JPS626676Y2 - - Google Patents
Info
- Publication number
- JPS626676Y2 JPS626676Y2 JP3756180U JP3756180U JPS626676Y2 JP S626676 Y2 JPS626676 Y2 JP S626676Y2 JP 3756180 U JP3756180 U JP 3756180U JP 3756180 U JP3756180 U JP 3756180U JP S626676 Y2 JPS626676 Y2 JP S626676Y2
- Authority
- JP
- Japan
- Prior art keywords
- foil
- electrode
- external terminal
- aluminum
- aluminum electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011888 foil Substances 0.000 claims description 21
- 239000003990 capacitor Substances 0.000 claims description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 3
- 239000008151 electrolyte solution Substances 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【考案の詳細な説明】
本考案は改良されたチツプ形電解コンデンサに
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved chip electrolytic capacitor.
一般に電解コンデンサは高純度のアルミニウム
箔をエツチング処理して表面積を拡大した後、化
成処理をほどこしてアルミニウム箔に酸化皮膜を
生成せしめ、該アルミニウム箔を電極箔とし、該
電極箔を所定寸法に裁断した後、第1図に示すよ
うに陽極用および陰極用の電極箔1,1′に外部
引出リード端子2をかしめなどによる方法で接続
せしめ、電解紙3を介して巻回してコンデンサ素
子4を形成する。次に該コンデンサ素子4に電解
液を含浸せしめ、ゴムパツキングなどの弾性を有
する封口体5にリード端子2を貫通するように装
置してアルミニウム、樹脂などよりなるケース6
に挿入し、該ケース6の開口端部を巻締めなどに
より密封されていた。 Generally, electrolytic capacitors are made by etching high-purity aluminum foil to expand its surface area, then applying chemical conversion treatment to form an oxide film on the aluminum foil, using the aluminum foil as an electrode foil, and cutting the electrode foil into specified dimensions. After that, as shown in FIG. 1, the external lead terminals 2 are connected to the electrode foils 1 and 1' for the anode and the cathode by caulking or the like, and the capacitor element 4 is wrapped around the electrolytic paper 3. Form. Next, the capacitor element 4 is impregnated with an electrolytic solution, and the lead terminal 2 is passed through a sealing body 5 having elasticity such as rubber packing, and a case 6 made of aluminum, resin, etc.
The opening end of the case 6 was sealed by winding or the like.
最近の回路技術の進歩に伴ない、上述のような
製造方法により製作された電解コンデンサにも各
種の問題が発生しており、これらの改良を余儀な
くされているのが電解コンデンサ業界の現状であ
る。 With recent advances in circuit technology, various problems have arisen with electrolytic capacitors manufactured using the manufacturing method described above, and the current state of the electrolytic capacitor industry is that these improvements are being forced. .
特に特性面では漏れ電流の減少、信頼性の向上
またコスト面では製造方法の簡略化、その他小形
大容量化など数えあげれば限りがない程である。 In particular, in terms of characteristics, there is a reduction in leakage current, improvement in reliability, and in terms of cost, there is a simplification of the manufacturing method, and there are countless other improvements such as miniaturization and large capacity.
そして多くの電子機器類も小形化の傾向をたど
るとともに、プリント基板などの配線においても
部品の自動挿入によりコストダウンをはかつてお
り、電解コンデンサにおいても自動挿入が可能で
しかも小形化の要求がされていることは例外でな
い。特に円筒形の場合、電極箔を巻回して製造す
るため、高さ方向の寸法が大きくなるにもかかわ
らず、電子機器類においては薄形化が要求され、
これら逆方向の思考が大きな研究課題として取上
げられている。 Many electronic devices are also trending toward miniaturization, and costs have been reduced through automatic insertion of components in wiring such as printed circuit boards.There is also a demand for electrolytic capacitors that can be automatically inserted and miniaturized. This is not an exception. In particular, in the case of cylindrical shapes, they are manufactured by winding electrode foil, which increases the height dimension, but electronic devices are required to be thinner.
Thinking in the opposite direction is being taken up as a major research topic.
