JPS626688B2 - - Google Patents

Info

Publication number
JPS626688B2
JPS626688B2 JP57034384A JP3438482A JPS626688B2 JP S626688 B2 JPS626688 B2 JP S626688B2 JP 57034384 A JP57034384 A JP 57034384A JP 3438482 A JP3438482 A JP 3438482A JP S626688 B2 JPS626688 B2 JP S626688B2
Authority
JP
Japan
Prior art keywords
group
soybean oil
shows
cured
unsaponifiable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57034384A
Other languages
Japanese (ja)
Other versions
JPS58150513A (en
Inventor
Shozo Yoshimura
Motoharu Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morishita Pharmaceuticals Co Ltd
Original Assignee
Morishita Pharmaceuticals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morishita Pharmaceuticals Co Ltd filed Critical Morishita Pharmaceuticals Co Ltd
Priority to JP57034384A priority Critical patent/JPS58150513A/en
Publication of JPS58150513A publication Critical patent/JPS58150513A/en
Publication of JPS626688B2 publication Critical patent/JPS626688B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、大豆油不ケン化物を主成分とする血
管壁代謝改善剤に関する。 今日、循環器系薬剤の中で、高脂血症の治療を
目的とする抗脂血剤は種々開発されているが、動
脈壁の代謝を改善し、内膜、中膜組織の硬化性変
化を抑制する薬剤としては、エラスターゼ(特公
昭50―21557)、セタベン(Japan International
Medical Tribune、Vol・10,No.45,1977)等の
数例が知られているに過ぎない。而も、これらの
中、エラスターゼは、哺乳動物の膵臓又は特定の
細菌の菌体中に存在するエラスチン分解酵素であ
り、原料入手、抽出、精製、安定化等の各面に渉
つて困難な問題を伴なう。又、化学名がソジウム
p―デキサデシルアミノ―e―ベンゾエートであ
るセタベンには、副作用の点で、長期投与が可能
かどうかについて疑問点が残されている。 本発明者等は、上述の問題点を解決すべく鋭意
研究の結果、極めて安価で、原料の入手、製造法
ともに容易であり格別の副作用のない天然物由来
の大豆油不ケン化物に、血管物性への効果を伴な
う動脈壁の代謝改善作用、即ち、動脈組織の硬化
病変に伴なうエラスチン、コラーゲン、酸性ムコ
多糖類、糖蛋白、平滑筋細胞線維及び平滑筋細胞
核DNAの代謝を改善する作用を有すると共に、
カルシウム沈着を抑制する作用をも有し、その結
果、血管の老化乃至は動脈硬化を有効に予防し得
ることを見出し、かかる知見に基いて、本発明を
完成したのである。 本発明に係る大豆油不ケン化物は、大豆油の脱
臭蒸留物をエステル化し分子蒸留後、釜残渣とし
て得られ、特異な臭いと僅かな甘味を有する半固
体状又は粘稠な油状物質で、血清脂質作用を示し
(金田尚志他、栄養と食糧、19,439(1967))、普
通、植物ステロール類(β―シトステロール、ス
チグマステロール、カンペステロール)40〜50重
量%(以下、重量%を単に%という)、トコフエ
ロール類18〜22%、高級不飽和脂肪酸類(ラウリ
ル酸、ミリスチン酸、パルミチンン酸、リノール
酸等)約30%を含むものである。 上記大豆油不ケン化物の精製例の1を示せば、
大豆油をガード型脱臭装置で約230℃に加熱し、
2〜3mmHgの減圧下、1時間に5%の水蒸気を
吹き込むと、大豆油の脱臭留出物が得られる。こ
の脱臭留出物1740gにメタノール3000gと濃硫酸
34gを加え、68℃で3〜4時間還流したのち過剰
のメタノールを減圧下留去する。残渣を熱水5Kg
で洗滌後、水分を完全に留去し、ついで20〜130
μHgの減圧下、170〜190℃で脂肪酸メチルを留
去すると、植物ステロール類(β―シトステロー
ル、スチグマステロール、カンペステロール)42
〜43%、トコフエロール類(α―、γ、δ―トコ
フエロール)18〜22%、高級不飽和脂肪酸類(ラ
ウリル酸、ミリスチン酸、パルミチン酸、リノー
ル酸等)約30%を含んだところの、目的の大豆油
不ケン化物を釜残渣として得る。上記分子蒸留の
具体的条件及び該条件に対応する具体的結果を、
次の表1に示し、且つ、該表1中のNo.1の精製物
の赤外線吸収スペクトル図を第1図に示す。
TECHNICAL FIELD The present invention relates to a vascular wall metabolism improving agent whose main component is unsaponifiable matter of soybean oil. Today, among cardiovascular drugs, various antilipidemic drugs have been developed for the purpose of treating hyperlipidemia. Examples of drugs that suppress
