JPS6266129A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPS6266129A
JPS6266129A JP60206954A JP20695485A JPS6266129A JP S6266129 A JPS6266129 A JP S6266129A JP 60206954 A JP60206954 A JP 60206954A JP 20695485 A JP20695485 A JP 20695485A JP S6266129 A JPS6266129 A JP S6266129A
Authority
JP
Japan
Prior art keywords
infrared
temperature
bodies
transmitting part
visual field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60206954A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamada
山田 育宏
Masato Tsuji
真人 辻
Masami Ikeda
池田 雅巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60206954A priority Critical patent/JPS6266129A/en
Publication of JPS6266129A publication Critical patent/JPS6266129A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To set S/N of the output of a detecting body to >=10dB even if a temperature difference of the inside and the outside of a visual field range, by setting an infrared ray which is made incident on an infrared detector, to transmission and non- transmission states alternately, by a pair of vibrating bodies and opposed bodies, and setting the maximum incident angle to <=90 deg.. CONSTITUTION:A position relation of opposed bodies 10, 11 is varied periodically by a periodical vibration in the reverse direction of vibrating bodies 8, 9, and a state that a slit 12 is superposed on each other and opened or closed in repeated. An infrared ray which is made incident on an infrared detecting body 6 from an opening 3 is varied periodically, and a signal corresponding to a difference between a temperature of a part whose temperature is measured and a temperature of the opposed body is outputted. When the maximum incident angle theta is set to <=90 deg., and a temperature of an object to be detected, within a visual field range, and a temperature of the outside of the visual field range are 0 deg.C and 100 deg.C, respectively, an energy ratio of both of them goes to about 9%, and S/N of the output of the detecting body 6 goes to 21dB. Accordingly, even if a temperature difference of a heat source between the inside of the visual field range and the outside of the range is large, the S/N can be set to >=10dB.

Description

【発明の詳細な説明】 くイン 産業上の利用分野 本発明は赤外線検出器に関する。[Detailed description of the invention] Industrial application field The present invention relates to an infrared detector.

(ロ)従来の技術 現在、赤外線検出器としては米国特許第4485305
号明細書にも開示されているようにチョッパ機構を圧電
体及び一対の対向体で形成することにより小型化したも
のがある。第7図乃至第9図は斯る赤外線検出器を示し
、(1)は金属製のヘッダ(2)及び円形開口(3)を
有するキャップ(4)とからなるセンスケース、(5)
は上記開口(3)を被うようにキャップ(4)に固着さ
れた赤外線透過フィルタ、(6)は上記窓(3)に対向
してセンサケース(1)内に配された焦電型の赤外線検
出体であり、該検出体は入射赤外線変化量に基づいて電
荷を発生ずるタンタル酸リチウム(LiTaOり)単結
晶からなる。(7)は上記検出体に入射する赤外線を変
化せしめるチョッパ機構であり、該チョッパ機構は一対
の圧電振動体(8)(9)及び該振動体(8)(9)の
各々の端部に固定きれた一対の対向体く10)(11)
からなっている、また斯る対向体(10)(11)には
各々赤外線を通過せしめる複数の同形状、同寸法のスリ
ット(12>(12)・・・が形成されている。(13
)は上記赤外線検出体(6)を覆うシールド体であり、
該シールド体は上記対向体(10)(11>と対向する
位置に小孔(14)が穿設されている。
(b) Prior art Currently, as an infrared detector, US Pat. No. 4,485,305
As disclosed in the above specification, there is a chopper mechanism that is made smaller by forming a piezoelectric body and a pair of opposing bodies. 7 to 9 show such an infrared detector, (1) a sense case consisting of a metal header (2) and a cap (4) having a circular opening (3), (5)
(6) is an infrared transmitting filter fixed to the cap (4) so as to cover the opening (3), and (6) is a pyroelectric filter disposed inside the sensor case (1) facing the window (3). The detector is an infrared detector, and the detector is made of a lithium tantalate (LiTaO) single crystal that generates an electric charge based on the amount of change in incident infrared rays. (7) is a chopper mechanism that changes the infrared rays incident on the detection body, and the chopper mechanism is attached to a pair of piezoelectric vibrating bodies (8) and (9) and to each end of the vibrating bodies (8) and (9). A pair of fixed opposing bodies 10) (11)
The opposing bodies (10) and (11) each have a plurality of slits (12>(12)...) formed in the same shape and size that allow infrared rays to pass through.(13)
) is a shield body that covers the infrared detection body (6),
The shield body is provided with a small hole (14) at a position facing the opposing body (10) (11>).