また電解コンデンサは他の電子部品に比較して
使用部品、材料の点数が多く、製造コストがかか
り、高価なものとなつてしまうことは周知の通り
である。 Furthermore, it is well known that electrolytic capacitors use a larger number of parts and materials than other electronic components, resulting in higher manufacturing costs and higher prices.
本考案は上述のような多くの問題を解消し、安
価で生産性の高いチツプ形電解コンデンサを提供
しようとするものである。 The present invention aims to solve many of the problems mentioned above and to provide a chip-type electrolytic capacitor that is inexpensive and highly productive.
以下、本考案を第3図〜第6図に示す実施例に
ついて説明する。 The present invention will be described below with reference to embodiments shown in FIGS. 3 to 6.
漏れ電流の原因としては多くの説があることは
周知の通りである。これらの原因の中で特に破壊
された酸化皮膜の修正時に流れる微小電流のフア
クターが漏れ電流における大きな原因のひとつに
なつている。この酸化皮膜の破壊について実験し
たデータを第3図に示す。エツチング、化成した
高純度アルミニウム箔の試験片を(イ)表面が無傷
で、切口の未エツチング、未化成部のあるもの、
(ロ)表面に傷があり切口の未エツチング、未化成部
のあるもの、(ハ)上記(ロ)の条件でさらに故意に巻回
などにより皮膜破壊をせしめたものの3種類の酸
化皮膜修正時に流れる電流を測定したものであ
る。その結果、第3図に示すように漏れ電流は(イ)
のもの(図中曲線a)が最も速く定電流に達し、
(ロ)のもの(図中曲線b)がその次で、(ハ)のもの
(図中曲線c)は最も遅く、しかも定電流に達し
てもその数値自体が他のものより高い値を示して
いる。上述の実験より漏れ電流を減少せしめるに
は電極箔の酸化皮膜の破壊を最少限にすることが
望ましいことがわかる。 As is well known, there are many theories as to the cause of leakage current. Among these causes, the microcurrent factor that flows when repairing a destroyed oxide film is one of the major causes of leakage current. Figure 3 shows experimental data regarding the destruction of this oxide film. A test piece of etched and chemically formed high-purity aluminum foil (a) with an intact surface and an unetched and unformed part at the cut end;
(b) When repairing three types of oxide films: those with scratches on the surface and unetched cut edges and unformed parts, and (c) those where the film was intentionally damaged by further winding under the conditions of (b) above. This is a measurement of the flowing current. As a result, as shown in Figure 3, the leakage current is (a)
(curve a in the figure) reaches constant current fastest,
The one in (b) (curve b in the figure) is the next, and the one in (c) (curve c in the figure) is the slowest, and even when it reaches constant current, its value itself is higher than the others. ing. The above experiment shows that it is desirable to minimize the destruction of the oxide film of the electrode foil in order to reduce the leakage current.
また製造後のリード端子に与えられる衝撃によ
つても漏れ電流が大きく変化することは周知の通
りである。 Furthermore, it is well known that the leakage current changes greatly depending on the shock applied to the lead terminal after manufacture.
本考案は上述の点に鑑みて考案されたもので、
第4図〜第6図に示すようにエツチング処理のさ
れた第1のアルミニウム電極板7と、該電極板7
に接続された第1の外部端子8と、電極箔接続部
9と、該接続部9に接続された第2の外部端子1
0とを樹脂に埋込み成形した絶縁ケース11を製
作し、また第1のアルミニウム電極板7と該電極
7に接続された第1の外部端子8を樹脂に埋込み
成形して蓋11′を製作し、上記絶縁ケース1
1、蓋11′のアルミニウム電極板7側を対向せ
しめ、含浸された電解紙などのセパレータ12に
包まれたエツチングおよび化成された第2のアル
ミニウム電極箔13の一部13aを上記電極箔接
続部9に接続した後、上述の2個の絶縁ケース1
1、蓋11′を重ね合わせてお互いの外周部を超
音波溶着、熱溶着などにより溶着、密封せしめた
ものである。 This invention was devised in view of the above points,
As shown in FIGS. 4 to 6, the etched first aluminum electrode plate 7 and the electrode plate 7
a first external terminal 8 connected to the electrode foil connecting portion 9; and a second external terminal 1 connected to the connecting portion 9.
