JPS626709B2 - - Google Patents

Info

Publication number
JPS626709B2
JPS626709B2 JP57154661A JP15466182A JPS626709B2 JP S626709 B2 JPS626709 B2 JP S626709B2 JP 57154661 A JP57154661 A JP 57154661A JP 15466182 A JP15466182 A JP 15466182A JP S626709 B2 JPS626709 B2 JP S626709B2
Authority
JP
Japan
Prior art keywords
amino
nickel
alkyl
yield
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57154661A
Other languages
Japanese (ja)
Other versions
JPS5944364A (en
Inventor
Kozo Fujii
Keigo Nishihira
Hiroyuki Sawada
Hideji Tanaka
Mamoru Nakai
Hiroshi Yoshida
Teruhiko Inoe
Kyoshi Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP57154661A priority Critical patent/JPS5944364A/en
Priority to US06/461,163 priority patent/US4539403A/en
Priority to GB08302225A priority patent/GB2118172B/en
Priority to CH61783A priority patent/CH653023A5/en
Priority to DE19833303789 priority patent/DE3303789A1/en
Priority to KR1019830003442A priority patent/KR900001197B1/en
Priority to DK342283A priority patent/DK156723C/en
Priority to IT48764/83A priority patent/IT1173749B/en
Priority to HU832626A priority patent/HU190727B/en
Publication of JPS5944364A publication Critical patent/JPS5944364A/en
Publication of JPS626709B2 publication Critical patent/JPS626709B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、2―アルキル―4―アミノ―5―ア
ミノメチルピリミジンの新規製法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new method for producing 2-alkyl-4-amino-5-aminomethylpyrimidine.

2―アルキル―4―アミノ―5―アミノメチル
ピリミジンは、ビタミンB1およびその類縁化合
物の重要な合成中間体であることが知られてい
る。
2-Alkyl-4-amino-5-aminomethylpyrimidine is known to be an important synthetic intermediate of vitamin B1 and its analogues.

従来2―アルキル―4―アミノ―5―アミノメ
チルピリミジンの製法として、例えば2―アルキ
ル―4―アミノ―5―シアノピリミジンを還元す
る方法、2―アルキル―4―アミノ―5―アセト
アミドメチルピリミジンを加水分解する方法、な
どが知られている。
Conventional methods for producing 2-alkyl-4-amino-5-aminomethylpyrimidine include, for example, a method of reducing 2-alkyl-4-amino-5-cyanopyrimidine, and a method of reducing 2-alkyl-4-amino-5-acetamidomethylpyrimidine. Methods of hydrolysis are known.

本発明者らは、先に2―アルキル―4―アミノ
―5―ホルミルピリミジンを、還元触媒の存在下
に、アンモニアおよび水素と接触反応を行い還元
アミノ化すれば、公知法よりも一層高収率で2―
アルキル―4―アミノ―5―アミノメチルピリミ
ジンを製造することができることを見い出し、特
願昭57―22122号として特許出願した。しかしこ
の方法では、約80〜90%の収率で目的物を製造す
ることができるが、副生物として2―アルキル―
4―アミノ―5―ヒドロキシメチルピリミジンや
ジ―(2―アルキル―4―アミノ―5―ピリミジ
ルメチル)アミンなどが約10%程度生成する、と
いう問題点を有している。
The present inventors have found that if 2-alkyl-4-amino-5-formylpyrimidine is first subjected to a catalytic reaction with ammonia and hydrogen in the presence of a reduction catalyst to undergo reductive amination, yields can be obtained even higher than in known methods. rate of 2-
It was discovered that alkyl-4-amino-5-aminomethylpyrimidine could be produced, and a patent application was filed as Japanese Patent Application No. 1983-22122. However, with this method, the desired product can be produced with a yield of about 80 to 90%, but 2-alkyl-
The problem is that about 10% of 4-amino-5-hydroxymethylpyrimidine and di-(2-alkyl-4-amino-5-pyrimidylmethyl)amine are produced.

