction angle 2θ = 21
.. The X-ray diffraction intensity (m) in the azimuth direction was measured over a range of 180° from the meridian through the equator line and back to the meridian at an angle of 5° (corresponding to the diffraction angle of the (002) plane). Half width H of this curve
(in degrees) and substitute this value into equation (4) to calculate the degree of orientation.

配向度(チ表示)=(180−H)/180X100 
 (4)実施例 以下の実施例において、本発明を具体的に説明する。
Orientation degree (indication) = (180-H)/180X100
(4) Examples The present invention will be specifically explained in the following examples.

実施例L セルロース銅アンモニア原液をアセトン/アンモニア/
水系で構成される凝固浴中に吐出する方法(特開昭59
−204912号公報)で得られた平均孔径0.063
/jm%面内空孔率36%、γ4/γ3 = 1.22
、内径300μm1壁厚20μmの銅安セルロース中空
繊維を作製した。該中空繊維の配向度は65チであった
。この繊維を1ooo本束ねて、ポリカーボネート容器
(円筒状)内部にウレタン系接着剤を用いて公知の方法
で接着し、長さ20ctnの透析型人工腎臓と類似の液
体分離器(モジュール)を作製した。該モジュールの中
空繊維の繊維軸方向に遠心力が負荷されるように該モジ
ュールを遠心機内に設置した。該モジュールには被濾過
液体の流入口および流出口を持ち、両流出入口は中空線
維内部(中空部)へ通じる。一方の入口部より血液を流
入する。この入口部は遠心力を与える回転軸の近傍にあ
る。他方の出口部にはあらがじめ設定された体積を持つ
チューブまたは容器を接続している。このチューブまた
は容器の体積は、血液のへマドクリット値をHt%、該
モジュールの充填体積をV (1nt)、被濾過血液の
体積をVa(d)とすると、(0,008Ht ) v
、 〜(0,015Ht ) V、 (IP!り +7
)間vchる。牛の血液を用いVa=200m/(Ht
=40%)を採用し、該容器の体積を80−とする。5
00rpm以下の回転下で牛の血液をモジュールの入口
部よシ流入させる。200−流入後、遠心機の回転数を
400Orpmとし、約30分間濾過を続けた。
Example L Cellulose copper ammonia stock solution is mixed with acetone/ammonia/
Method of discharging into a coagulation bath composed of water (Japanese Patent Laid-Open No. 59
-204912) average pore diameter of 0.063
/jm% in-plane porosity 36%, γ4/γ3 = 1.22
An ammonium cellulose hollow fiber having an inner diameter of 300 μm and a wall thickness of 20 μm was prepared. The degree of orientation of the hollow fibers was 65 degrees. 100 of these fibers were bundled and adhered inside a polycarbonate container (cylindrical) using a urethane adhesive using a known method to create a liquid separator (module) similar to a dialysis-type artificial kidney with a length of 20 ctn. . The module was placed in a centrifuge so that centrifugal force was applied in the fiber axis direction of the hollow fibers of the module. The module has an inlet and an outlet for the liquid to be filtered, and both outlets communicate with the interior of the hollow fiber (hollow section). Blood flows in from one inlet. This inlet is located near the axis of rotation that provides the centrifugal force. A tube or container having a preset volume is connected to the other outlet. The volume of this tube or container is (0,008Ht) v, where the hematocrit value of blood is Ht%, the filling volume of the module is V (1 nt), and the volume of blood to be filtered is Va (d).
, ~(0,015Ht) V, (IP!ri +7
) between vchru. Va=200m/(Ht
=40%), and the volume of the container is set to 80-. 5
Bovine blood is allowed to flow through the inlet of the module under rotation of less than 00 rpm. After the inflow of 200 rpm, the rotation speed of the centrifuge was set to 400 rpm, and filtration was continued for about 30 minutes.

二液の流入初期に得られるろ液(血漿の一部)中にはグ
ロブリンとアルプミ/濃度はいずれも血漿の平均製置に
くらべて低かった。その後次第にそれらの濃度は上昇し
た。特にグロブリン濃度の上昇率が大きかった。また炉
液中には微生物粒子が存在していないことを電子顕微鏡
で確認した。
In the filtrate (part of plasma) obtained at the beginning of the inflow of the two fluids, the concentrations of both globulin and albumin were lower than the average concentration of plasma. After that, their concentrations gradually increased. In particular, the rate of increase in globulin concentration was large. It was also confirmed using an electron microscope that no microbial particles were present in the furnace fluid.

一方、該モジュールを12112.15分間加圧加熱蒸
気滅菌を行なった。生理的食垣水中に5.OXlo’ 
個/−ノmtテ大P&菌77−ジ(IFO20004)
を分散し、20℃で0.3気圧の加圧下で限外濾過した
。得られた炉液中のファージ数を寒天重層法によるプラ
ーク形成法で評価した。その結果、プラーク数は零であ
り、本モジュールのファージ阻止率は99,99999
9チ以上である。
On the other hand, the module was subjected to pressurized heating steam sterilization for 12112.15 minutes. 5. Physiological food in water. OXlo'
Pieces/-Nomtte University P & Bacteria 77-di (IFO20004)
was dispersed and ultrafiltered at 20° C. under a pressure of 0.3 atm. The number of phage in the obtained furnace solution was evaluated by a plaque formation method using an agar overlay method. As a result, the number of plaques was zero, and the phage inhibition rate of this module was 99,999999.
It is 9 inches or more.

