JPS6265743A - Zinc compound having photocatalytic activity - Google Patents

Zinc compound having photocatalytic activity

Info

Publication number
JPS6265743A
JPS6265743A JP60203865A JP20386585A JPS6265743A JP S6265743 A JPS6265743 A JP S6265743A JP 60203865 A JP60203865 A JP 60203865A JP 20386585 A JP20386585 A JP 20386585A JP S6265743 A JPS6265743 A JP S6265743A
Authority
JP
Japan
Prior art keywords
mixture
mortar
added
photocatalytic activity
sulfidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60203865A
Other languages
Japanese (ja)
Other versions
JPH0255373B2 (en
Inventor
Hisashi Ueda
上田 寿
Michiko Yonemura
米村 道子
Tadao Sekine
関根 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60203865A priority Critical patent/JPS6265743A/en
Publication of JPS6265743A publication Critical patent/JPS6265743A/en
Publication of JPH0255373B2 publication Critical patent/JPH0255373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a zinc compd. which excels in light absorption power and chemical stability and has photocatalytic activity grinding and mixing zinc oxide and cadmium oxide with an electromagnetic type oscillating mortar then subjecting the mixture to sulfidation and oxidation treatments as well as platinum addition, thereby forming Zn<+> and Cd<+> with a high degree of dispersion. CONSTITUTION:A hydroquinone is added to a mixture composed of zinc oxide and cadmium oxide and the mixture is ground and mixed with the electromag netic oscillating mortar. The mixture is then subjected to the sulfidation treat ment by using a weak sulfiding agent such as carbon disulfide or methyl sulfide then to the oxidation treatment in oxygen. Since the mixture is ground by the electromagnetic type oscillating mortar, the concn. of the specific points on the particle surface of zinc oxide to stabilize the isolated Zn<+> is increased, and since the hydroquinone is added thereto, the active state is maintained until the specific point is subjected to the sulfidation treatment. Platinum is added to the resultant powder and a semiconductor catalyst having the high photocatalytic activity stable in the visible light region is obtd.

Description

【発明の詳細な説明】 〔利用分野〕 本発明は光触媒活性を有する亜鉛化合物に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to a zinc compound having photocatalytic activity.

酸化亜鉛を主体とする金属酸化物触媒を用いて、アルカ
リ金属の硫化物あるいは亜硫酸塩のような被酸fヒ性陰
イオンを含む水溶液の可視光による光分解を行う場合、
触媒に要求される性質は主として4つある。その(1)
は可視光を吸収する性質であり、その(2)は硫化物イ
オンや岨硫酸イオン等の電子供与性物質から電子を奪う
性質、即ち光酸rヒ能であり、その(3)は電子供与性
物質から受取った電子を電子受容性物質に渡す性質、即
ち光還元能である。
When photolyzing an aqueous solution containing an arsenic anion such as an alkali metal sulfide or sulfite using visible light using a metal oxide catalyst mainly containing zinc oxide,
There are mainly four properties required of a catalyst. Part (1)
(2) is the property of absorbing visible light, (2) is the property of taking electrons from electron-donating substances such as sulfide ions and sulfate ions, that is, photoacid arsenic ability, and (3) is the property of absorbing electron-donating substances. This is the property of transferring electrons received from a reactive substance to an electron-accepting substance, that is, photoreducibility.

その(4)は前記の(2)と13)の過程で生成した被
酸化物質と被還元物質が納会して酸化や還元作用を受け
る以前の物質に逆戻りする反応、即ち再結合反応を防上
する性能である。これら4つの性能がバランスよく機4
粍を果してはじめて光触媒活性が発揮される。
(4) is to prevent the recombination reaction, which is a reaction in which the oxidized substance and the reduced substance generated in the processes of (2) and 13) combine and return to the substance before being oxidized or reduced. It has the ability to These four performances are well-balanced.
Photocatalytic activity is exhibited only after the process is completed.

こnらの性質は亜鉛の酸化物や亜鉛の硫化物の半導体と
しての性質に含まれているものである。
These properties are included in the properties of zinc oxide and zinc sulfide as semiconductors.