本発明者らは、その後該問題点を改善すべく鋭
意研究を重ねた結果、その反応系に2価のニツケ
ル塩を存在させれば、前記副生物の生成が抑制さ
れ、極めて高収率で目的物を取得できることを知
見し、本発明の完成に到つた。
The present inventors subsequently conducted extensive research to improve this problem, and found that if a divalent nickel salt is present in the reaction system, the formation of the above-mentioned by-products can be suppressed, resulting in an extremely high yield. The inventors discovered that the desired object could be obtained and completed the present invention.

すなわち本発明は、2―アルキル―4―アミノ
―5―ホルミルピリミジンを、2価のニツケル塩
および還元触媒の存在下に、アンモニアおよび水
素と接触反応させることを特徴とする、2―アル
キル―4―アミノ―5―アミノメチルピリミジン
の製法を提供するものである。
That is, the present invention is characterized in that 2-alkyl-4-amino-5-formylpyrimidine is catalytically reacted with ammonia and hydrogen in the presence of a divalent nickel salt and a reduction catalyst. A method for producing -amino-5-aminomethylpyrimidine is provided.

本発明における原料の2―アルキル―4―アミ
ノ―5―ホルミルピリミジンの構造式は、次の一
般式で表わされる。
The structural formula of 2-alkyl-4-amino-5-formylpyrimidine as a raw material in the present invention is represented by the following general formula.

ただし式中のRとしては、メチル、エチル、プ
ロピルおよびブチルなどの低級アルキル基を挙げ
ることができる。
However, R in the formula can include lower alkyl groups such as methyl, ethyl, propyl, and butyl.

該原料は、例えば2―アルキル―4―アミノ―
5―ジアルコキシメチルピリミジンを、酸の存在
下に加水分解することによつて、容易に合成する
ことができる。原料の2―アルキル―4―アミノ
―5―ホルミルピリミジンは、硫酸、硝酸、塩酸
あるいはリン酸などの鉱酸塩としても使用に供す
ることができる。
The raw material is, for example, 2-alkyl-4-amino-
It can be easily synthesized by hydrolyzing 5-dialkoxymethylpyrimidine in the presence of an acid. The raw material 2-alkyl-4-amino-5-formylpyrimidine can also be used as a mineral acid salt such as sulfuric acid, nitric acid, hydrochloric acid, or phosphoric acid.

本発明に使用される還元触媒としては、ラネ―
ニツケル、安定化ニツケル、あるいはパラジウ
ム、白金、ロジウム、ルテニウム、ゴバルト、鉄
などの第8族金属、および銅、クロムなどの金属
などを挙げることができる。これらの金属は、通
常金属の状態で使用されるが、塩、酸化物あるい
は合金の形態で使用に供すこともできる。これら
の還元触媒の中でも、特にラネ―ニツケルおよび
安定化ニツケルが有用であり、ラネ―ニツケルは
常法によつて展開したものであつてもよい。これ
らの触媒は、それぞれ単独で使用しても、また2
種以上の混合物として使用してもよく、また触媒
は使用に先だち、例えば水素ガスで活性化して使
用することもできる。またこれら触媒は、活性
炭、アルミナ、シリカ、炭化ケイ素、ケイソウ
土、軽石、ゼオライト、モレキユラーシーブなど
の担体に担持して使用に供することもできる。
As the reduction catalyst used in the present invention, Raney
Mention may be made of nickel, stabilized nickel, or Group 8 metals such as palladium, platinum, rhodium, ruthenium, gobalt, iron, and metals such as copper and chromium. These metals are usually used in the form of metals, but they can also be used in the form of salts, oxides, or alloys. Among these reduction catalysts, Raney-nickel and stabilized nickel are particularly useful, and Raney-nickel may be developed by conventional methods. These catalysts can be used alone or in combination.
The catalyst may be used as a mixture of more than one species, and the catalyst may be activated with, for example, hydrogen gas prior to use. These catalysts can also be used by being supported on a carrier such as activated carbon, alumina, silica, silicon carbide, diatomaceous earth, pumice, zeolite, or molecular sieve.

