JPS6265937A - Production of lepidocrosite - Google Patents

Production of lepidocrosite

Info

Publication number
JPS6265937A
JPS6265937A JP20392285A JP20392285A JPS6265937A JP S6265937 A JPS6265937 A JP S6265937A JP 20392285 A JP20392285 A JP 20392285A JP 20392285 A JP20392285 A JP 20392285A JP S6265937 A JPS6265937 A JP S6265937A
Authority
JP
Japan
Prior art keywords
suspension
reaction
oxidative gas
gas
lepidocrocite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20392285A
Other languages
Japanese (ja)
Other versions
JPH0624984B2 (en
Inventor
Yasushi Matsui
靖 松井
Toshinori Kamisaka
神坂 俊徳
Takahiko Goto
後藤 隆彦
Kenichi Okazaki
健一 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP60203922A priority Critical patent/JPH0624984B2/en
Publication of JPS6265937A publication Critical patent/JPS6265937A/en
Publication of JPH0624984B2 publication Critical patent/JPH0624984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce lepidocrosite having uniform crystallinity without coagulation by supplying an oxidative gas, dividedly in 3 stages, to a suspension of ferrous hydroxide. CONSTITUTION:An aq. alkaline soln. or alkaline gas of 0.3-0.7 molar ratio is supplied to an aq. FeCl2 soln. to effect reaction, by which the suspension of Fe(OH)2 is obtd. The oxidative gas is blown to such suspension at 5-50 deg.C so as to attain 1.0V1<v1<1.5V1 to form green rust which is the basic salt contg. hexagonal planar Fe(II) and FE(III); thereafter the oxidative gas is blown thereto to attain 1.5V2<v2<2.5V2 to oxidize the green rust. The suspension essentially consisting of the nuclear crystal of lepidocrosite is obtd. An alkali is then added to such suspension to maintain the pH at 3.2-4.2 and the oxidative gas is supplied thereto so as to attain 1.5V3<v3<2.0V3 [v1-3 is the amt. of the oxidative gas to be blown (l); V1-3 is the theoretically required amt. of the oxidative gas to be supplied (l)], by which the lepidocrosite having the desired grain sizes is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレピッドクロサイト(γ−FeOOH)の製造
に係り、より詳細には、オーディオテープ、ビデオテー
プ、磁気カードの磁気ディスク等の磁気記録媒体用磁性
酸化鉄粉を製造する際に出発物質として好適なレピッド
クロサイトの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to the production of lepidochrosite (γ-FeOOH), and more particularly, to the production of lepidochrosite (γ-FeOOH). The present invention relates to a method for producing lepidocrocite, which is suitable as a starting material when producing magnetic iron oxide powder for recording media.

(従来の技術及び解決しようとする間層点)一般に、オ
ーディオテープ、ビデオテープ、磁気カード等の磁気記
録媒体用の磁性酸化鉄粉は、a−FeOOH(ゲータイ
ト)又は7−FeOOH(レピッドクロサイト)を出発
物質とし、これに焼成(脱水、焼きしめ)、還元及び酸
化などの処理を順次に施して針状のγ−Fe2O3(マ
グヘマイト)を得、或いはその粒子表面にコバルト変成
処理によってコバルト被着したCo−γ−Fe20.を
得ることにより、製造されている。この場合、得られた
磁性酸化鉄粉の磁気特性は上記出発物質の性状に依存す
るため、磁気記録媒体に適した磁性酸化鉄粉末を得るに
は、優れた性状の出発物質を使用する必要がある。
(Prior art and interlayer points to be solved) In general, magnetic iron oxide powder for magnetic recording media such as audio tapes, video tapes, and magnetic cards is a-FeOOH (goethite) or 7-FeOOH (lepidochrome). The starting material is γ-Fe2O3 (maghemite), which is sequentially subjected to treatments such as calcination (dehydration, hardening), reduction, and oxidation to obtain acicular γ-Fe2O3 (maghemite), or cobalt is added to the particle surface by cobalt modification treatment. Deposited Co-γ-Fe20. It is manufactured by obtaining In this case, the magnetic properties of the obtained magnetic iron oxide powder depend on the properties of the above-mentioned starting material, so in order to obtain magnetic iron oxide powder suitable for magnetic recording media, it is necessary to use a starting material with excellent properties. be.