而して、上記振動体(8)(9)は互いに逆方向(第6
図中A又はB方向)に周期的に振動し、これにより上記
対向体(10)(11)は相対的位置関係が周期的に変
化し、上記対向3体(10)(11>の各々のスリット
<12)(12)・・・が重畳し合って開放する状態と
各々のスリット(12)(12)・・・が重畳し合わず
閉本する状態とが繰返される。すると、上記重畳する状
態においては被測温部からの赤外線がセンサケースく1
)の赤外線透過フィルタ(5)、両対向体(10)(1
1)のスリット(12)(12)・・・及び小孔(14
)を経て上記赤外線検出体(6)に入射し、一方上記重
畳しない状態においては対向体(10)(11)からの
赤外線のみが小孔(14)を経て上記赤外線検出体(6
困入射し、よって赤外線検出体(6)は入射赤外線量が
周期的に変化し、上記被測温部の温度と上記対向体(1
0)(11)の温度との温度差に応じた信号を出力する
Therefore, the vibrating bodies (8) and (9) are moved in opposite directions (sixth
(A or B direction in the figure), and as a result, the relative positional relationship of the opposing bodies (10) and (11) changes periodically, and each of the three opposing bodies (10) and (11) A state in which the slits <12) (12) . . . are overlapped and opened and a state in which the slits (12) (12) . Then, in the above-mentioned superimposed state, the infrared rays from the temperature-measuring part are transmitted through the sensor case.
) infrared transmission filter (5), both opposing bodies (10) (1
1) slits (12) (12)... and small holes (14)
), and in the non-overlapping state, only the infrared rays from the opposing bodies (10, 11) pass through the small hole (14) and enter the infrared detector (6).
Therefore, the amount of incident infrared rays changes periodically on the infrared detecting body (6), and the temperature of the temperature measured part and the opposite body (1) change periodically.
0) Outputs a signal according to the temperature difference from the temperature of (11).

また、断る装置の視野範囲は第9図中斜線で示す如く1
.シールド体(13)の小孔(14)及び検出体(6)
により決定きれ、斯る視野範囲内に位置する被測温部の
みから発する赤外線のみを検知できる。
In addition, the viewing range of the device that refuses is 1 as shown by diagonal lines in Figure 9.
.. Small hole (14) of shield body (13) and detection body (6)
It is possible to detect only the infrared rays emitted from only the temperature-measuring parts located within the field of view.

(ハ)発明が解決しようとする問題煮 熱るに斯る構成では視野範囲外から発する赤外光もスリ
ット(12)(12)・・・における回折及びキャップ
(4)内壁、シールド体(13)内壁における反射によ
り赤外線検出体(6)に入射される。
(c) Problems to be Solved by the Invention In such a configuration, infrared light emitted from outside the field of view is also diffracted at the slits (12), (12), etc., and the inner wall of the cap (4), the shield body (13) ) The light is reflected by the inner wall and is incident on the infrared detector (6).

第10図はこの種従来装置における視野特性(等感度分
布特性)を測定した結果を示す、斯る測定は視野範囲の
中心線(第9図中一点鎖線C)上に点熱源を置いた際の
赤外線検出体(6)より生じる出力を基準値(100%
)として、点熱源を支点Oを中心とする球面上を移動さ
せた時の上記中心線Cを中心とする熱源位置と赤外線検
出体(6〉の出力との関係を測定したものである。尚、
図中上下左右と方向を示しているが、斯る方向は第8図
に矢印にて示す方向に一致する。
Figure 10 shows the results of measuring the visual field characteristics (equal sensitivity distribution characteristics) in this type of conventional device.Such measurements were performed when a point heat source was placed on the center line of the visual field (dotted chain line C in Figure 9). The output generated from the infrared detector (6) is the reference value (100%
), the relationship between the heat source position centered on the center line C and the output of the infrared detector (6>) was measured when the point heat source was moved on a spherical surface centered on the fulcrum O. ,
The directions shown in the figure are up, down, left and right, but these directions correspond to the directions shown by arrows in FIG.

また、第11図は中心線Cから等角度にある各熱源位置
の相対出力の平均を示す。
Further, FIG. 11 shows the average relative output of each heat source position equiangular from the center line C.