これら触媒は、原料2―アルキル―4―アミノ
―5―ホルミルピリミジン1モルに対し、金属換
算で0.001〜3グラム原子、好ましくは0.002〜2
グラム原子用いられる。
These catalysts are 0.001 to 3 gram atoms, preferably 0.002 to 2 gram atoms per mole of raw material 2-alkyl-4-amino-5-formylpyrimidine in terms of metal.
Gram atoms are used.

本発明に使用される2価のニツケル塩として
は、塩化ニツケル、臭化ニツケル、硫酸ニツケ
ル、硝酸ニツケル、リン酸ニツケル、炭酸ニツケ
ル、水酸化ニツケル、酢酸ニツケル、蓚酸ニツケ
ル、安息香酸ニツケル、塩化ニツケルアンモニウ
ム、硫酸ニツケルアンモニウム、硫酸ニツケルカ
リウムなどが挙げられる。これらの2価のニツケ
ル塩は、それぞれ単独で使用してもよく、また2
種以上併用することもできる。また、これらの2
価のニツケル塩は、結晶水を持つたものを使用し
ても良い。その使用量は、原料2―アルキル―4
―アミノ―5―ホルミルピリミジン1モルに対し
て0.1〜5モル、好ましくは0.4〜1.0モルである。
その使用量が前記範囲の下限値より少ない場合に
は、2―アルキル―4―アミノ―5―ヒドロキシ
メチルピリミジンあるいはジ―(2―アルキル―
4―アミノ―5―ピリミジルメチル)アミンなど
の副生物の抑制効果が余り期待されず、一方前記
範囲の上限値より多い場合には目的物の収率が低
下する傾向にある。
The divalent nickel salts used in the present invention include nickel chloride, nickel bromide, nickel sulfate, nickel nitrate, nickel phosphate, nickel carbonate, nickel hydroxide, nickel acetate, nickel oxalate, nickel benzoate, and nickel chloride. Examples include ammonium, nickel ammonium sulfate, and nickel potassium sulfate. These divalent nickel salts may be used alone or in combination with
It is also possible to use more than one species in combination. Also, these 2
A nickel salt with crystalline water may be used. The amount used is the raw material 2-alkyl-4
The amount is 0.1 to 5 mol, preferably 0.4 to 1.0 mol, per mol of -amino-5-formylpyrimidine.
When the amount used is less than the lower limit of the above range, 2-alkyl-4-amino-5-hydroxymethylpyrimidine or di-(2-alkyl-
The effect of suppressing by-products such as 4-amino-5-pyrimidylmethyl)amine is not expected to be significant, and on the other hand, if the amount exceeds the upper limit of the above range, the yield of the target product tends to decrease.

アンモニアは、液体アンモニア、アンモニアガ
スあるいはアンモニア水溶液などが使用に供さ
れ、その使用量は、原料の2―アルキル―4―ア
ミノ―5―ホルミルピリミジン1モル当り、1モ
ル以上、好ましくは4〜500モルである。
Ammonia can be used in the form of liquid ammonia, ammonia gas, or an ammonia aqueous solution, and the amount used is 1 mol or more, preferably 4 to 500 mol per mol of 2-alkyl-4-amino-5-formylpyrimidine as a raw material. It is a mole.

また水素は、原料の2―アルキル―4―アミノ
―5―ホルミルピリミジン1モルあたり1モル以
上、好ましくは5〜400モル用いるのがよい。
Further, hydrogen is preferably used in an amount of 1 mole or more, preferably 5 to 400 moles, per mole of 2-alkyl-4-amino-5-formylpyrimidine as a raw material.

反応は、反応に不活性な溶媒中で行うこともで
きる。溶媒としては、メタノール、エタノール、
プロパノール、ブタノールなどの低級脂肪族アル
コール、ジオキサン、テトラヒドロフラン、ジエ
チルエーテルなどのエーテル、ベンゼン、トルエ
ン、キシレン、ヘキサン、シクロヘキサンなどの
炭化水素、あるいは水などを挙げることができ
る。
The reaction can also be carried out in a solvent inert to the reaction. As a solvent, methanol, ethanol,
Examples include lower aliphatic alcohols such as propanol and butanol, ethers such as dioxane, tetrahydrofuran and diethyl ether, hydrocarbons such as benzene, toluene, xylene, hexane and cyclohexane, and water.