Only a few examples are known, such as Medical Tribune, Vol. 10, No. 45, 1977). Among these, elastase is an elastin-degrading enzyme that exists in the pancreas of mammals or the cells of specific bacteria, and there are difficult problems in obtaining raw materials, extraction, purification, stabilization, etc. accompanied by. Furthermore, there are still questions regarding whether long-term administration of Cetaben, whose chemical name is sodium p-dexadecylamino-e-benzoate, is possible due to side effects. As a result of intensive research in order to solve the above-mentioned problems, the present inventors have developed an unsaponifiable product of soybean oil derived from a natural product that is extremely cheap, easy to obtain raw materials, easy to manufacture, and has no particular side effects. Improves metabolism of arterial walls with effects on physical properties, i.e., improves metabolism of elastin, collagen, acidic mucopolysaccharides, glycoproteins, smooth muscle cell fibers, and smooth muscle cell nuclear DNA associated with sclerotic lesions of arterial tissues. In addition to having an improving effect,
It was discovered that it also has the effect of suppressing calcium deposition, and as a result, aging of blood vessels and arteriosclerosis can be effectively prevented, and based on this knowledge, the present invention was completed. The unsaponifiable soybean oil according to the present invention is a semi-solid or viscous oily substance that is obtained as a pot residue after molecular distillation by esterifying a deodorized distillate of soybean oil and has a unique odor and a slight sweetness. It exhibits a serum lipid effect (Takashi Kaneda et al., Nutrition and Food, 19, 439 (1967)), and usually contains 40 to 50% by weight of plant sterols (β-sitosterol, stigmasterol, campesterol) (hereinafter referred to as weight%). %), 18-22% tocopherols, and about 30% higher unsaturated fatty acids (lauric acid, myristic acid, palmitic acid, linoleic acid, etc.). One example of purification of the above-mentioned soybean oil unsaponifiables is as follows:
Soybean oil is heated to approximately 230℃ using a guard type deodorizing device.
A deodorized distillate of soybean oil is obtained by blowing 5% steam for 1 hour under a reduced pressure of 2 to 3 mmHg. 1740g of this deodorized distillate, 3000g of methanol and concentrated sulfuric acid.
After adding 34 g of the mixture and refluxing at 68°C for 3 to 4 hours, excess methanol was distilled off under reduced pressure. Pour the residue into 5 kg of hot water.
After washing with water, completely distill off the moisture, and then
When fatty acid methyl is distilled off at 170-190℃ under a reduced pressure of μHg, plant sterols (β-sitosterol, stigmasterol, campesterol) 42
~43%, tocopherols (α-, γ, δ-tocopherol) 18-22%, and higher unsaturated fatty acids (lauric acid, myristic acid, palmitic acid, linoleic acid, etc.) approximately 30%. The unsaponifiable matter of soybean oil is obtained as a pot residue. The specific conditions for the above molecular distillation and the specific results corresponding to the conditions,
The results are shown in Table 1 below, and the infrared absorption spectrum of the purified product No. 1 in Table 1 is shown in FIG.