この点、従来、レピッドクロサイト(γ−FeOOH)
を出発物質として得られる磁性酸化鉄粉末は、ゲータイ
ト(α−Fe○○H)を出発物質とする場合に比らべ、
最終製品であるオーディオテープ、ビデオテープ等々の
磁気記録媒体の磁気的配向性1分散性、角形比、転写特
性は優れているにも拘わらず1粒度分布が大きいという
問題があった。
In this respect, conventionally, lepidocrocite (γ-FeOOH)
The magnetic iron oxide powder obtained using as a starting material has a
Although the final products, such as magnetic recording media such as audio tapes and video tapes, have excellent magnetic orientation, monodispersity, squareness ratio, and transfer characteristics, they have a problem in that they have a large particle size distribution.

ところで、従来、塩化第−鉄等の第一鉄塩水溶液とアル
カリ水溶液とを反応させて得られる水酸化物の!@濁液
を酸化して、均一なレピッドクロサイトの粒子を得るた
めには、酸化速度を結晶成長速度に合わせることが極め
て重要であると考えられていた。すなわち、上記水酸化
物の懸濁液に酸化性ガスを供給することによって生じる
酸化反応は、全反応過程において等しい酸化反応速度で
進行するものではなく、段階に応じて酸化反応速度が異
なるため、それぞれの段階での結晶成長速度に合わせて
酸化性ガスの当該反応液中への供給速度を制御する必要
があるという考えである。
By the way, conventionally, hydroxides obtained by reacting an aqueous solution of a ferrous salt such as ferrous chloride with an aqueous alkali solution have been used. In order to obtain uniform lepidocrocite particles by oxidizing a suspension, it was thought to be extremely important to match the oxidation rate to the crystal growth rate. That is, the oxidation reaction that occurs by supplying an oxidizing gas to the hydroxide suspension does not proceed at the same oxidation reaction rate during the entire reaction process, but the oxidation reaction rate differs depending on the stage. The idea is that it is necessary to control the supply rate of the oxidizing gas into the reaction solution in accordance with the crystal growth rate at each stage.

これは、ゲータイト(γ−FeOOH)の製造法におけ
る手法を踏襲して、レピッドクロサイト(γ−F e 
OOI()の製造に適用せんとするものである。
This method follows the method used in the production of goethite (γ-FeOOH) to produce lepidochrosite (γ-FeOOH).
It is intended to be applied to the production of OOI().

因みに、ゲータイトの製造に際して酸化速度を制御する
方法としては、第一鉄塩の水酸化物の酸化を数段諧に分
けて一定時間内の酸化量を酸化率(%)と導入酸素のモ
ル数で規定する方法(特開昭52−59095、同52
−59096、同52−59097)、或いは第一鉄塩
の水酸化物の酸化の際に全水酸化物の一部を一定頻度で
外部容器に取出し、これに酸化性ガスを供給して酸化さ
せ循環することによって1サイクル当りの酸化率(%)
を規定する方法(特開昭57−166322、同57−
209834、同58−32028.同58−1403
27)などがあるが、いずれの方法も酸化速度を結晶成
長速度に適合させることが粒度分布を揃えるのに重要で
あるという認識によるものである。
Incidentally, the method of controlling the oxidation rate during the production of goethite is to divide the oxidation of the hydroxide of the ferrous salt into several steps and calculate the amount of oxidation within a certain period of time by calculating the oxidation rate (%) and the number of moles of oxygen introduced. (Japanese Unexamined Patent Publication No. 52-59095, 52
-59096, 52-59097), or when oxidizing the hydroxide of a ferrous salt, a part of the total hydroxide is taken out at a certain frequency into an external container, and an oxidizing gas is supplied to it to oxidize it. Oxidation rate (%) per cycle by circulating
(Japanese Unexamined Patent Publication No. 57-166322,
209834, 58-32028. 58-1403
27), but all of these methods are based on the recognition that matching the oxidation rate to the crystal growth rate is important for making the particle size distribution uniform.