反応は、0〜200℃、好ましくは室温〜120℃の
温度で行われる。また反応は、常圧でも進行する
が、加圧にした方が速やかに進行するので、通常
水素分圧が1100Kg/cm2Gの圧力下に行われる。反
応時間は、0.5〜10時間程度で十分である。
The reaction is carried out at a temperature of 0 to 200°C, preferably room temperature to 120°C. Although the reaction proceeds at normal pressure, it proceeds more quickly under increased pressure, so it is usually carried out under a hydrogen partial pressure of 1100 Kg/cm 2 G. A reaction time of about 0.5 to 10 hours is sufficient.

反応操作としては、例えば2価のニツケル塩と
還元触媒との共存下に、2―アルキル―4―アミ
ノ―5―ホルミルピリミジンとアンモニアおよび
水素とを同時に反応させる方法、あるいは2―ア
ルキル―4―アミノ―5―ホルミルピリミジンと
アンモニアをまず反応させた後、次いで系内に水
素を吹き込み水素との反応を行う方法、によつて
行うことができる。さらには、まず2価のニツケ
ル塩中で2―アルキル―4―アミノ―5―ホルミ
ルピリミジンとアンモニアを反応させた後、その
系に還元触媒を添加し水素を吹き込み水素との反
応を行う方法、によつても行うことができる。
As a reaction operation, for example, a method of simultaneously reacting 2-alkyl-4-amino-5-formylpyrimidine with ammonia and hydrogen in the coexistence of a divalent nickel salt and a reduction catalyst, or a method of simultaneously reacting 2-alkyl-4-amino-5-formylpyrimidine with ammonia and hydrogen, or 2-alkyl-4- The reaction can be carried out by first reacting amino-5-formylpyrimidine with ammonia, and then blowing hydrogen into the system to react with hydrogen. Furthermore, a method in which 2-alkyl-4-amino-5-formylpyrimidine and ammonia are first reacted in a divalent nickel salt, and then a reduction catalyst is added to the system and hydrogen is blown into the system to react with hydrogen; This can also be done by

反応終了後、例えば反応液を冷却し触媒などの
不溶分を去した後、常法により次の一般式で表
わされる2―アルキル―4―アミノ―5―アミノ
メチルピリミジンを、遊離または鉱酸塩の形で単
離、取得することができる。
After the completion of the reaction, for example, after cooling the reaction solution and removing insoluble matter such as the catalyst, 2-alkyl-4-amino-5-aminomethylpyrimidine represented by the following general formula is converted into free or mineral acid salt by a conventional method. It can be isolated and obtained in the form of

(ただし式中のRは、前記と同じ意味を有す
る)。
(However, R in the formula has the same meaning as above).

次に、本発明の実施例および比較例を挙げる。
なお、各例における生成物の収率は、いずれも使
用に供した原料の2―アルキル―4―アミノ―5
―ホルミルピリミジン基準である。
Next, examples of the present invention and comparative examples will be given.
The yield of the product in each example is based on the 2-alkyl-4-amino-5 raw material used.
- Formylpyrimidine standard.