【表】 なお、上記精製物の各成分は、次の方法により
定量した。 (A) 植物ステロール類 試料を水酸化ナトリウムでケン化し、ジキトニ
ンを反応させて生成したジキトニドの重量と、ガ
スクロマトグラムより得られたカンペステロー
ル、スチグマステロール、β―シトステロールの
相対比から求めた。 (B) トコフエロール類 試料をクロロホルムに溶解し、塩化第二鉄の無
水エタノール溶液を加え、更に、α、α′―ジピ
リジルを加えて赤色の錯塩を生成させ、波長
520mμにおける吸光度を測定し、α―トコフエ
ロールを標準液として各々の吸光度から求めた。 (C) 高級不飽和脂肪酸 (ケン化価/中和価)×100(%)の式から求め
た。但し、試料中の脂肪酸が常に一定組成である
とは限らないので、便宜上、リノール酸の中和価
を以て代用した。 上記の大豆油不ケン化物は、本発明者等の実験
に依れば、特段に優れた血管壁代謝改善作用を有
し、更に亦血管壁へのカルシユウム沈着を極めて
効果的に防止することが明らかである。 元来、生体脈動流下の血管は、常に生理的、病
的、代償的変貌、即ち、血管壁構築成分の量的、
質的変貌を余儀なくされる。 この場合における血管壁構築成分たるエラスチ
ン、コラーゲン、平滑筋線維、平滑筋細胞核
DNA、酸性ムコ多糖類及び糖蛋白の硬化病変に
伴う代謝を改善し、且つ、血管物性、特に血管の
粘弾性特性と密接に関連する血管壁へのカルシウ
ム沈着を防止すれば、血管壁構築成分の変貌を抑
制し、血管の老化乃至は動脈硬化を予防する所以
となる。 本発明者等は、かかる観点よりして、月令36か
月、体重2.4〜4.5Kgの日本白色成熟雄家兎を用
い、下記の如く、それぞれ3羽よりなる健常群、
硬化群及び硬化投薬群を構成して、本発明に関す
る実験を行つた。 (A) 硬化群、硬化投薬群の形成 硬化家兎の作成は、次の(1),(2),(3)の方法を
併用した。 (1) 組織障害法 0.1%アドレナリンを筋注で0.13ml/Kg、
1日1回、週5日、16週連続投与する。 (2) 低酸素法 密封箱の吸入口より窒素ガスを噴出させ、
排出口より空気を排除し、家兎に酸素欠乏に
より間代性痙攣を起させる。1日2回、週5
日、4週間連続負荷する。 (3) 内膜作製法(栄養血管閉塞法) コレステロールを経口で1日0.5g、16週
連続投与する。 次に、硬化投薬群は、上記の硬化家兎作成
と並行して、植物ステロール類48%、トコフ
エロール類18%、高級不飽和脂肪酸類30%含
有の大豆油不ケン化物を経口で200mg、1日
1回、22週連続投与して作成した。 (B) 標本の作成と血管壁構築成分の測定・観察前
記健常群、硬化群及び硬化投薬群を22週後に屠
殺し、それぞれの胸部大動脈を幅3〜5mmに輪
切り切片とし、次いでエポキシ樹脂包埋を行
い、JB―4A型オートミクロトームにより横方
向から薄切りし、標本を作成した。 各成分の染色法と組織化学的顕微分光側光法
(阿倍正蔵、東京慈恵会医科大学雑誌、90,1
(1975))による波長特性及び結果を、次の表2
に示す。
[Table] Each component of the above purified product was quantified by the following method. (A) Plant sterols It was determined from the weight of dichitonide produced by saponifying a sample with sodium hydroxide and reacting with dichitonin, and the relative ratio of campesterol, stigmasterol, and β-sitosterol obtained from a gas chromatogram. (B) Tocopherols Dissolve the sample in chloroform, add a solution of ferric chloride in anhydrous ethanol, and then add α, α′-dipyridyl to form a red complex salt.
The absorbance at 520 mμ was measured, and the absorbance was determined from each absorbance using α-tocopherol as a standard solution. (C) Higher unsaturated fatty acids Calculated from the formula (saponification value/neutralization value) x 100 (%). However, since the fatty acids in the sample do not always have a constant composition, the neutralization value of linoleic acid was used as a substitute for convenience. According to the experiments conducted by the present inventors, the above-mentioned unsaponifiable soybean oil has a particularly excellent effect of improving blood vessel wall metabolism, and is also capable of extremely effectively preventing calcium deposition on the blood vessel wall. it is obvious. Originally, blood vessels under living body pulsating flow are constantly undergoing physiological, pathological, and compensatory changes, that is, the quantity and