しかし乍ら、レピッドクロサイトの製造法において酸化
速度を結晶成長速度に適合させるべく酸化性ガスの供給
速度を制御するには、微妙な制御技術を必要とし、その
巧拙が生成するレピッドクロサイト針状結晶の粒度分布
に大きな影響を与える結果となる。すなわち、酸化性ガ
スの当該反応液中への供給速度が速いと1反応速度が大
となって結晶核の発生速度が速くなるため、個々の針状
晶は長軸長の/hさい針状晶となり、同時に途中発生核
が多くなるため、粒度分布の大きい(広い)レピッドク
ロサイト針状結晶が得られる。一方、供給速度が遅いと
、反応速度が小となって核発生速度が遅くなるため、途
中核発生は抑止されるものの、個々の針状晶は長軸長の
極めて長い針状結晶となり、かつ、レピッドクロサイト
特有のタクトロイド構造(イカダ状結晶集合体)が更に
凝集し、性状の良くないレピッドクロサイトが得られる
However, in the production method of lepidocrocite, delicate control technology is required to control the supply rate of oxidizing gas in order to match the oxidation rate to the crystal growth rate, and the skill with which the lepidocrocite is produced This results in a large influence on the particle size distribution of the site needle-like crystals. In other words, if the rate of supply of the oxidizing gas into the reaction solution is high, the rate of one reaction increases and the rate of generation of crystal nuclei increases, so that each needle-like crystal is At the same time, the number of nuclei generated during the process increases, so that lepidocrocite needle-like crystals with a large (broad) particle size distribution can be obtained. On the other hand, if the supply rate is slow, the reaction rate will be low and the nucleation rate will be slow, so nucleation will be suppressed during the process, but individual needle crystals will become extremely long needle crystals with a long axis length, and , the tactroid structure (raft-shaped crystal aggregate) peculiar to lepidocrocite further aggregates, resulting in lepidocrocite with poor properties.

本発明は、レピッドクロサイトに関する上記従来技術の
欠点を解消し、粒度分布の揃ったレピッ[・クロサイト
針状晶で、かつ、凝集のない均斉な結晶性の良い粒子を
容易に製造できる方法を提供することを目的とするもの
である。
The present invention eliminates the drawbacks of the prior art related to lepidocrocite, and makes it possible to easily produce lepidocrocite needle-like crystals with a uniform particle size distribution and uniform particles with good crystallinity without agglomeration. The purpose is to provide a method.

(問題点を解決するための手段) 上記目的を達成するため、本発明では、酸化反応過程を
グリーンラスト、レピッドクロサイト核晶の生成及び成
長を考慮して3段階に分け、各段階毎に酸化性ガスの供
給景をそれぞれ適正に制御して酸化反応を進めようとす
るものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention divides the oxidation reaction process into three stages in consideration of the generation and growth of green last and lepidic crocite nucleus crystals, and each stage The aim is to appropriately control the supply of oxidizing gases to advance the oxidation reaction.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

まず、本発明による全反応過程は以下のように3段階に
区分する。
First, the entire reaction process according to the present invention is divided into three stages as follows.