実施例 1 内容積100mlのステンレス製オートクレーブ
に、2―メチル―4―アミノ―5―ホルミルピリ
ミジン1.37g(10ミリモル)、20wt%アンモニア
のメタノール溶液24gおよび無水の塩化ニツケル
0.74g(5.7ミリモル)を仕込み、系内を窒素ガ
スで置換後、内容物を撹拌しながら昇温し、約90
℃に1時間保持した。次いで冷却しオートクレー
ブを開封し安定化ニツケル(商品名、N103B;日
揮化学社製;ニツケル約50wt%、ケイソウ土約
50wt%)0.46gを仕込み、系内を窒素ガスで置換
した後、水素ガスを約30Kg/cm2Gになるように圧
入し、撹拌下に昇温し約90℃で2時間反応を行つ
た。
Example 1 In a stainless steel autoclave with an internal volume of 100 ml, 1.37 g (10 mmol) of 2-methyl-4-amino-5-formylpyrimidine, 24 g of a 20 wt% ammonia methanol solution, and anhydrous nickel chloride were added.
After charging 0.74 g (5.7 mmol) and replacing the inside of the system with nitrogen gas, the temperature was raised while stirring the contents until the temperature reached approx.
It was kept at ℃ for 1 hour. Next, cool it down, open the autoclave, and stabilize the nickel (trade name, N103B; manufactured by JGC Chemical Co., Ltd.; approximately 50 wt% nickel, approximately 50 wt% diatomaceous earth).
After charging 0.46 g of 50 wt%) and purging the system with nitrogen gas, hydrogen gas was injected to a pressure of about 30 kg/cm 2 G, and the temperature was raised with stirring to carry out a reaction at about 90°C for 2 hours. .

反応終了後冷却し、未反応ガスなどを放圧後、
オートクレーブを開封し触媒を取した。触媒を
メタノール洗浄した洗液と液を合わせ、減圧濃
縮して大部分のアンモニアを除いた後、1N―HCl
を加えPHを約3に調整し、内部標準法により液体
クロマトグラフイーで各生成物を定量分析した。
その結果は、次の通りであつた。
After the reaction is completed, it is cooled and unreacted gases are depressurized.
The autoclave was opened and the catalyst was removed. The catalyst was washed with methanol and the washing solution was combined with the solution, concentrated under reduced pressure to remove most of the ammonia, and then mixed with 1N HCl.
was added to adjust the pH to approximately 3, and each product was quantitatively analyzed by liquid chromatography using an internal standard method.
The results were as follows.

2―メチル―4―アミノ―5―アミノメチルピ
リミジンの収率:94.5% 2―メチル―4―アミノ―5―ヒドロキシメチ
ルピリミジンの収率:0.3% ジ―(2―メチル―4―アミノ―5―ピリミジ
ルメチル)アミンの収率:2.5% 実施例 2 内容積100mlのステンレス製オートクレーブに
2―メチル―4―アミノ―5―ホルミルピリミジ
ン1.37g(10ミリモル)20wt%アンモニアのメタ
ノール溶液24g、無水の塩化ニツケル0.74g
(5.7ミリモル)および安定化ニツケルN103B0.46
gを仕込み、系内を窒素ガスで置換後、内容物を
撹拌しながら昇温し約90℃に30分保持した。次い
で同温度下に水素ガスを約30Kg/cm2Gになるよう
に圧入し、同温度で2時間反応を行つた後、実施
例1と同様の操作で各生成物の定量分析を行つ
た。その結果は、次の通りであつた。
Yield of 2-methyl-4-amino-5-aminomethylpyrimidine: 94.5% Yield of 2-methyl-4-amino-5-hydroxymethylpyrimidine: 0.3% Di-(2-methyl-4-amino-5 -Yield of pyrimidylmethyl)amine: 2.5% Example 2 In a stainless steel autoclave with an internal volume of 100 ml, 1.37 g (10 mmol) of 2-methyl-4-amino-5-formylpyrimidine, 24 g of a methanol solution of 20 wt% ammonia, and anhydrous chloride were added. Nickel 0.74g
(5.7 mmol) and stabilized Nickel N103B0.46
After purging the inside of the system with nitrogen gas, the temperature of the contents was raised while stirring and maintained at about 90°C for 30 minutes. Next, hydrogen gas was injected under pressure at the same temperature to give a concentration of about 30 kg/cm 2 G, and the reaction was carried out at the same temperature for 2 hours, followed by quantitative analysis of each product in the same manner as in Example 1. The results were as follows.