今、視野角θ′を24°とした場合、第10図中におけ
る視野範囲は12” ライン内となる。また、基準値の
0.2%の出力を示す0.2%出力ラインは第10図よ
り明らかな如く、左右方向において30°まで拡がり、
かつ下方向においても20°以上拡がっている。
Now, if the viewing angle θ' is 24 degrees, the viewing range in Figure 10 is within the 12" line. Also, the 0.2% output line indicating the output of 0.2% of the reference value is the 10th As is clear from the figure, it spreads up to 30 degrees in the left and right direction,
Moreover, it also extends downward by more than 20 degrees.

次に第11図に示した平均相対出力を用いて視野範囲内
の相対出力の総和v1と視野範囲外の相対出力の総和V
lとの比V+/V+を求める。
Next, using the average relative output shown in FIG.
Find the ratio V+/V+ with l.

尚、総和Vl 、Vtの合計は上記第11図のグラフを
縦軸を回転したできた立体の体積と同等であり、従って
総和v1は第10図中斜線で示す領域lを断面とする立
体の体積と同等となる。また総和■!は上記回転により
できた立体の体積より総和Vlを減じた体積と同等であ
る。
The sum of the sums Vl and Vt is equivalent to the volume of the solid formed by rotating the graph in FIG. It is equivalent to the volume. Total sum again! is equivalent to the volume obtained by subtracting the total Vl from the volume of the solid created by the above rotation.

ゆえに第11図に示すグラフより上記V 1 / V 
+を求めると約13%となり、またSN比は201og
(V I/ V r )−−(1)トイウ式ヨリ求めて
18dBとなる。
Therefore, from the graph shown in FIG. 11, the above V 1 / V
+ is about 13%, and the SN ratio is 201og
(V I / V r )--(1) Calculated from Tou's formula and becomes 18 dB.

このように、視野範囲内外に同一温度の熱源が存在する
ときの赤外線検出体(6)の出力のSN比は10dB以
上となり実用上問題はない。
As described above, when a heat source of the same temperature exists inside and outside the viewing range, the S/N ratio of the output of the infrared detector (6) is 10 dB or more, which poses no practical problem.

然しなから、視野範囲内の熱源(非検知物)がOoCで
あり、視野範囲外の全領域が100℃とすると視野範囲
外の相対出力は視野範囲内の相対出力に較べて5倍とな
るので、V I/ V 1は75%と上昇し、これに伴
なってSN比も2.5dBと極めて悪いものとなる。
However, if the heat source (non-sensing object) within the visual range is OoC and the entire area outside the visual range is 100°C, the relative output outside the visual range will be 5 times that of the relative output within the visual range. Therefore, V I/V 1 increases to 75%, and along with this, the S/N ratio becomes extremely poor at 2.5 dB.

〈二)問題点を解決するための手段 本発明は断る点に鑑みてなされたもので、その構成的特
徴は入射赤外線変化量に応じて電荷を発生する赤外線検
出体、該検出体への赤外線入射域に配置され赤外線透過
部及び赤外線非透過部を共に有する第1、第2対向体、
該第1対向体の赤外線透過部及び赤外線非透過部と上記
第2対向体の赤外線非透過部及び赤外線透過部が夫々重
畳する状態と、上記第1、第2対向体の赤外線透過部ど
うし及び赤外線非透過部どうしが重畳する状態とを交亙
に繰返せしめるべく、上記第1、第2対向体を各々振動
せしめる第1、第2振動体、上記各構成部品を収納する
と共に上記赤外線検出体と対向する位置に赤外線入射用
の開口が穿設されたケースを備え、上記開口から上記赤
外線透過部をみた最大入射角度θが90°C以下である
ことにある。
(2) Means for Solving the Problems The present invention has been made in view of the above points, and its structural features include an infrared detecting body that generates a charge according to the amount of change in incident infrared light, and an infrared rays directed to the detecting body. first and second opposing bodies disposed in the incident area and having both an infrared transmitting part and an infrared non-transmitting part;
A state in which the infrared transmitting part and the infrared non-transmitting part of the first opposing body overlap with the infrared non-transmitting part and the infrared transmitting part of the second opposing body, and the infrared transmitting part of the first and second opposing body and In order to repeat the state in which the non-infrared transmitting parts overlap each other, first and second vibrating bodies that respectively vibrate the first and second opposing bodies, and the respective components are housed, and the infrared detection The device includes a case having an opening for infrared rays incident at a position facing the body, and the maximum incident angle θ when looking at the infrared transmitting portion from the opening is 90° C. or less.