■1艮反皮 第−鉄塩として塩化第一鉄水溶液を調整し、これに塩化
第一鉄に対してアルカリを添加比(モル比)R=0.3
〜0.7の範囲で苛性アルカリ、アンモニア等のアルカ
リ水溶液及び/又はアンモニアガスを撹拌下で添加して
反応させ、水酸化第一鉄の懸濁液とした後、5〜50”
C1好ましくは10〜30℃の温度下で酸化性ガス(空
気又は酸素)を供給して酸化反応行うことにより、六角
板状でFe(II)とFe(m)を含んだ塩基性塩であ
るグリーンラストを生成させる。この反応を第1段反応
とする。
■1 Prepare an aqueous ferrous chloride solution as a ferrous salt, and add an alkali to the ferrous chloride ratio (mole ratio) R = 0.3
After adding and reacting an alkaline aqueous solution such as caustic alkali, ammonia, etc. and/or ammonia gas under stirring in the range of ~0.7 to form a suspension of ferrous hydroxide,
C1 is a basic salt containing Fe(II) and Fe(m) in the form of a hexagonal plate, which is produced by carrying out an oxidation reaction by supplying an oxidizing gas (air or oxygen) preferably at a temperature of 10 to 30°C. Generates green last. This reaction is referred to as the first stage reaction.

第2段反収 更に、撹拌下で酸化性ガスを前記懸濁液に供給し続ける
と、酸化が進むに従って懸濁液の色は暗青緑色から暗黄
緑色を経て茶褐色へと変化し、レピッドクロサイトの核
晶が生成されて針状結晶を主成分とした@濁液となる。
Second Stage Reaction When oxidizing gas is continued to be supplied to the suspension under stirring, the color of the suspension changes from dark blue-green to dark yellow-green to brownish brown as the oxidation progresses. Nucleic crystals of docrosite are generated, resulting in a suspension containing needle-shaped crystals as the main component.

この反応を第2段反応とする。This reaction is referred to as the second stage reaction.

Jユ鳳1i 更に、撹拌下でその懸濁液にアルカリ水溶液又はガス(
アンモニアガス等1)を徐々に添加してpH値を3.2
〜4.2に保持しながら、酸化性ガスを供給し続け、最
初の塩化第一鉄の全量が消費されるとp H値が上昇す
るので、p H値が約5.5となった時点を反応終点と
し、酸化性ガスの供給を止める。これにより、第2段反
応で生成した核晶が成長し、目的の大きさの粒度を有す
るレピッドクロサイトが得られる。この反応を第3段反
応とする。
Furthermore, an alkaline aqueous solution or gas (
Gradually add ammonia gas etc. 1) to adjust the pH value to 3.2
While maintaining the pH at ~4.2, continue to supply oxidizing gas, and when the initial amount of ferrous chloride is consumed, the pH value will rise, so when the pH value reaches approximately 5.5. is the end point of the reaction, and the supply of oxidizing gas is stopped. As a result, the nucleus crystals produced in the second stage reaction grow, and lepidocrocite having the desired particle size is obtained. This reaction is referred to as the third stage reaction.

以上の第1段反応〜第3段反応ではそれぞれ結晶成長速
度が異なるため、本発明においては、各段階で酸化性ガ
スの供給量を適宜変えるべく制御する。例えば1反応系
が均一に撹拌されている条件下で酸化性ガスの吹込速度
を一定にした場合(例、第1段反応・・・約20Q/m
in、第2段反応・・・約’7.6Q/mjn、第3段
反応・・・約2 、5 Q /win)、各段階での好
ましい酸化性ガス吹込量(υ0、υ2υ、)は実験に基
づき次のとうりである。
Since the crystal growth rates are different in the above-described first to third stage reactions, in the present invention, the supply amount of the oxidizing gas is controlled to be changed appropriately at each stage. For example, when one reaction system is uniformly stirred and the oxidizing gas blowing rate is kept constant (e.g., 1st stage reaction...about 20Q/m
in, 2nd stage reaction...approx. Based on experiments, it is as follows.

第1段反応: 1.OV、<U、<1.5V。First stage reaction: 1. OV, <U, <1.5V.

第2段反応:1.5V2(υ、<2.5V2第2段反応
:1.5V、<υ、<2.OV。
Second stage reaction: 1.5V2 (υ, <2.5V2 Second stage reaction: 1.5V, <υ, <2.OV.