An insulating case 11 is manufactured by embedding and molding 0 in resin, and a lid 11' is manufactured by embedding and molding a first aluminum electrode plate 7 and a first external terminal 8 connected to the electrode 7 in resin. , the above insulation case 1
1. Place the aluminum electrode plate 7 side of the lid 11' facing each other, and connect the part 13a of the etched and chemically formed second aluminum electrode foil 13 wrapped in the separator 12 such as impregnated electrolytic paper to the electrode foil connecting portion. 9, then connect the two insulation cases 1 mentioned above.
1. The lids 11' are stacked one on top of the other, and their outer peripheries are welded and sealed by ultrasonic welding, thermal welding, or the like.
本考案のチツプ形電解コンデンサは以上のよう
にして構成されているので、成形時に平角状、円
板状など形状を自由に選択できるとともに、外部
端子8,10の位置も上下、左右自由に導出方向
が選択できるため、基板の配線方向に容易に合せ
ることができる。そして第6図の内部配線図に示
すように基板上の配線に応じて電解コンデンサの
組合せが選択できるなど、機能の多様化もでき
る。 Since the chip-type electrolytic capacitor of the present invention is constructed as described above, it is possible to freely select the shape such as a rectangular shape or a disk shape during molding, and the external terminals 8 and 10 can be freely positioned vertically and horizontally. Since the direction can be selected, it can be easily matched to the wiring direction of the board. Further, as shown in the internal wiring diagram of FIG. 6, the combination of electrolytic capacitors can be selected depending on the wiring on the board, so that functions can be diversified.
また第1のアルミニウム電極板7、第2のアル
ミニウム電極箔13はいずれも箔、板の厚さに限
定するものでなく、またいずれの側に化成処理を
してもよく、要求される機能に応じて組合せるこ
とができる。 Furthermore, the thickness of the first aluminum electrode plate 7 and the second aluminum electrode foil 13 is not limited to the thickness of the foil or plate, and either side may be chemically treated to achieve the required function. Can be combined as required.
なお、上述の実施例において、蓋11′内に設
けたアルミニウム電極板7と、該電極7に接続さ
れた第1の外部端子8とを除去すれば単層のチツ
プ形電解コンデンサが構成できることは云うまで
もない。 Note that in the above embodiment, a single-layer chip electrolytic capacitor can be constructed by removing the aluminum electrode plate 7 provided in the lid 11' and the first external terminal 8 connected to the electrode 7. Needless to say.
以上のようにして構成されたチツプ形電解コン
デンサは最近のアルミニウム箔のエツチング技術
の進歩により表面積の高倍率化が可能となつてき
たため、静電容量においても比較的大きなものが
可能となり、しかも製造工程において巻回せず、
電極箔を損傷することもないので、漏れ電流は小
さくなる、形状が平角状、円板状など自由に設計
できる、電子機器の小型化に対応でき、プリント
基板における自動挿入も可能となるなどの効果が
ある。また電解コンデンサの製造コストも使用部
品が少なく、大巾なコストダウンができる。 Chip-type electrolytic capacitors constructed as described above can have a relatively large capacitance because recent advances in aluminum foil etching technology have made it possible to increase the surface area. No winding in the process,
Since it does not damage the electrode foil, the leakage current is small, the shape can be freely designed such as rectangular or disc shape, it can correspond to the miniaturization of electronic equipment, and it can be automatically inserted into printed circuit boards. effective. Furthermore, the manufacturing cost of electrolytic capacitors can be significantly reduced as fewer parts are used.
叙上のように本考案は電子機器などにおける技
術的発展に大きく寄与でき、工業的ならびに実用
的価値の大なるものである。 As mentioned above, the present invention can greatly contribute to the technological development of electronic devices and has great industrial and practical value.