(ホ)作用 斯る構成により視野範囲内にO″Cの被検知物が存在し
、上記範囲外に100℃の熱源が存在する場合であって
も、SN比10dB以上の精度で測定可能である。
(E) Effect With this configuration, even if there is an object to be detected at O''C within the field of view and a heat source at 100℃ outside the above range, measurement can be performed with an accuracy of 10 dB or more in S/N ratio. be.

(へ)実施例 第1図及び第2図は本発明者らが行なった実験結果を示
す。
(f) Example FIGS. 1 and 2 show the results of experiments conducted by the present inventors.

第1図は視野特性において基準出力の0.2%の出力ラ
インの位置が視野範囲から離間した量く以下、はみ出し
角度と称す)と視野範囲内に0°Cのf8源が存在し、
視野範囲外の全領域の温度が100℃とした時の赤外線
検出体の出力のSN比との関係を調べたものである。
Figure 1 shows the visual field characteristics in which the position of the output line of 0.2% of the reference output is separated from the visual field (hereinafter referred to as the extrusion angle), and there is an f8 source at 0°C within the visual field.
The relationship between the output of the infrared detector and the S/N ratio was investigated when the temperature of the entire area outside the visual field was 100°C.

第1図より明らかな如<、0.2%出力ラインのはみ出
し角が7″″以下のとき赤外線検出体の出力のSN比が
10dBとなることが判明した。
As is clear from FIG. 1, it was found that when the protrusion angle of the 0.2% output line was 7'' or less, the S/N ratio of the output of the infrared detector was 10 dB.

また第2図は第9図に示す如く開口(3)から見た対向
体(11)のスリット(12)への最大入射角θの半値
角0/2と上記0.2%出力ラインのはみ出し角度との
関係を調べた結果を示す。
Furthermore, as shown in FIG. 9, FIG. 2 shows the half-value angle 0/2 of the maximum incident angle θ of the opposing body (11) into the slit (12) seen from the aperture (3) and the protrusion of the above 0.2% output line. The results of investigating the relationship with angle are shown.

第2図より明らかな如く、上記0.2%出力ラインのは
み出し角度を71以下とするためにはθ/2≦45°即
ちθ≦90@ とすることが必要であることが判明した
As is clear from FIG. 2, it has been found that in order to make the protrusion angle of the 0.2% output line 71 or less, it is necessary to satisfy θ/2≦45°, that is, θ≦90@.

第3図は上記結果に基づいて構成をされた本発明の一実
施例を示す、尚、第3図中第9図と同一箇所には同一番
号を符して説明を省略する。
FIG. 3 shows an embodiment of the present invention constructed based on the above results. Note that the same parts in FIG. 3 as in FIG. 9 are denoted by the same numerals, and a description thereof will be omitted.

本実施例装置では視野範囲を赤外線検出体(6)と開口
(3)とにより規定し、その視野角θ′は約24°であ
る。また開口(3〉から見たスリット(12)への最大
入射角θを62°としである。
In the device of this embodiment, the viewing range is defined by the infrared detector (6) and the aperture (3), and the viewing angle θ' is approximately 24°. Further, the maximum angle of incidence θ to the slit (12) as seen from the aperture (3>) is 62°.

このように構成した本実施例装置の平均的な視野特性を
第4図に示す、この第4図が第11図と同様に中心線C
から等角度にある各熱源位置の相対出力の平均を示す、
尚、このとき、第4図から明らかなように0.2%出力
ラインのはみ出し角度的4°となっている。
The average visual field characteristics of the device of this embodiment configured in this way are shown in FIG. 4. This FIG. 4 is similar to FIG.
indicates the average relative output of each heat source position equiangular from
At this time, as is clear from FIG. 4, the protrusion angle of the 0.2% output line is 4 degrees.

また、視野範囲内外共に同一温度を有している熱源が存
在する場合、視野範囲内(第4図中半値角12°以内の
領域1〉の相対出力総和v1に対する視野範囲外(第4
図中斜線で示す領域H)の相対出力総和Vlの比率はV
l/Vlは約1.8%であり、従って赤外線検出体(6
)の出力のSN比は約32dBとなる。更に、視野範囲
内の被検知物が0℃で、かつ視野範囲外の全領域の温度
が100°Cであるとすると、上記エネルギ比V + 
/ V +は約9%となり、これに伴ってSN比は21
dBとなる。
In addition, if there is a heat source that has the same temperature both inside and outside the viewing range, the outside of the viewing range (the 4th
The ratio of the relative output total Vl in the shaded area H) in the figure is V
l/Vl is about 1.8%, so the infrared detector (6
) is approximately 32 dB. Further, assuming that the temperature of the object to be detected within the visual field is 0°C and the temperature of the entire area outside the visual field is 100°C, the above energy ratio V +
/V+ is approximately 9%, and along with this, the S/N ratio is 21
dB.