ここで、vl、■2及びV、は反応上必要な酸化性ガス
供給量(Ilk)の理論値であり、以下のようにして容
易に求めることができる。
Here, vl, {circle around (2)} and V are theoretical values of the oxidizing gas supply amount (Ilk) necessary for the reaction, and can be easily determined as follows.

すなわち、第1段反応及び第2段反応では、Fe(OH
)、の中性懸濁液を酸化性ガス(空気)にて酸化し、第
1段でFe(If)とFe(III)を含んだ塩基性塩
のグリーンラストとし、次いで第2段でこのグリーンラ
ストを酸化してレピッドクロサイトの核晶を生成する工
程であり、その反応式は次式で表わされる。
That is, in the first stage reaction and the second stage reaction, Fe(OH
) is oxidized with an oxidizing gas (air) to form a green rust of basic salt containing Fe(If) and Fe(III) in the first stage, and then in the second stage, this neutral suspension is This is a process of oxidizing green last to generate lepidocrocite nucleus crystals, and the reaction formula is expressed by the following formula.

4Fe(OH) 2+02→4FeOOH+2H,0よ
って、理論上の必要空気供給量VZ(Q)及びV2(2
)は次の式で計算される。
4Fe(OH) 2+02→4FeOOH+2H,0 Therefore, the theoretical required air supply amount VZ(Q) and V2(2
) is calculated using the following formula.

O亀 第1段反応(2Fe(II )−+Fe(II )、F
e(m)):22.4 X (273+t工) V、=aX(全Fe(II)モル数)XRX□4 XO
,21X 273 0を 第2段反応(Fe(U )、Fe(III)−+2Fe
OOH):22.4 X  (273+t2) y2=bx(全Fe(II)モル数)XRX□4 XO
,21X 273 但し、a、b:  a+b=1 ここで第1段と第2段のアルカ リ消費址を同じと仮定すると a = b = 1 / 2 R:アルカリ添加比(モル比)で R<1.0 tl、t2:供給空気の温度(’C) また、第3段反応では、第1段反応及び第2段反応で消
費されなかったFe(■)が酸化して、第2段反応で生
成した核晶を成長させ、所望の大きさの粒度をもったレ
ピッドクロサイトを得る工程であり、その反応式は次式
で表わされる。
First stage reaction (2Fe(II)-+Fe(II), F
e(m)): 22.4 X (273+t engineering) V, = aX (total number of moles of Fe(II))
, 21X 273 0 in the second stage reaction (Fe(U), Fe(III)-+2Fe
OOH): 22.4 X (273+t2) y2=bx (total number of moles of Fe(II))
, 21 .0 tl, t2: Temperature of supplied air ('C) In addition, in the third stage reaction, Fe (■) that was not consumed in the first and second stage reactions is oxidized and This is a step of growing the generated nuclear crystals to obtain lepidocrocite having a desired particle size, and the reaction formula is expressed by the following formula.

4 FeCQ 、+ 8 NaOH+ 02−’p4F
e○○H+ 8 N a CQ + 2 Hz Oよっ
て、理論上の必要空気供給量v、(Q)は次の式で計算
される。
4 FeCQ, + 8 NaOH+ 02-'p4F
e○○H+ 8 N a CQ + 2 Hz O Therefore, the theoretical required air supply amount v, (Q) is calculated by the following formula.