これまで多くの半導体物質の光触媒機能が研究され、か
なりの種類の異種物質のドーピングが試みられているが
、本発明において作成したような高度に分散したZn+
イオンやCdイオンを粒子表面に形成分散させるドーピ
ングの方法は知らnていない。
Until now, the photocatalytic function of many semiconductor materials has been studied, and attempts have been made to dope them with a considerable variety of different materials.
There is no known doping method for forming and dispersing ions or Cd ions on the particle surface.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、龍鉛酸化物や硫化物からなる光活性触媒
において、一般に、酸化物の光吸収は紫外部に偏ってお
り、これに対して、一般に硫fヒ物の光吸収は可視部に
わたっているが、水溶液中で硫化物は不安定であるとい
う欠点を有している点、そして硫化物の光吸収能力と酸
化物の化学的安定性の両方を取り入れた複合材料が得ら
n、かつそれが可視光領域で安定な触媒材料として使用
できる点に着目し、鋭意研究を重ねた結果、粒子表面に
Zn  やCd−を高分散度で形成させたものがその目
的に適合することを見出し、本発明を完成するに至った
The present inventors discovered that in photoactive catalysts made of lead oxides and sulfides, the light absorption of oxides is generally biased toward the ultraviolet region, whereas the light absorption of sulfur compounds is generally biased toward the ultraviolet region. However, sulfides have the disadvantage of being unstable in aqueous solutions, and composite materials that incorporate both the light absorption ability of sulfides and the chemical stability of oxides cannot be obtained. , and that it can be used as a stable catalyst material in the visible light region, and as a result of extensive research, we found that particles with highly dispersed Zn and Cd- formed on the particle surface were suitable for this purpose. They discovered this and completed the present invention.

すなわち、本発明によれば、白金あるいはカドミウムを
含有させた即鉛酸化物粒子の表面に、ZnやCd  を
高分散度で形成させたことを特徴とする光触媒活性を有
する垂鉛化合物を提供するものである。
That is, according to the present invention, there is provided a drop lead compound having photocatalytic activity, which is characterized in that Zn or Cd is formed with a high degree of dispersion on the surface of ready-lead oxide particles containing platinum or cadmium. It is something.

本発明の亜鉛化合物は、酸化亜鉛に対して重量で1俤に
相当する白金を化合させてから、短信の間粉砕混合する
っ本発明において、硫化物の形成け、硫化剤として二硫
化炭素、硫化水素、硫化メチル等を含む硫化性ガス雰囲
気中において温度700°C8度(酸化カドミウム添加
量の多い場合は600 ”C)に加熱することに、l:
って行うことができる。このようにして生成した硫化W
を酸四または酸素を含む雰囲気中において温度400 
’C程度に加熱することにより亜鉛化合物粒子の表面に
生成したS1イオンを酸化してOゝイオンに変化させる
ことができる。!た触媒成分として加える白金は塩イヒ
白金酸カリ (K2PtCl4.に2PtC16)で加
えても、白金黒の形で加えてもよい。白金を加えなくて
も触媒作用は発揮されるが、白金を加えることにより触
媒活性を50%程度向上させることができる。白金はま
たニッケルにより代用することもできる。
The zinc compound of the present invention is produced by combining platinum equivalent to 1 kg by weight with zinc oxide, and then pulverizing and mixing the mixture. In a sulfidic gas atmosphere containing hydrogen sulfide, methyl sulfide, etc., it is heated to a temperature of 700°C and 8°C (600"C if a large amount of cadmium oxide is added).
You can do this. Sulfide W generated in this way
at a temperature of 400℃ in an atmosphere containing acid or oxygen.
By heating to about 'C', the S1 ions generated on the surface of the zinc compound particles can be oxidized and changed into O' ions. ! Platinum added as a catalyst component may be added in the form of potassium platinum salt (2PtC16 to K2PtCl4) or in the form of platinum black. Although the catalytic effect is exhibited even without the addition of platinum, the catalytic activity can be improved by about 50% by adding platinum. Platinum can also be replaced by nickel.