第2の実施例としては、最大入射角θが62°の場合0
.2%のはみ出し角度が約4%となるという第1の実施
例の結果に基づいて赤外線検出体(6)と開口(3)と
で規定される幾何学的視野角θ′を16“としたもので
ある。
As a second example, when the maximum incident angle θ is 62°, 0
.. Based on the result of the first embodiment that the protrusion angle of 2% becomes about 4%, the geometric viewing angle θ' defined by the infrared detector (6) and the aperture (3) is set to 16". It is something.

このように構成した本実施例装置の視野特性を第5図及
び第6図に示す。
The visual field characteristics of the apparatus of this embodiment constructed in this manner are shown in FIGS. 5 and 6.

尚、第6図は第5図に示した等感度分布における中心線
Cから等角度にある各熱源位置の相対出力の平均を示す
Incidentally, FIG. 6 shows the average relative output of each heat source position equiangular from the center line C in the equal sensitivity distribution shown in FIG.

第5fsAより明らかな如く中心線Cに対して略均等の
等感度分布を示しかつ0.2%出力ラインは12°の位
置ラインと略重なる。また、中心線Cの周囲に同一温度
の熱源が配されている場合、12@ライン以内の領域1
(第6図参照)の相対出力総和v1に対する12°ライ
ン外の領域層(第6図中斜線で明示)の相対出力総和V
lの割合は約1.0%であり、従って中心線Cを中心と
して半値角が12″″となる領域を視野範囲とした場合
、赤外線検出体←6)の出力のSN比は約40dBとな
る。
As is clear from the 5th fsA, a substantially uniform equal sensitivity distribution is shown with respect to the center line C, and the 0.2% output line substantially overlaps with the 12° position line. In addition, if heat sources of the same temperature are placed around the center line C, the area 1 within 12@line
(See Figure 6) relative output total V1 of the area layer outside the 12° line (clearly indicated by diagonal lines in Figure 6)
The ratio of l is approximately 1.0%, and therefore, if the field of view is an area where the half-value angle is 12'' centered on the center line C, the S/N ratio of the output of the infrared detector ← 6) is approximately 40 dB. Become.

また、上記半値角12°以内の視野範囲内に0°Cの被
検知物が存在し、かつその視野範囲外の全領域の温度が
100℃とする場合の上記エネルギ比V x / V 
+は5%となり、これに伴ってSN比は約28dBとな
る。
Further, the above energy ratio V x / V when there is a detected object at 0°C within the viewing range within the half-value angle of 12° and the temperature of the entire area outside the viewing range is 100°C.
+ is 5%, and accordingly the S/N ratio is approximately 28 dB.

このように赤外線検出体(6)と開口(3)とにより規
定される幾何学的視野範囲を最大入射角に対応した0、
2%出力のはみ出し角度分だけ予め絞り込むことにより
、より精度の高い測定が可能となる。
In this way, the geometric field of view defined by the infrared detector (6) and the aperture (3) is set to 0, which corresponds to the maximum angle of incidence.
By narrowing down in advance by the protrusion angle of 2% output, more accurate measurement becomes possible.

(ト)発明の効果 本発明によれば、視野範囲内と視野範囲外との熱源の温
度差が大であっても赤外線検出体の出力のSN比を10
dB以上とできる。
(G) Effects of the Invention According to the present invention, even if the temperature difference between the heat source within the viewing range and that outside the viewing range is large, the S/N ratio of the output of the infrared detector can be reduced to 10.
It can be more than dB.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の基礎となった実験結果を示
すグラフ、第3図は本発明の第1の実施例を示す断面図
、第4図は第1の実施例の等感度分布を示す特性図、第
5図及び第6図は本発明の第2の実施例の等感度分布を
示す特性図、第7図乃至第11図は従来例を示し、第7
図及び第9図は断面図、第sr5!Jは部分拡大平面図
、第10図及び第11図は等感度分布特性図である。 (1)・・・ケース、(3)・・・開口、(6)・・・
赤外線検出体、(10)(11)・・・対向体、(12
)・・・スリット(赤外線透過部)、θ・・・最大入射
角。
Figures 1 and 2 are graphs showing the experimental results that formed the basis of the present invention, Figure 3 is a sectional view showing the first embodiment of the present invention, and Figure 4 is the equal sensitivity of the first embodiment. FIGS. 5 and 6 are characteristic diagrams showing the distribution of equal sensitivity according to the second embodiment of the present invention, FIGS. 7 to 11 show the conventional example, and FIGS.
The figure and FIG. 9 are cross-sectional views, No. sr5! J is a partially enlarged plan view, and FIGS. 10 and 11 are equal sensitivity distribution characteristic diagrams. (1)...Case, (3)...Opening, (6)...
Infrared detection body, (10) (11)... Opposing body, (12
)...Slit (infrared transmitting part), θ...Maximum incident angle.

