JPS6267427A - Measurement of contact angle of water for porous material - Google Patents

Measurement of contact angle of water for porous material

Info

Publication number
JPS6267427A
JPS6267427A JP20842285A JP20842285A JPS6267427A JP S6267427 A JPS6267427 A JP S6267427A JP 20842285 A JP20842285 A JP 20842285A JP 20842285 A JP20842285 A JP 20842285A JP S6267427 A JPS6267427 A JP S6267427A
Authority
JP
Japan
Prior art keywords
water
contact angle
radius
pore
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20842285A
Other languages
Japanese (ja)
Inventor
Kenji Miura
三浦 健治
Yasuhiro Sato
安広 佐藤
Akira Tsukamoto
塚本 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP20842285A priority Critical patent/JPS6267427A/en
Publication of JPS6267427A publication Critical patent/JPS6267427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To enable the easy measurement of a contact angle between a porous material and water that has been difficult to be measured by locating a sample sufficiently impregnated with a degassed water on a filter and measuring the quantity of the water passing through the filter. CONSTITUTION:A sample that is dipped in water and sufficiently impregnated with water is located on a filter 2 to measure the quantity of water collected in a buret 5. From the weight (x) of the sample impregnated with no water and the quantity (y) of the water in the buret 5, z=y/x is obtained. The relationship between a pore radius and a pore volume for a porous material of the same kind is obtained in advance by mercury penetration method. Then, by substituting theta=0 and a value (h) in a Kelvin's formula on the contact angle as represented by an expression I, a capillary tube radius (r0) is computed and the pore volume (v0) corresponding to (r0) thus obtained is obtained from the relational curve of the pore radius and the pore volume obtained in advance. Then, from the relational curve of the pore radius and the pore volume, the pore radius (r1) corresponding to (z) obtained before is obtained and the contact angle theta is obtained from an expression II.

Description

【発明の詳細な説明】 (技術分野) 本発明は多孔質材料における水の接触角の測定法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for measuring the contact angle of water in porous materials.

(背景技術) 多孔質材料、特に外装建材には、一般に撥水処理を行う
ことが広く用いられている。これは雨水や結露水などの
水分の外装建材への浸入による悪影響金防ぐ丸めである
。この場合、外装建材への水の浸入しやすさの程度は水
の材料に対する接触角で評価することができる。すなわ
ち水の接触角の大きさは、外装建材などでは、1喪な物
性値である。しかし、従米、多孔質材料に対する水の接
触角の測定については、測定法が提案されていなかった
。これはプラスチックなどの烏分子材料と水との接触角
は、顕微鏡を用いて直接測定することができるが、多孔
質材料における孔内表面と水との接触角は、顕微鏡では
測定できないからである。
(Background Art) Water repellent treatment is generally widely used for porous materials, especially exterior building materials. This rounding prevents harmful effects caused by moisture such as rainwater and condensation water infiltrating the exterior building materials. In this case, the degree to which water easily infiltrates the exterior building material can be evaluated by the contact angle of water with the material. In other words, the contact angle of water is an important physical property value for exterior building materials. However, no method has been proposed for measuring the contact angle of water on porous materials. This is because the contact angle between water and a material such as plastic can be directly measured using a microscope, but the contact angle between the inner pore surface of porous materials and water cannot be measured using a microscope. .

(発明の目的) 本発明に多孔質材料と水との接触角の測定を行う方法を
提供することを目的とする。
(Objective of the Invention) An object of the present invention is to provide a method for measuring the contact angle between a porous material and water.

(発明の開示) 本発明の多孔質材料における水の接触角を測定するため
には、第1図に示すような装fi’を用いる0 図において1は透明アクリル製容器で、この容器内にフ
ィルタ2を水平に固定する。この容器の下方にはコック
を介してU字形の肉厚ビニルチュー フ3 k接続し、
このビニルチューブの他端にはガラス大の逆U字管47
&:、連結し、このU字管の他端はビューレット5内に
開口する。
(Disclosure of the Invention) In order to measure the contact angle of water in the porous material of the present invention, a device as shown in Fig. 1 is used. Fix filter 2 horizontally. A U-shaped thick vinyl tube 3k is connected to the bottom of this container via a cock.
At the other end of this vinyl tube is a glass-sized inverted U-shaped tube 47.
&: are connected, and the other end of this U-shaped tube opens into the buret 5.