22.4 X (273+t3) ■、=(全Fe(II)モル数)X(1−R)X□4 
X O,21X 273 ここで、t□:供給空気の温度(℃) (実施例) FeCQ2廃酸を7.5Q採取し、これを17℃の水2
8.480に希釈して出発物質とした。この水溶液のF
e(II)のモル数は27.54モルである。これにア
ルカリとしてNaOH1、21kgを42.5 Qの水
に溶解させたカセイソーダ溶液を17℃にして添加し、
更にジャケットにて冷却して17℃を保持しながら撹拌
した。生成したFe(OH)2を主成分とする懸濁液の
pH値は7.3であった。
22.4 X (273+t3) ■, = (total number of moles of Fe(II))
X O, 21
The starting material was diluted to 8.480%. F of this aqueous solution
The number of moles of e(II) is 27.54 moles. To this, a caustic soda solution prepared by dissolving 1.21 kg of NaOH as an alkali in 42.5 Q of water was added at 17°C.
The mixture was further cooled in a jacket and stirred while maintaining the temperature at 17°C. The pH value of the resulting suspension containing Fe(OH)2 as a main component was 7.3.

この懸濁液に圧縮空気を第1段反応で20R/win(
20℃)、第2段反応で7.6Q/win(20’C)
の吹込速度で槽底より吹込みながら酸化したところ、第
1段反応で16+分、第2段反応で51分を要した。但
し、第2段反応の終点はpH値が4となった時点とした
。この時のアルカリ添加比(モル比)Rは0.55であ
嶋た。
Compressed air was added to this suspension in the first stage reaction at 20R/win (
20'C), 7.6Q/win (20'C) in the second stage reaction
When oxidation was carried out while blowing from the bottom of the tank at a blowing rate of , it took 16+ minutes for the first stage reaction and 51 minutes for the second stage reaction. However, the end point of the second stage reaction was set at the time when the pH value reached 4. At this time, the alkali addition ratio (molar ratio) R was 0.55.

第1段反応、第2段反応で生成したFeO○Hの核晶は
、電子顕微鏡でwt察したところ、明らかにレピッドク
ロサイトの特徴である微細な針状結晶がイカダ状になっ
た粒度の揃ったγ−FeOOHであった。
When the FeO○H nucleus crystals produced in the first and second stage reactions were observed using an electron microscope, they clearly had a particle size in which fine needle-like crystals, which are characteristic of lepidocrocite, were shaped like a raft. It was γ-FeOOH with uniform properties.

次に、吹込ガスを空気からN2ガスに切替え。Next, switch the blowing gas from air to N2 gas.

N2雰囲気で撹拌機による撹拌の下で液温か17℃から
40’Cになるまで加熱した。昇温後、N2ガスを止め
、第3段反応として2 、52 /win(20℃)の
吹込速度で圧縮空気を槽底より吹込みながら、18Qの
水にNaOH960gを溶解させたカセイソーダ溶液を
徐々に添加し、PH値を3.6に保持してレピッドクロ
サイトの核晶を成長させた。 PH値が一定に保持でき
なくなり、5.5になった時点でアルカリの添加を止め
て反応終了とした。これに要した反応時間は256分で
あった。
The mixture was heated from a liquid temperature of 17°C to 40'C under N2 atmosphere and stirring with a stirrer. After the temperature was raised, the N2 gas was stopped, and as a third stage reaction, a caustic soda solution containing 960 g of NaOH dissolved in 18Q water was gradually added while blowing compressed air from the bottom of the tank at a blowing rate of 2.52 /win (20°C). and the pH value was maintained at 3.6 to grow lepidocrocite nuclei. When the pH value could not be kept constant and reached 5.5, the addition of alkali was stopped and the reaction was terminated. The reaction time required for this was 256 minutes.

以上より、各段階での供給空気量υい υ2、υ、を計
算すると、次のとうりである。
From the above, the amount of supplied air υ2, υ at each stage is calculated as follows.

uL/V、=20X16/216.8=1.48  、
’、a、=1.48V□v 2/ V2ニア、6 X 
51/216.8=1.79  、”−u z=1.7
9Vzt+、/V、=2.5x256/354.7=1
.80 、”、 υ3”1.80V3また、本実施例に
より得られたレピッドクロサイト針状晶は、平均長軸長
=0.97μm、平均軸比=11.4で粒度分布が良好
で枝分れのない均斉な粒子であった。
uL/V,=20X16/216.8=1.48,
', a, = 1.48V□v 2/ V2 near, 6 X
51/216.8=1.79,”-u z=1.7
9Vzt+, /V, = 2.5x256/354.7=1
.. 80,", υ3"1.80V3 In addition, the lepidocrocite needles obtained in this example had a good particle size distribution with an average long axis length of 0.97 μm and an average axial ratio of 11.4. They were uniform particles with no separation.