2―メチル―4―アミノ―5―アミノメチルピ
リミジンの収率:93.8% 2―メチル―4―アミノ―5―ヒドロキシメチ
ルピリミジンの収率:0.5% ジ―(2―メチル―4―アミノ―5―ピリミジ
ルメチル)アミンの収率:2.5% 比較例 1 実施例2において、塩化ニツケルを用いなかつ
た他は、実施例2と同様の操作で実験を行つた。
その結果は、次の通りであつた。
Yield of 2-methyl-4-amino-5-aminomethylpyrimidine: 93.8% Yield of 2-methyl-4-amino-5-hydroxymethylpyrimidine: 0.5% Di-(2-methyl-4-amino-5 -Yield of pyrimidylmethyl)amine: 2.5% Comparative Example 1 An experiment was conducted in the same manner as in Example 2, except that nickel chloride was not used.
The results were as follows.

2―メチル―4―アミノ―5―アミノメチルピ
リミジンの収率:88.3% 2―メチル―4―アミノ―5―ヒドロキシメチ
ルピリミジンの収率:4.1% ジ―(2―メチル―4―アミノ―5―ピリミジ
ルメチル)アミンの収率:5.8% 実施例 3 内容積100mlのステンレス製オートクレーブ
に、2―メチル―4―アミノ―5―ホルミルピリ
ミジン1.37g(10ミリモル)、20wt%アンモニア
のメタノール溶液24gおよび酢酸ニツケルの4水
塩1.34g(5.4ミリモル)を仕込み、系内を窒素
ガスで置換後、内容物を撹拌しながら昇温し、約
90℃で1時間保持した後、冷却しオートクレーブ
を開封した。次いでラネーニツケル2.0g(ニツ
ケル含量約40wt%)を常法により展開水洗した
後、水をメタノールで置換したもの(メタノール
約6g)を仕込み、系内を窒素ガスで、置換後、
水素ガスを約40Kg/cm2Gになるように圧入し、撹
拌下に昇温し90℃で2時間反応を行つた。その結
果は、次の通りであつた。
Yield of 2-methyl-4-amino-5-aminomethylpyrimidine: 88.3% Yield of 2-methyl-4-amino-5-hydroxymethylpyrimidine: 4.1% Di-(2-methyl-4-amino-5 -Yield of pyrimidylmethyl)amine: 5.8% Example 3 In a stainless steel autoclave with an internal volume of 100 ml, 1.37 g (10 mmol) of 2-methyl-4-amino-5-formylpyrimidine, 24 g of a 20 wt% ammonia methanol solution, and acetic acid were added. After charging 1.34 g (5.4 mmol) of nickel tetrahydrate and replacing the inside of the system with nitrogen gas, the temperature was raised while stirring the contents, and the temperature was increased to approx.
After holding at 90°C for 1 hour, the autoclave was cooled and opened. Next, 2.0 g of Raney nickel (nickel content: about 40 wt%) was developed and washed with water in a conventional manner, then water was replaced with methanol (about 6 g of methanol) and the system was replaced with nitrogen gas.
Hydrogen gas was pressurized to about 40 kg/cm 2 G, and the temperature was raised with stirring to carry out a reaction at 90° C. for 2 hours. The results were as follows.

2―メチル―4―アミノ―5―アミノメチルピ
リミジンの収率:92.9% 2―メチル―4―アミノ―5―ヒドロキシメチ
ルピリミジンの収率:0.6% ジ―(2―メチル―4―アミノ―5―ピリミジ
ルメチル)アミンの収率:2.5% 比較例 2 実施例3において、酢酸ニツケルの4水塩を用
いなかつた他は、実施例3と同様の操作で実験を
行つた。その結果は、次の通りであつた。
Yield of 2-methyl-4-amino-5-aminomethylpyrimidine: 92.9% Yield of 2-methyl-4-amino-5-hydroxymethylpyrimidine: 0.6% Di-(2-methyl-4-amino-5 -Yield of pyrimidylmethyl)amine: 2.5% Comparative Example 2 An experiment was conducted in the same manner as in Example 3, except that nickel acetate tetrahydrate was not used. The results were as follows.