6はゴム帽を示す。7は接触角を測定しようとする資料
(多孔質材料)で、測定に当っては、この資料を水中(
脱気水ケ用いる)((浸漬して水分を充分に含浸せしめ
る。ついで、この資料全フィルタ2にのせて、フィルタ
を通過し之水の量を測かる08は容器の上方にかぶせた
ビニールカバー全示す。フィルタの細孔は後述するよう
にケルビンの式1りh’を代入してr。が求められたと
き、フィルタの細孔はr。以下のものを用いる。
6 indicates a rubber cap. 7 is the material (porous material) on which the contact angle is to be measured.
(Use deaerated water) The pores of the filter are determined by substituting h' into Kelvin's equation 1 as will be described later.When r is obtained, the pores of the filter are r.The following is used.

測定に当っては、図中AとMとの距離h’4定めて(例
えば1m又は2m)とし、このhにおいて、ビューレッ
ト5の内にたまる水の量を測定する。水を含浸させない
場合の、資料の重さ’!5 X (f) 、  ビュー
レット中の水の’Ml k ’I (cc)とすると、
   z=y/x (cc/r)全測定する。
In the measurement, a distance h'4 between A and M in the figure is determined (for example, 1 m or 2 m), and the amount of water accumulated in the buret 5 is measured at this distance h'4. The weight of the material when not impregnated with water'! 5 X (f), 'Ml k 'I (cc) of water in the buret,
z=y/x (cc/r) Measure all.

次に同じ種類の多孔質材料について水銀圧入法(水銀中
に資料全浸漬し、水銀に加える圧力を変化式せて)にL
り第2図に示す工うに、細孔半径と細孔容積との関係を
求めておく。
Next, the same type of porous material was subjected to the mercury intrusion method (the entire material was immersed in mercury, and the pressure applied to the mercury was varied).
As shown in Figure 2, the relationship between the pore radius and pore volume is determined.

次に接触角に関するクルビンの式 %式% ここに r、・1毛細管半径(−、) δ・・・水の表面張力 72.75 X 10−” (
T/m’ )ρ・・・水の密度 1000麺/− h・・・水面差(m) θ・・・接触角 この式でθ=0.h=2に入れると、r=7.5μmと
なる。すなわちh −2mで水の接触角がOであれば、
半径7.5μm以上の細孔半径中の水分は、抜けること
となる。ここで第2図の曲線よシ細孔半径7.5μmの
場合、細孔容積は0.2cc/7がえられ、7.5μm
に対しては0.2cc/7の水が抜ける筈である。
Next, Kulbin's formula for contact angle% formula% Here r, ・1 Capillary radius (-,) δ...Surface tension of water 72.75 X 10-" (
T/m')ρ...Water density 1000 noodles/-h...Water level difference (m) θ...Contact angle In this formula, θ=0. If h=2, then r=7.5 μm. In other words, if the contact angle of water is O at h -2m,
Moisture in pores with a radius of 7.5 μm or more will escape. According to the curve in Figure 2, if the pore radius is 7.5 μm, the pore volume is 0.2 cc/7, which is 7.5 μm.
0.2cc/7 of water should escape.

しかるに第1図の装置によって測定されfc z =y
/xが0.25 cc/7であるとすると、第2図の曲
線より半径6がえられる。r/ cos−一定であるか
ら、 7 、5 / 008θ== 6/ co8θの式より
 θ境37″ かえられる。
However, when measured by the apparatus of FIG. 1, fc z =y
If /x is 0.25 cc/7, a radius of 6 is obtained from the curve in FIG. Since r/cos is constant, the θ boundary can be changed by 37″ from the formula 7, 5/008θ==6/co8θ.

次に実施例につい−cB明丁ル。Next, regarding Examples - cB Ming Dingle.

(発明の効果) 従来は多孔質材料と水の接触角は測定が困難であったが
1本発明の方法によれば測定が可能となり、これにLシ
羽科の撥水性の評価ができ、材料の信租性向上會図るこ
とができる。
(Effects of the Invention) Conventionally, it was difficult to measure the contact angle between porous materials and water; however, the method of the present invention makes it possible to measure the contact angle, and it is also possible to evaluate the water repellency of L. It is possible to improve the reliability of materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法において用いられる装置、第2図は
細孔半径と細孔容積との関係を示す曲線である。 5・・・・・・ビューレット、7・・・・・・測定しよ
うとする資料
FIG. 1 shows an apparatus used in the method of the present invention, and FIG. 2 shows a curve showing the relationship between pore radius and pore volume. 5... Buret, 7... Material to be measured

Claims (1)