更に、得られたスラリー溶液を濾過、洗浄、乾燥した後
、常法にて脱水、焙焼(430℃)、還元(470℃)
処理をしてFe、○、を得、その磁気特性を測定したと
ころ、保磁力(Hc)=42506゜飽和磁化量(σs
) = 84 、9 emu/g、比表面積(SSA)
=30.5m2/gで、磁気記録J’[11M([4と
して好適であった。
Furthermore, the obtained slurry solution was filtered, washed, and dried, followed by dehydration, roasting (430°C), and reduction (470°C) using conventional methods.
After processing to obtain Fe, ○, and measuring its magnetic properties, coercive force (Hc) = 42506° saturation magnetization (σs
) = 84, 9 emu/g, specific surface area (SSA)
= 30.5 m2/g, which was suitable for magnetic recording J'[11M ([4).

(比較例) 製法は上記実施例と全く同様にし、第2段反応での供給
空気量のみを変更した。すなわち、吹込速度を第1段反
応で20 Q /win、第2段反応で20Q/min
、第3段反応で2 、5 Q /In1nとした。
(Comparative Example) The production method was exactly the same as in the above example, except that only the amount of air supplied in the second stage reaction was changed. In other words, the blowing rate is 20 Q/win in the first stage reaction and 20 Q/min in the second stage reaction.
, 2,5Q/In1n was obtained in the third stage reaction.

各段階での反応時間はそれぞれ18分、38分、252
分であった。この結果から各段階での空気吹込み量は次
のとうりである。
The reaction time at each stage was 18 min, 38 min, and 252 min, respectively.
It was a minute. From this result, the amount of air blown at each stage is as follows.

u、/V、=20X18/216.8=1.66  −
”、u、=1.66V。
u, /V, = 20X18/216.8 = 1.66 -
”, u, = 1.66V.

v 2 / V2=20 X 38/ 216−8=3
−51  −”−u a=3−51 V 2υ、/V3
=2.5X252/354.7=1.78  、’、υ
a ” 1 、78 V aこの比較例で得られたレピ
ッドクロサイト針状晶は、平均長軸長=0.54μm、
平均軸比=8.2で粒度分布のあまり良くない粒子であ
った。
v2/V2=20X38/216-8=3
−51 −”−u a=3−51 V 2υ, /V3
=2.5X252/354.7=1.78 ,',υ
a” 1, 78 V aThe lepidocrocite needles obtained in this comparative example had an average major axis length of 0.54 μm,
The average axial ratio was 8.2, and the particle size distribution was not very good.

更に、このスラリー溶液を上記実施例の場合と同様に処
理してFe、04とし、その磁気特性を測定したところ
、Hc= 375 0;、σ5=82.3emu/g、
5SA=32.1m”7gであった。
Furthermore, this slurry solution was treated in the same manner as in the above example to obtain Fe, 04, and its magnetic properties were measured; Hc = 375 0;, σ5 = 82.3 emu/g,
5SA=32.1m"7g.

(発明の効果) 以上詳述したように、本発明によれば、レピッドクロサ
イトの製造において酸化性ガスの供給量を適正に3段階
に制御するので、粒度の揃った針状晶で、しかも凝集の
ない均斉な結晶性の良い優れた性状のレピッドクロサイ
トを安定して容易に製造することができ、したがって、
優れた特性の磁性酸化鉄粉末の製造を可能にするもので
ある。
(Effects of the Invention) As detailed above, according to the present invention, since the supply amount of oxidizing gas is appropriately controlled in three stages in the production of lepidocrocite, needle crystals with uniform particle size are produced. In addition, lepidocrocite with excellent properties such as uniform crystallinity and no agglomeration can be produced stably and easily.
This makes it possible to produce magnetic iron oxide powder with excellent properties.