第1図は従来の電解コンデンサ素子の一部解体
斜視図、第2図は従来の電解コンデンサの断面
図、第3図は漏れ電流−時間特性図、第4図〜第
6図は本考案のチツプ形電解コンデンサの一実施
例で第4図は解体斜視図、第5図は斜視図、第6
図は内部配線図である。
7:第1のアルミニウム電極板、8:第1の外
部端子、9:電極箔接続部、10:第2の外部端
子、11:絶縁ケース、11′蓋、12:セパレ
ータ、13:第2のアルミニウム電極箔。
Figure 1 is a partially disassembled perspective view of a conventional electrolytic capacitor element, Figure 2 is a sectional view of a conventional electrolytic capacitor, Figure 3 is a leakage current-time characteristic diagram, and Figures 4 to 6 are a diagram of the current electrolytic capacitor element. An example of a chip type electrolytic capacitor, Fig. 4 is an exploded perspective view, Fig. 5 is a perspective view, and Fig. 6 is an exploded perspective view.
The figure is an internal wiring diagram. 7: First aluminum electrode plate, 8: First external terminal, 9: Electrode foil connection part, 10: Second external terminal, 11: Insulating case, 11' lid, 12: Separator, 13: Second Aluminum electrode foil.
Claims (1)
該電極に接続された第1の外部端子8と、電極箔
接続部9を有する第2の外部端子10とを埋込み
成形した樹脂よりなる絶縁ケース11に、電解液
の含浸されたセパレータ12を介して板状または
箔状の第2のアルミニウム電極13を積層し、該
第2のアルミニウム電極13を上記第2の外部端
子の電極箔接続部9に接続し、上記絶縁ケース1
1に蓋11′を嵌合し密封してなるチツプ形電解
コンデンサ。 An insulating case made of resin in which a first aluminum electrode 7 in the form of a plate or foil, a first external terminal 8 connected to the electrode, and a second external terminal 10 having an electrode foil connection part 9 are embedded and molded. 11, a plate-shaped or foil-shaped second aluminum electrode 13 is laminated via a separator 12 impregnated with an electrolytic solution, and the second aluminum electrode 13 is connected to the electrode foil connecting portion 9 of the second external terminal. Connect to the insulation case 1 above.
A chip-type electrolytic capacitor is formed by fitting a lid 11' to 1 and sealing it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3756180U JPS626676Y2 (en) | 1980-03-22 | 1980-03-22 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3756180U JPS626676Y2 (en) | 1980-03-22 | 1980-03-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56139235U JPS56139235U (en) | 1981-10-21 |
JPS626676Y2 true JPS626676Y2 (en) | 1987-02-16 |
Family
ID=29633122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3756180U Expired JPS626676Y2 (en) | 1980-03-22 | 1980-03-22 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS626676Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60177612A (en) * | 1984-02-23 | 1985-09-11 | 日本ケミコン株式会社 | Method of producing chip type electrolytic condenser |
JPS60177613A (en) * | 1984-02-23 | 1985-09-11 | 日本ケミコン株式会社 | Chip type electrolytic condenser |
-
1980
- 1980-03-22 JP JP3756180U patent/JPS626676Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56139235U (en) | 1981-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4591951A (en) | Mounting arrangement for electronic components | |
JPS626676Y2 (en) | ||
JPS6041720Y2 (en) | Chip type electrolytic capacitor | |
JPS6320373B2 (en) | ||
JPS6028128Y2 (en) | Chip type aluminum electrolytic capacitor | |
JPS6246974B2 (en) | ||
JPS6115576B2 (en) | ||
JP2630079B2 (en) | Electric double layer capacitor and method of manufacturing the same | |
JPS5910749Y2 (en) | chip capacitor | |
JPS5932124Y2 (en) | Chip type electrolytic capacitor | |
JP4434450B2 (en) | Explosion-proof film capacitor. | |
EP0182319A2 (en) | Electrolytic capacitor and method for the manufacture of the same | |
JPS6041725Y2 (en) | Chip-shaped aluminum electrolytic capacitor | |
JP2544828Y2 (en) | Electric double layer capacitor | |
JPH0459767B2 (en) | ||
JPS626677Y2 (en) | ||
JPS6228753Y2 (en) | ||
JPS60201617A (en) | Electronic part | |
JPH0249702Y2 (en) | ||
JPS6314863B2 (en) | ||
JPS60195921A (en) | Aluminum electrolytic condenser | |
JPS6196717A (en) | Electrolytic capacitor | |
JPH0249005B2 (en) | CHITSUPUJODENKAIKONDENSA | |
JPS6158227A (en) | Chip type electrolytic condenser | |
JPS62186515A (en) | Electronic parts |