Claims (1)

【特許請求の範囲】[Claims] (1)入射赤外線変化量に応じて電荷を発生する赤外線
検出体、該検出体への赤外線入射域に配置され赤外線透
過部及び赤外線非透過部を共に有する第1、第2対向体
、該第1対向体の赤外線透過部及び赤外線非透過部と上
記第2対向体の赤外線非透過部及び赤外線透過部が夫々
重畳する状態と、上記第1、第2対向体の赤外線透過部
どうし及び赤外線非透過部どうしが重畳する状態とを交
互に繰返せしめるべく、上記第1、第2対向体を各々振
動せしめる第1、第2振動体、上記各構成部品を収納す
ると共に上記赤外線検出体と対向する位置に赤外線入射
用の開口が穿設されたケースを備え、 上記開口から上記赤外線透過部をみた最大入射角度θが
90°以下であることを特徴とする赤外線検出器。
(1) An infrared detecting body that generates a charge according to the amount of change in incident infrared rays, first and second opposing bodies that are arranged in the infrared incident area to the detecting body and have both an infrared transmitting part and an infrared non-transmitting part; The state in which the infrared transmitting part and the infrared non-transmitting part of the first opposing body overlap with the infrared non-transmitting part and the infrared transmitting part of the second opposing body, and the infrared transmitting part and the infrared non-transmitting part of the first and second opposing bodies overlap, respectively. In order to alternately repeat the state in which the transparent parts overlap each other, first and second vibrating bodies that vibrate the first and second opposing bodies, respectively, house the respective components and face the infrared detecting body. An infrared detector, comprising: a case having an opening for infrared incidence at a position where the infrared rays enter, and a maximum incidence angle θ when looking at the infrared transmitting portion from the opening is 90° or less.
JP60206954A 1985-09-19 1985-09-19 Infrared detector Pending JPS6266129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60206954A JPS6266129A (en) 1985-09-19 1985-09-19 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60206954A JPS6266129A (en) 1985-09-19 1985-09-19 Infrared detector

Publications (1)

Publication Number Publication Date
JPS6266129A true JPS6266129A (en) 1987-03-25

Family

ID=16531765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60206954A Pending JPS6266129A (en) 1985-09-19 1985-09-19 Infrared detector

Country Status (1)

Country Link
JP (1) JPS6266129A (en)

Similar Documents

Publication Publication Date Title
US5300778A (en) Multispectral sensor
US4745284A (en) Infrared ray detector
EP0650039B1 (en) A pyroelectric type infrared sensor
JPH02236108A (en) Solar sensor
JP2008014939A (en) Solar radiation measurement system, and program for measuring solar radiation
JPH01116419A (en) Infrared detector
JPS6266129A (en) Infrared detector
US10114154B2 (en) Optical head for receiving light and optical system using the same
JPS59218915A (en) Light guide type sensor
JPH0915040A (en) Pyroelectric type infrared detector
JPH0458567B2 (en)
Tajime et al. Rosette scan infrared sensor
JPS6059548B2 (en) radiation direction finder
JP3670450B2 (en) Narrow-field thermistor bolometer
JPH053955Y2 (en)
JPS61231422A (en) Radiation thermometer
JPH05833Y2 (en)
JP2644822B2 (en) Infrared detector
US3422267A (en) Two-color compensation means for a radiometric balance sensor
JPH08178748A (en) Pyroelectric array sensor
CA1310506C (en) Electromagnetic radiation detecting device
JP2004085270A (en) Solar position detecting equipment
JPH0481129B2 (en)
RU2035704C1 (en) Temperature metering device
JPS5916806Y2 (en) Photodetector for photoelectric encoder