Qualitative transformation is forced. In this case, elastin, collagen, smooth muscle fibers, and smooth muscle cell nuclei, which are components of vascular wall construction.
If it improves the metabolism of DNA, acidic mucopolysaccharides, and glycoproteins associated with sclerotic lesions, and prevents calcium deposition on the vascular wall, which is closely related to the physical properties of blood vessels, especially the viscoelastic properties of blood vessels, it will become a component of vascular wall construction. This is the reason why it suppresses the deformation of blood vessels and prevents aging of blood vessels and arteriosclerosis. From this point of view, the present inventors used Japanese white adult male rabbits, 36 months old and weighing 2.4 to 4.5 kg, to create a healthy group of 3 rabbits each, as shown below.
Experiments related to the present invention were conducted by forming a curing group and a curing dosage group. (A) Formation of cured group and cured drug group The following methods (1), (2), and (3) were used in combination to create cured rabbits. (1) Tissue damage method 0.1% adrenaline 0.13ml/Kg intramuscularly,
Administer once a day, 5 days a week, for 16 consecutive weeks. (2) Hypoxic method Nitrogen gas is spewed out from the inlet of a sealed box,
Air is removed from the outlet and the rabbit undergoes clonic convulsions due to lack of oxygen. Twice a day, 5 times a week
day, for 4 weeks. (3) Intima production method (vegetative vascular occlusion method) Cholesterol is administered orally at 0.5 g per day for 16 consecutive weeks. Next, in parallel with the production of cured rabbits, the cured administration group received 200 mg of unsaponifiable soybean oil containing 48% plant sterols, 18% tocopherols, and 30% higher unsaturated fatty acids orally. The drug was administered once a day for 22 consecutive weeks. (B) Preparation of Specimens and Measurement and Observation of Components of Blood Vessel Walls The healthy group, cured group, and cured drug group were sacrificed after 22 weeks, and each thoracic aorta was sliced into 3-5 mm wide slices, and then wrapped in epoxy resin. The specimen was embedded and sliced laterally using a JB-4A automicrotome to prepare specimens. Staining method of each component and histochemical microspectroscopy (Shozo Abe, Journal of Tokyo Jikei University School of Medicine, 90 , 1)
(1975)) are shown in Table 2 below.
Shown below.