2―メチル―4―アミノ―5―アミノメチルピ
リミジンの収率:84.3% 2―メチル―4―アミノ―5―ヒドロキシメチ
ルピリミジンの収率:5.1% ジ―(2―メチル―4―アミノ―5―ピリミジ
ルメチル)アミンの収率:6.4% 実施例 4 実施例1において塩化ニツケルの代わりに、
NiCO3・Ni(OH)2・4H2O0.75g(ニツケル塩の
合計量として5.3ミリモル)を用いた他は、実施
例1と同様の操作で実験を行つた。その結果は、
次の通りであつた。
Yield of 2-methyl-4-amino-5-aminomethylpyrimidine: 84.3% Yield of 2-methyl-4-amino-5-hydroxymethylpyrimidine: 5.1% Di-(2-methyl-4-amino-5 -Yield of pyrimidylmethyl)amine: 6.4% Example 4 In Example 1, instead of nickel chloride,
An experiment was conducted in the same manner as in Example 1, except that 0.75 g of NiCO 3 .Ni(OH) 2 .4H 2 O (total amount of nickel salt: 5.3 mmol) was used. The result is
It was as follows.

2―メチル―4―アミノ―5―アミノメチルピ
リミジンの収率:93.4% 2―メチル―4―アミノ―5―ヒドロキシメチ
ルピリミジンの収率:0.4% ジ―(2―メチル―4―アミノ―5―ピリミジ
ルメチル)アミンの収率:2.9% 実施例 5 原料として2―メチル―4―アミノ―5―ホル
ミルピリミジンに代えて、2―エチル―4―アミ
ノ―5―ホルミルピリミジンを1.51g(10ミリモ
ル)、また20wt%アンモニアのメタノール溶液に
代えて20wt%アンモニアのエタノール溶液を30
g用いた他は、実施例1と同様の操作により実験
を行つた。その結果は、次の通りであつた。
Yield of 2-methyl-4-amino-5-aminomethylpyrimidine: 93.4% Yield of 2-methyl-4-amino-5-hydroxymethylpyrimidine: 0.4% Di-(2-methyl-4-amino-5 -Yield of pyrimidylmethyl)amine: 2.9% Example 5 Instead of 2-methyl-4-amino-5-formylpyrimidine, 1.51 g (10 mmol) of 2-ethyl-4-amino-5-formylpyrimidine was used as a raw material. , and 20 wt% ammonia in ethanol solution instead of 20 wt% ammonia in methanol solution.
The experiment was conducted in the same manner as in Example 1, except that g was used. The results were as follows.

2―エチル―4―アミノ―5―アミノメチルピ
リミジンの収率:95.1% 2―エチル―4―アミノ―5―ヒドロキシメチ
ルピリミジンの収率:1.5% ジ―(2―エチル―4―アミノ―5―ピリミジ
ルメチル)アミンの収率:2.0%。
Yield of 2-ethyl-4-amino-5-aminomethylpyrimidine: 95.1% Yield of 2-ethyl-4-amino-5-hydroxymethylpyrimidine: 1.5% Di-(2-ethyl-4-amino-5 -Yield of pyrimidylmethyl)amine: 2.0%.

Claims (1)