Claims (1)

【特許請求の範囲】[Claims]  塩化第一鉄水溶液とアルカリ水溶液又はアルカリ性ガ
スとを反応させて得られる水酸化物の懸濁液を酸化性ガ
スにより酸化してレピッドクロサイトを得る方法におい
て、前記酸化性ガスの供給量を酸化反応過程に従って適
正に3段階に制御することを特徴とするレピッドクロサ
イトの製造方法。
In a method for obtaining lepidocrocite by oxidizing a hydroxide suspension obtained by reacting an aqueous ferrous chloride solution with an aqueous alkaline solution or an alkaline gas with an oxidizing gas, the amount of the oxidizing gas supplied is A method for producing lepidocrocite, which is characterized by appropriately controlling the oxidation reaction in three stages according to the oxidation reaction process.
JP60203922A 1985-09-14 1985-09-14 Manufacturing method of lepidocrocite Expired - Lifetime JPH0624984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203922A JPH0624984B2 (en) 1985-09-14 1985-09-14 Manufacturing method of lepidocrocite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203922A JPH0624984B2 (en) 1985-09-14 1985-09-14 Manufacturing method of lepidocrocite

Publications (2)

Publication Number Publication Date
JPS6265937A true JPS6265937A (en) 1987-03-25
JPH0624984B2 JPH0624984B2 (en) 1994-04-06

Family

ID=16481914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203922A Expired - Lifetime JPH0624984B2 (en) 1985-09-14 1985-09-14 Manufacturing method of lepidocrocite

Country Status (1)

Country Link
JP (1) JPH0624984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223833A (en) * 2006-02-22 2007-09-06 Tdk Corp Method of manufacturing iron oxyhydroxide particle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777033A (en) * 1980-10-24 1982-05-14 Sony Corp Manufacture of iron oxide hydrate gamma-feooh

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777033A (en) * 1980-10-24 1982-05-14 Sony Corp Manufacture of iron oxide hydrate gamma-feooh

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223833A (en) * 2006-02-22 2007-09-06 Tdk Corp Method of manufacturing iron oxyhydroxide particle

Also Published As

Publication number Publication date
JPH0624984B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
US4729846A (en) Method for manufacturing lepidocrocite
JPS6265937A (en) Production of lepidocrosite
JPS6021307A (en) Production of ferromagnetic metallic powder
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
JP2931182B2 (en) Method for producing acicular γ-FeOOH
GB2111471A (en) Process for the preparation of acicular -feooh
JPS62167222A (en) Production of lepidocrocite
JPH0323224A (en) Production of complex-type ferritic magnetic powder
JPS5945931A (en) Preparation of goethite
JP3328017B2 (en) Method for producing acicular hexagonal ferrite magnetic powder having perpendicular magnetic anisotropy
KR910009210B1 (en) Method for manufacturing lepidocrocite
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JPH0461302A (en) Metal magnetic particle powder mainly made of spindle type iron
JP2746369B2 (en) Method for producing magnetic iron oxide powder for magnetic recording
JPS6265934A (en) Production of lepidocrosite
JPS61141627A (en) Production of alpha-feooh needles
JPH09188520A (en) Production of fusiform goethite
JPS62176923A (en) Preparation of goethite
JPH02267123A (en) Production of lepidocrosite
JPS63170222A (en) Production of lepidocrocite
JPS6090831A (en) Manufacture of alpha-iron oxyhydroxide
JPS6090830A (en) Manufacture of needlelike iron oxyhydroxide
JPS632813A (en) Production of particulate powder of lamellate ba ferrite for magnetic recording
JPS6126708A (en) Production of magnetic metallic powder
JPH01212231A (en) Production of magnetic iron oxide for magnetic recording