実施例2 実施例1と同様にして銅安セルロース中空繊維を作製し
た。該中空繊維の平均孔径は0.15μm1空孔率56
チ、r4/r3= 1.21 、内径300 I’m 
N ”1g厚22μmである。一方、市販の酢酸セルロ
ース中空繊維(公称平均孔径0.2μm1面内空孔率1
0裂未満、ra/γ3は測定不可能)を用いて実施例1
と同様に血漿分離実験を実施した。その結果、銅安セル
ロース中空繊維の方が濾過速度が約2倍、p液中のタン
パク質濃度も篩<、溶血は酢酸セルロース中空繊維に較
べて少なかった。
Example 2 Ammonium ammonium cellulose hollow fibers were produced in the same manner as in Example 1. The average pore diameter of the hollow fibers is 0.15 μm, and the porosity is 56.
Chi, r4/r3= 1.21, inner diameter 300 I'm
On the other hand, commercially available cellulose acetate hollow fiber (nominal average pore diameter 0.2 μm 1 in-plane porosity 1
Example 1
A plasma separation experiment was carried out in the same manner as described above. As a result, the filtration rate was approximately twice as high with ammonium cellulose hollow fibers, the protein concentration in the p-liquid was also lower than that with cellulose acetate hollow fibers.

発明の効果 本発明の血漿分離方法によれば、次の顕著な効果が得ら
れる。
Effects of the Invention According to the plasma separation method of the present invention, the following remarkable effects can be obtained.

(イ) 回収される血漿タンパク質中にはウィルス粒子
が存在せず、七のため、加熱滅菌処理を必要としない。
(b) Since there are no virus particles in the collected plasma proteins, no heat sterilization is required.

(ロ)平行濾過と垂直濾過02種の濾過方式を採用する
ために、中空依維内壁部での粒子あるいは被濾過流体中
に溶解する高分子量物質による孔の目づまりが防止でき
る。
(b) Parallel filtration and vertical filtration Since the type 02 filtration method is adopted, clogging of the pores by particles on the inner wall of the hollow fiber or by high molecular weight substances dissolved in the fluid to be filtered can be prevented.

eう モジュールと直列に結合することにより、各々の
モジュールでのP叡成分組成を変えることができる。
By connecting modules in series, the P component composition in each module can be changed.

に) タンパク質の回収率が高い。) High protein recovery rate.

Claims (1)

【特許請求の範囲】[Claims] 遠心分離による血漿分離方法において、平均孔径が0.
02〜0.2μmで面内空孔率が10%以上の銅安セル
ロース多孔性中空繊維の繊維軸方向を遠心力の方向にそ
ろえ、被濾過流体を中空繊維に充填しつつ、または充填
した状態で遠心力を駆動力として血液成分を分離分画す
ることを特徴とする血漿分離方法
In the plasma separation method using centrifugation, when the average pore size is 0.
The fiber axis direction of ammonium ammonium cellulose porous hollow fibers having a size of 02 to 0.2 μm and an in-plane porosity of 10% or more is aligned in the direction of centrifugal force, and the hollow fibers are filled with the fluid to be filtered, or in a state where the hollow fibers are filled with the fluid to be filtered. A plasma separation method characterized by separating and fractionating blood components using centrifugal force as a driving force.
JP60206398A 1985-09-20 1985-09-20 Separation of plasma Pending JPS6267456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60206398A JPS6267456A (en) 1985-09-20 1985-09-20 Separation of plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60206398A JPS6267456A (en) 1985-09-20 1985-09-20 Separation of plasma

Publications (1)

Publication Number Publication Date
JPS6267456A true JPS6267456A (en) 1987-03-27

Family

ID=16522693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60206398A Pending JPS6267456A (en) 1985-09-20 1985-09-20 Separation of plasma

Country Status (1)

Country Link
JP (1) JPS6267456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101044702B1 (en) 2008-12-31 2011-06-28 한국표준과학연구원 Serum certified reference material having stability and homogeneity and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101044702B1 (en) 2008-12-31 2011-06-28 한국표준과학연구원 Serum certified reference material having stability and homogeneity and preparation method thereof

Similar Documents

Publication Publication Date Title
Hasegawa et al. Preparation of blood‐compatible hollow fibers from a polymer alloy composed of polysulfone and 2‐methacryloyloxyethyl phosphorylcholine polymer
US5232601A (en) High flux hollow fiber membrane
US4708799A (en) Hollow fiber membrane for plasma separation
US4696748A (en) Plasma separator and a process for preparing the same
JPS6085757A (en) Serum extracting method and apparatus especially useful in said method
CN108602023B (en) Filter membrane and apparatus
CA2095423A1 (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
JP2006508721A (en) Method and apparatus for separating whole blood into red blood cell concentrate and cell-free or platelet-containing plasma under the action of gravity
CS226188B2 (en) Dialysing diaphragm in the form of flat foil,tubular foil or hollow filament made of cellulose regenerated by using cuoxam process
JP2012143554A (en) Polysulfone-based hollow fiber membrane, hollow fiber membrane module for cleaning platelet suspension, and cleaning method of platelet suspension
JP2002526172A (en) Biological fluid filters and systems
CN1842363B (en) Surface treatment of the membrane and associated product
KR100804330B1 (en) Blood Purifying Apparatus
JP5696527B2 (en) Plasma separation method using plasma separation membrane module
JPS6267456A (en) Separation of plasma
US4808312A (en) Cellulose ester hollow fiber membrane for plasma separation
JP4683402B2 (en) Hollow fiber membrane for blood purification, method for producing the same, and blood purifier
JPS6388007A (en) Virus free module
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JPS6315861B2 (en)
JPS5827685A (en) Sterilized water-making unit
JPS61274707A (en) Regenerated porous membrane for separating bacteria
JP5226587B2 (en) High performance blood purifier
JPH11169690A (en) Hemocathersis membrane
Sakai Structure and permeability of dialysis membranes sterilized by various methods