【特許請求の範囲】[Claims] 1 2―アルキル―4―アミノ―5―ホルミルピ
リミジンを、2価のニツケル塩および環元触媒の
存在下に、アンモニアおよび水素と接触反応させ
ることを特徴とする、2―アルキル―4―アミノ
―5―アミノメチルピリミジンの製法。
1 2-alkyl-4-amino-, which is characterized by catalytically reacting 2-alkyl-4-amino-5-formylpyrimidine with ammonia and hydrogen in the presence of a divalent nickel salt and a ring catalyst. Method for producing 5-aminomethylpyrimidine.
JP57154661A 1982-02-04 1982-09-07 Preparation of 2-lakyl-4-amino-5-aminomethylpyrimidine Granted JPS5944364A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP57154661A JPS5944364A (en) 1982-09-07 1982-09-07 Preparation of 2-lakyl-4-amino-5-aminomethylpyrimidine
US06/461,163 US4539403A (en) 1982-02-16 1983-01-26 Process for the preparation of a 2-alkyl-4-amino-5-aminomethylpyrimidine
GB08302225A GB2118172B (en) 1982-02-04 1983-01-27 Preparation of a 2-alkyl-4-amino-5-aminomethylpyrimidine
CH61783A CH653023A5 (en) 1982-02-04 1983-02-03 METHOD FOR PRODUCING 2-ALKYL-4-AMINO-5-AMINOMETHYLPYRIMIDINES.
DE19833303789 DE3303789A1 (en) 1982-02-04 1983-02-04 METHOD FOR PRODUCING A 2-ALKYL-4-AMINO-5-AMINOMETHYLPYRIMIDINE
KR1019830003442A KR900001197B1 (en) 1982-09-07 1983-07-25 Process for preparing 2-alkyl-4-amino-5-aminomethyl pyrimidine
DK342283A DK156723C (en) 1982-09-07 1983-07-26 METHOD OF PREPARING 2-ALKYL-4-AMINO-5-AMINOMETHYLPYRIMIDINES
IT48764/83A IT1173749B (en) 1982-09-07 1983-07-27 PROCEDURE FOR THE PREPARATION OF A 2-ALCHIL-4-AMINO-5-AMMINOMETHY PYRIMIDINE
HU832626A HU190727B (en) 1982-09-07 1983-07-27 Process for preparing 2-alkyl-4-amino-5-/amino-methyl/-pyrimidine derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57154661A JPS5944364A (en) 1982-09-07 1982-09-07 Preparation of 2-lakyl-4-amino-5-aminomethylpyrimidine

Publications (2)

Publication Number Publication Date
JPS5944364A JPS5944364A (en) 1984-03-12
JPS626709B2 true JPS626709B2 (en) 1987-02-13

Family

ID=15589119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57154661A Granted JPS5944364A (en) 1982-02-04 1982-09-07 Preparation of 2-lakyl-4-amino-5-aminomethylpyrimidine

Country Status (1)

Country Link
JP (1) JPS5944364A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172323B2 (en) 2007-02-27 2012-05-08 Okamura Corporation Locking device for a movable member in a chair

Also Published As

Publication number Publication date
JPS5944364A (en) 1984-03-12

Similar Documents

Publication Publication Date Title
JPS646183B2 (en)
EP2524909A2 (en) Preparation method of 4-aminomethylbenzoic acid
US4539403A (en) Process for the preparation of a 2-alkyl-4-amino-5-aminomethylpyrimidine
JP2598848B2 (en) Bis (3-cyano-3,5,5-trimethyl-cyclohexylidene) -azine, a method for producing the compound and a method for producing 3- (aminomethyl) -3,5,5-trimethylcyclohexylamine
JPS626709B2 (en)
JPS6028429A (en) Catalyst for preparing polyethylene glycol dialkyl ether
GB2118172A (en) Preparation of a 2-alkyl-4- amino-5-aminomethylpyrimidine
US4536577A (en) Process for preparing 2-alkyl-4-amino-5-aminomethylpyrimidine
KR900001197B1 (en) Process for preparing 2-alkyl-4-amino-5-aminomethyl pyrimidine
JP4383726B2 (en) Amine production method
JP2964536B2 (en) Method for producing octamethylenediamine
KR100193156B1 (en) Method for producing diphenylamine or its nuclear-substituted derivatives
US5124485A (en) Catalysts and methods of separation thereof
CN109651187B (en) Synthesis method of (S) -N' - (2-benzyloxypropylene) formylhydrazine
JPH0149135B2 (en)
JPS58140079A (en) Preparation of 2-alkyl-4-amino-5-aminomethylpyrimidine
JP4378488B2 (en) Process for producing 2-aminomethylpyrimidine and its salt
JP4370028B2 (en) Method for producing 1,4-diaminobutane
JP2007217373A (en) Catalyst for synthesizing methanol, method for producing the same and method for producing methanol
JPH048423B2 (en)
JPH1087573A (en) Production of primary amine
JPS626710B2 (en)
JPH01242559A (en) Production of amino alcohol
JP2608715B2 (en) Method for producing 4-methyl-1-pentene
JPH09157197A (en) Production of methanol