【表】 註(1) (a),(b),(c)各群の数値は、3羽の平均値 ±標準誤差%Extinction、但し(d)の単位は
AU.( )内は健常群を基準にした指数表示。 (2) ※……p<0.2,※※……p<0.05、 ※※※……p<0.001(何れも、t検定) 上記表2に示されるところの、硬化投薬群の
血管壁構築成分についての数値と他群の数値と
の対比により、本発明血管壁代謝改善剤の血管
代謝改善効果が歴然と示される。 次に、前記各標本を使用して、動脈硬化の血管
物性と最も関係の深いカルシウム沈着及び弾性線
維に関する、光学顕微鏡による観察を行い、その
結果を第2図及び第3図に示す。 第2図は、カルシウムのKossa―Nishiyama染
色標本の光学顕微鏡写真であつて、その中、(A)は
健常群、(B)は硬化群、(C)は硬化投薬群をそれぞれ
示す。 第3図は、弾力線維のWeigert染色標本の光学
顕微鏡写真であつて、その中、(A)は健常群、(B)は
硬化群、(C)は硬化投薬群をそれぞれ示す。 第3図より明かな如く、硬化群では、明かにカ
ルシウムの沈着と弾力線維の乱れ、やせ、断裂、
枝分れ等が認められるのに対して、硬化投薬群で
は、いずれも健常群との差が殆んど認められず、
本発明剤が、カルシウムの沈着を抑制し、血管の
粘弾特性を保持するのに特段の効果を有すること
が、極めて明かである。 之を要するに、如上の実験結果により、本発明
剤が血管壁代謝改善剤として従来にその比を見な
い顕著な効果を有し、カルシウム沈着防止効果と
相まつて、血管老化乃至は動脈硬化予防に著効を
有することが示されれる。而も本発明剤は、大豆
油不ケンン化物を主成分とするが故に、極めて安
価に提供でき、その点においても産業利用性が多
大である。 本発明剤は、乳剤、粉末剤、錠剤、顆粒剤或い
はカプセル剤等の経口用剤として用いられるが、
大豆油不ケン化物が半固体状又は粘稠状の油状物
質である関係上、固形化して用いるのが好都合で
あり、この場合において、効果的且つ低コストの
固形化法として、カプセル化、詳言すれば、硬カ
プセル化又は軟カプセル化するのが適当である。 次に、本発明の実施例を示す。 実施例 1 動脈硬化を非観血的に測定する方法として、大
動脈波速度(以下、PWVと略記する。)の数値が
血管壁素材の構築状況に由来する血管物性を良く
反映し、該PWV値が硬化性病変の進行に伴つて
増大するという知見(吉村正蔵他、脈管学、18,
742(1978))によるPWV法(長谷川元治、東京
慈恵会医科大学雑誌、85、742(1970))により、
植物ステロール類42%、トコロフエロール類22
%、高級不飽和脂肪酸類31%を含含有するところ
の、カプセル化した大豆油不ケン化物を用いて臨
床実験を行つた。 硬化群は、年令45〜〜81才(平均65.3才)、男
19例、女16例の計35例、硬化投与群は、年令33〜
79才(平均61.3才)、男17例、女17例の計34例と
し、投薬は、経口で上記大豆油不ケン化物を1回
につき400mg、1日3回、28か月連続投与した。 硬化群、硬化投薬群とも4.4か月に1回PWV測
定し、平均値の推移を調べ、その結果を第4図に
示す。 該第4図に明かな如く、10か月未満では硬化
群・硬化投薬群間に差は認められず、10〜20か月
で、P<0.055、20〜30か月で、P<0.01の有意
差が認められ、大豆油不ケン化物が10数か月以上
の長期投与により、ヒト動脈硬化病変を抑制又は
阻止する作用を示すことが明かとなつた。 なお、第4図は、各群とも、0か月の平均
PWV値を基準にして表示したものである。 実施例 2 植物ステロール類45%、トコフエロール類20
%、高級不飽和脂肪酸30%を含有した大豆油不ケ
ン化物をゴマ油に溶解し、生後5週令で体重12〜
18gのdd系マウス(雌、雄)及び体重60〜90g
のWister系ラツト(雌、雄)を、それぞれ5匹
1群として用いて、急性毒性試験を行なつた。 マウスでは、前記大豆油不ケン化物を経口で
8.0g/Kg、皮下注射で4.0g/Kg、腹腔内注射で
2.0g/Kg、ラツトでは、マウスの場合と同一の
大豆油不ケン化物を経口で8.0g/Kg、皮下注射
で2.0g/Kg、腹腔内注射で1.0g/Kgを、それぞ
れ投与した。 投与後72時間で生死を判定し、引続き10日間観
察した。 その結果、投与後72時間における判定では、い
ずれも生存し、その後の10日間でも死亡例がな
く、LD50の算出は不可能であつた。 また投与後の中毒症状及び行動については、正
常動物群と何等異なるところは認められなかつ
た。 参考例 大豆油不ケン化物470g、ビタミンC20g、ク
エン酸10g、繊維素グリコール酸カルシウム40
g、ラウリル酸ナトリウム20g、ポリオキシエチ
レンモノステアレート10g及びクロロホルム600
mlをよく混合撹拌し、懸濁液状とする。これにア
エロジル200〜400(商品名)390gを加えて混合
撹拌後、約50〜60で乾燥し、得られた塊状物を砕
いて大豆油不ケン化物の吸着末を得る。この吸着
末に、ポリビニルピロリドン40gを溶かしたクロ
ロセン―エタノール溶液600mlを加え、練合後、
常法に従い造粒、乾燥すると、固形化良好な顆粒
を得た。 本品に滑沢剤として少量のステアリン酸マグネ
シウムを加え、1カプセル中大豆油下ケン化物が
200mg含まれるように硬カプセルに充填する。
[Table] Notes (1) Values for each group (a), (b), and (c) are the average value of three birds ± standard error% Extinction, however, the unit of (d) is
AU. Values in parentheses are indexes based on the healthy group. (2) ※...p<0.2, ※※...p<0.05, ※※※...p<0.001 (all t-test) Blood vessel wall building components in the sclerosing medication group shown in Table 2 above The comparison between the values for and those of other groups clearly shows the vascular metabolism improving effect of the vascular wall metabolism improving agent of the present invention. Next, using each of the specimens, calcium deposits and elastic fibers, which are most closely related to the physical properties of arteriosclerotic blood vessels, were observed using an optical microscope, and the results are shown in FIGS. 2 and 3. FIG. 2 is an optical micrograph of a Kossa-Nishiyama stained specimen for calcium, in which (A) shows a healthy group, (B) shows a cured group, and (C) shows a cured group. FIG. 3 is an optical micrograph of a Weigert-stained specimen of elastic fibers, in which (A) shows a healthy group, (B) shows a hardened group, and (C) shows a hardened group. As is clear from Figure 3, in the hardened group, calcium deposition, disorder of elastic fibers, thinning, rupture,