【特許請求の範囲】 (イ)予め測定しようとする多孔質材料(以下資料と呼
ぶ)と同じ材料について、水銀圧入法により、細孔半径
と細孔容積との関係を求め、(ロ)次に資料に脱気水を
充分に含浸せしめ、これをフィルタ上に載せ、このフィ
ルタを通つて抜け出た水量(yとする)をビューレット
に受け、資料の重さをxとするときz=y/x(cc/
g)を計算し、 (ハ)ケルビンの式r=2δcosθ/9.8ρhここ
にr・・・毛細管半径(m) δ・・・水の表面張力72.75×10^−^3(T/
m^2)ρ・・・水の密度1000Kg/m^3 h・・・水面差(m) θ・・・接触角 においてθ=0とし、hを代入して毛細管半径(m)r
_0を算出し、 (ニ)予め求めた細孔半径と細孔容積の関係曲線より、
求めたr_0に対応する細孔容積v_0を求め、(ホ)
さきに求めたzとより細孔半径と細孔容積の関係曲線よ
りzに対応する細孔半径r_1を求め、r_0cos0
=r_1cosθ の式より接触角θを求めることを特徴とする多孔質材料
における水の接触角の測定法。
[Claims] (a) For the same material as the porous material to be measured (hereinafter referred to as data), the relationship between pore radius and pore volume is determined by mercury intrusion method, and (b) the following: First, thoroughly impregnate the material with deaerated water, place it on a filter, and receive the amount of water (denoted as y) that has passed through the filter into a burette.If the weight of the material is x, then z = y. /x(cc/
(c) Kelvin's equation r = 2 δ cos θ / 9.8 ρh where r...capillary radius (m) δ... surface tension of water 72.75
m^2) ρ...Water density 1000Kg/m^3 h...Water level difference (m) θ...Set θ=0 at the contact angle and substitute h to obtain the capillary radius (m) r
Calculate _0, and (d) From the predetermined relationship curve between pore radius and pore volume,
Find the pore volume v_0 corresponding to the found r_0, and (e)
The pore radius r_1 corresponding to z is determined from the relationship curve between the pore radius and the pore volume based on the previously determined z, and r_0cos0
A method for measuring the contact angle of water in a porous material, characterized by determining the contact angle θ from the formula: =r_1cosθ.
JP20842285A 1985-09-20 1985-09-20 Measurement of contact angle of water for porous material Pending JPS6267427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20842285A JPS6267427A (en) 1985-09-20 1985-09-20 Measurement of contact angle of water for porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20842285A JPS6267427A (en) 1985-09-20 1985-09-20 Measurement of contact angle of water for porous material

Publications (1)

Publication Number Publication Date
JPS6267427A true JPS6267427A (en) 1987-03-27

Family

ID=16555957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20842285A Pending JPS6267427A (en) 1985-09-20 1985-09-20 Measurement of contact angle of water for porous material

Country Status (1)

Country Link
JP (1) JPS6267427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103575621A (en) * 2013-10-23 2014-02-12 山东建筑大学 Method for measuring apparent contact angle of liquid on surfaces of particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103575621A (en) * 2013-10-23 2014-02-12 山东建筑大学 Method for measuring apparent contact angle of liquid on surfaces of particles

Similar Documents

Publication Publication Date Title
US4772560A (en) Laminated wafer for sensing and monitoring exposure to gases
Nenniger Jr et al. Drainage of packed beds in gravitational and centrifugal‐force fields
US3272725A (en) Method of electrolytically testing oxygen concentration
JPS6111386B2 (en)
US3661724A (en) Closed loop hygrometry
Russell et al. The determination of the volume and air space of soil clods
JPS6267427A (en) Measurement of contact angle of water for porous material
EP0445287B1 (en) Concentration detection element for solute in aqueous solution
Claisse et al. Test methods for measuring fluid transport in cover concrete
GB2208006A (en) Gas sensing device
Samuelson et al. The mercury-mercuric oxide-saturated barium hydroxide and calcium hydroxide electrodes
CN111781126B (en) Shale gas porosity determination method
JP2729428B2 (en) Direct reading passive monitor
US3152471A (en) Permeability measurement
JP2000111520A (en) Formaldehyde concentration measurement method and discrimination equipment
Stamm Three methods of studying capillary structure as applied to wood
Hedenblad Moisture permeability of some porous materials
Osburn et al. Vapor permeabilities by dynamic sorption
Richards et al. Materials for retainer plates and their use for retentivity measurements
JPS63179248A (en) Method for measuring concentration of chorine ion
SU145797A1 (en) Method for studying the porous structure of materials
RU2255218C1 (en) Method for express determining of moisture containment level in product of gas wells
JPS6236172B2 (en)
Dolch Permeability and Absorptivity of Indiana Limestone Coarse Aggregates
SU372499A1 (en) METHOD FOR DETERMINING THE VOLUME CHANGES OF THE SYSTEM "CEMENT - WATER - AIR"