In contrast, in the sclerosing treatment group, there was almost no difference from the healthy group.
It is extremely clear that the agent of the present invention has a special effect on suppressing calcium deposition and maintaining the viscoelastic properties of blood vessels. In short, the above experimental results show that the agent of the present invention has an unprecedented effect as a vascular wall metabolism improving agent, and together with its calcium deposition prevention effect, it is effective in preventing vascular aging and arteriosclerosis. It is shown that it has a significant effect. Moreover, since the agent of the present invention is mainly composed of unsaponifiable matter of soybean oil, it can be provided at an extremely low cost, and in this respect, it has great industrial applicability. The agent of the present invention is used as an oral preparation such as an emulsion, a powder, a tablet, a granule, or a capsule.
Since unsaponifiable soybean oil is a semi-solid or viscous oily substance, it is convenient to use it in solid form. In other words, hard encapsulation or soft encapsulation is appropriate. Next, examples of the present invention will be shown. Example 1 As a method for non-invasively measuring arteriosclerosis, the numerical value of aortic wave velocity (hereinafter abbreviated as PWV) well reflects the vascular physical properties derived from the construction status of the vascular wall material, and the PWV value The finding that the amount increases with the progression of sclerotic lesions (Shozo Yoshimura et al., Angiology, 18,
742 (1978)) by the PWV method (Genji Hasegawa, Tokyo Jikei University School of Medicine Journal, 85 , 742 (1970)).
42% plant sterols, 22 tocopherols
A clinical experiment was conducted using encapsulated unsaponifiable soybean oil containing 31% of higher unsaturated fatty acids. The hardened group was aged 45 to 81 years (average 65.3 years) and male.
A total of 35 patients, 19 cases and 16 women, were in the hardening treatment group, aged 33 and up.
A total of 34 patients, 79 years old (average 61.3 years), 17 males and 17 females, were orally administered the above-mentioned soybean oil unsaponifiables at a dose of 400 mg three times a day for 28 consecutive months. PWV was measured once every 4.4 months for both the hardening group and the hardening medication group, and the changes in the average values were examined, and the results are shown in Figure 4. As is clear from Fig. 4, there was no difference between the hardening group and the hardening treatment group for less than 10 months, P < 0.055 for 10 to 20 months, and P < 0.01 for 20 to 30 months. A significant difference was observed, and it was revealed that unsaponifiable soybean oil exhibits the effect of suppressing or inhibiting human arteriosclerotic lesions when administered for a period of more than 10 months. In addition, Figure 4 shows the average at month 0 for each group.
It is displayed based on the PWV value. Example 2 45% plant sterols, 20% tocopherols
%, unsaponifiables of soybean oil containing 30% of higher unsaturated fatty acids are dissolved in sesame oil, and the weight is 12~12% at 5 weeks of age.
18g DD mouse (female, male) and weight 60-90g
An acute toxicity test was conducted using 5 Wistar rats (female and male) in groups of 5 each. In mice, the soybean oil unsaponifiables were administered orally.
8.0g/Kg, subcutaneous injection 4.0g/Kg, intraperitoneal injection
For rats, the same unsaponifiable soybean oil as for mice was administered orally at 8.0 g/Kg, subcutaneously at 2.0 g/Kg, and intraperitoneally at 1.0 g/Kg. Life or death was determined 72 hours after administration, and observation was continued for 10 days. As a result, as determined 72 hours after administration, all of the animals survived, and there were no deaths during the subsequent 10 days, making it impossible to calculate LD50 . Furthermore, no differences were observed in the toxic symptoms and behavior after administration compared to the normal animal group. Reference example: Soybean oil unsaponifiables 470g, vitamin C 20g, citric acid 10g, cellulose calcium glycolate 40g
g, sodium laurate 20g, polyoxyethylene monostearate 10g and chloroform 600g
ml and stir well to form a suspension. 390 g of Aerosil 200-400 (trade name) is added thereto, mixed and stirred, and then dried at a temperature of about 50-60 ℃, and the obtained lumps are crushed to obtain an adsorbed powder of soybean oil unsaponifiables. Add 600 ml of chlorocene-ethanol solution containing 40 g of polyvinylpyrrolidone to this adsorbed powder, and after kneading,
Granules were granulated and dried according to a conventional method to obtain granules with good solidification. A small amount of magnesium stearate is added to this product as a lubricant, and each capsule contains saponified soybean oil.
Fill into hard capsules to contain 200mg.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る大豆油不ケン化物の赤
外線吸収スペクトル図、第2図は、カルシウムの
Kossa―Nishiyama染色標本の光学顕微鏡写真
で、その中、(A)は健常群、(B)は硬化群、(C)は硬化
投薬群をそれぞれ示す。第3図は、弾力線維の
Weigert染色標本の光学顕微鏡写真であつて、そ
の中、(A)は健常群、(B)は硬化群、(C)は硬化投薬群
をそれぞれ示す。第4図は、PWV法による大動
脈脈波速度変化図である。
Figure 1 is an infrared absorption spectrum diagram of unsaponifiable soybean oil according to the present invention, and Figure 2 is an infrared absorption spectrum diagram of unsaponifiable soybean oil according to the present invention.
Optical micrographs of Kossa-Nishiyama stained specimens, in which (A) shows the healthy group, (B) shows the cured group, and (C) shows the cured group. Figure 3 shows elastic fibers.
These are optical micrographs of Weigert-stained specimens, in which (A) shows a healthy group, (B) shows a cured group, and (C) shows a cured group. FIG. 4 is a diagram of changes in aortic pulse wave velocity obtained by the PWV method.

Claims (1)

【特許請求の範囲】 1 大豆油不ケン化物を主成分とする、血管壁代
謝改善剤。 2 大豆油不ケン化物がカプセル剤化せられた、
特許請求の範囲第1項記載の血管壁代謝改善剤。
[Scope of Claims] 1. A vascular wall metabolism improving agent whose main component is unsaponifiable matter of soybean oil. 2. Soybean oil unsaponifiables are made into capsules,
The vascular wall metabolism improving agent according to claim 1.
JP57034384A 1982-03-03 1982-03-03 Metabolism improver in blood vessel walls Granted JPS58150513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57034384A JPS58150513A (en) 1982-03-03 1982-03-03 Metabolism improver in blood vessel walls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57034384A JPS58150513A (en) 1982-03-03 1982-03-03 Metabolism improver in blood vessel walls

Publications (2)

Publication Number Publication Date
JPS58150513A JPS58150513A (en) 1983-09-07
JPS626688B2 true JPS626688B2 (en) 1987-02-13

Family

ID=12412668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57034384A Granted JPS58150513A (en) 1982-03-03 1982-03-03 Metabolism improver in blood vessel walls

Country Status (1)

Country Link
JP (1) JPS58150513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209638A1 (en) * 2019-04-11 2020-10-15 (주)바이오니아 Polymerase chain reaction system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209638A1 (en) * 2019-04-11 2020-10-15 (주)바이오니아 Polymerase chain reaction system
KR20200120068A (en) * 2019-04-11 2020-10-21 (주)바이오니아 Polymerase Chain Reaction System

Also Published As

Publication number Publication date
JPS58150513A (en) 1983-09-07

Similar Documents

Publication Publication Date Title
Laragh et al. Oral contraceptives: renin, aldosterone, and high blood pressure
HELLMAN et al. Reduction of cholesterol and lipids in man by ethyl p-chlorophenoxyisobutyrate
NESTEL Cholesterol turnover in man
Press et al. Diagnosis and treatment of essential fatty acid deficiency in man
Blomstrand et al. The absorption of fats, studied in a patient with chyluria: I. clinical investigation
Bersot et al. Cholesteryl ester accumulation in mouse peritoneal macrophages induced by β-migrating very low density lipoproteins from patients with atypical dysbetalipoproteinemia
Yasui et al. Effects of eicosapentaenoic acid on urinary calcium excretion in calcium stone formers
Buckley et al. Serum triglyceride: method of estimation and levels in normal humans
Mok et al. Effects of interruption of enterohepatic circulation on biliary lipid secretion in man
KR930001809B1 (en) Anti-hyperlipemic agent
US3993756A (en) Antilipemic agent containing a soybean oil fraction
JPS626688B2 (en)
Guarner et al. Endotoxin‐induced ascites formation in the rat: Partial mediation by platelet‐activating factor
Verstraete et al. Formic acid poisoning: case report and in vitro study of the hemolytic activity
US3039927A (en) Pharmaceutical composition comprising aspirin and sorbitol
JPH0222732B2 (en)
JP4708744B2 (en) Platelet aggregation inhibitory composition
Amatuzio et al. Dietary Control of Essential Hyperlipemia: Effect of Dairy Foods, Phospholipid, Coconut Oil, and Alcohol
Ruppin et al. Gall stone disease without gall stones--bile acid and bile lipid metabolism after complete gall stone dissolution.
CN109806226A (en) The purposes of vitamin K1 fat emulsion injection
CN100457122C (en) Medicine for prevention of and treatment for amyloidosis
JPS58140072A (en) 1,3-dioxo-1h-benz(de)isoquinoline-2(3h) butyric acid, medicinally acceptable salts thereof and medicines
Di Donato et al. Effect of small doses of deoxycholic acid on bile cholesterol saturation in patients with liver cirrhosis.
Bradley et al. Excretion and Determination of Ginchophen in Bile
CA1185529A (en) Antithrombotic treatment