本発明により触媒中のZn  を還元してZn  を生
成させる場合、通常の還元方法ではZn+は局部的に集
中して高濃度に生成してしまい、格子間亜鉛イオンと言
われる、結晶格子外に生長した還元状態にある亜鉛イオ
ンの集合体に変化するのを防止するために、本発明では
硫1°ヒ処理の際には二硫化炭素や硫化メチルのような
弱い硫化剤を用いる。
When Zn is produced by reducing Zn in the catalyst according to the present invention, Zn+ is locally concentrated and produced in a high concentration using the usual reduction method, and Zn+ is produced outside the crystal lattice, which is called an interstitial zinc ion. In order to prevent the zinc ions from changing into aggregates of grown reduced zinc ions, a weak sulfiding agent such as carbon disulfide or methyl sulfide is used in the sulfur treatment in the present invention.

その圧力も例えば硫化剤分圧1万分の1〜1万分の2気
圧程度にするのがよく、また酸化処理の際には集団的に
生成したZn+を酸化してその大部分を元のZn  に
戻すため酸素分圧1気圧程度にする。
The pressure is preferably set to, for example, 1/10,000 to 2/10,000 atmospheres of the sulfurizing agent partial pressure, and during the oxidation treatment, the collectively generated Zn+ is oxidized and most of it is converted to the original Zn. To restore the oxygen partial pressure to about 1 atm.

よく分散して生成したZn  イオンの濃度をより高く
するためには、孤立したZn  イオンを安定化するよ
うな亜鉛酸什物の粒子表面の特異点の濃度を高くするこ
とが必要であるうそのためには亜鉛酸什物を電磁弐娠動
乳鉢で粉砕しながらそのような粒子表面の特異点を露出
させ、かつそのような点〕が露出した際にその特異的な
活性状態を保存するために、ハイドロキノンのような還
元剤を加えておく。このようにすることにより、特異点
はハイドロキノンと反応して酸化さ扛にくくなるので、
その後に硫化処理を受ける迄その還元的状態を保つ。ま
た触媒表面はぼ化状態の方が安定であるので、最終処理
は醸化状態でなけ汎ばならない。
In order to increase the concentration of well-dispersed and generated Zn ions, it is necessary to increase the concentration of singular points on the surface of zincate particles that stabilize isolated Zn ions. While crushing the zinc acid in an electromagnetic mortar, we exposed the singular points on the surface of the particles, and in order to preserve the specific active state when such points were exposed, we added hydroquinone. Add a reducing agent such as By doing this, the singular point will react with hydroquinone and become difficult to oxidize.
It remains in its reducing state until it is subsequently subjected to sulfurization. Further, since the catalyst surface is more stable in a blurred state, the final treatment must be carried out in a fermented state.

〔発明の効果〕〔Effect of the invention〕

本発明の1重信化合物はバンドギャップの中間にZn+
の中間電子帯を作って光吸収特性を紫外部より可視部に
拡大改良したものであり、かつ白金の添加により還元能
が向上したため、半導体触媒が本来有している光酸化能
と相まって高い光触媒活性を発揮する。本発明によnば
、硫化物や亜硫酸塩等の水溶液のほか、電子供与性の強
い液体(例えばメタノール、エチルアミン等)又は電子
供与性の強いC固体物質(例えばブドウ糖、グルタミン
酸等)の水溶液に本発明の重信化合物を接触させた状態
で、可視光を照射すると、還元性物質(水素等)と酸f
ヒ性物′α(硫黄、値開イオン、あるいは上記反応基質
が酸化さnて生ずるアルデヒド、ニトロソ化合!ly1
等)を製造することができる。
The first compound of the present invention has Zn+ in the middle of the band gap.
It has improved light absorption properties by expanding it from the ultraviolet region to the visible region by creating an intermediate electron band of Demonstrate activity. According to the present invention, in addition to aqueous solutions of sulfides and sulfites, liquids with strong electron donating properties (e.g., methanol, ethylamine, etc.) or aqueous solutions of C solid substances with strong electron donating properties (e.g., glucose, glutamic acid, etc.) can be used. When visible light is irradiated with the compound of the present invention in contact with it, reducing substances (hydrogen etc.) and acid f
Arsenic compound 'α (sulfur, value ion, or aldehyde produced by oxidation of the above reaction substrate, nitroso compound!ly1
etc.) can be manufactured.

実施例 次に本発明を実施例により更に詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

実施例1゜ 10重量係のハイドロキノンと1時間電磁式振動乳鉢で
粉砕(見合した酸化頃鉛を0.1’rorrのC82中
で700°C130分間処理し、次いで1気圧の酸素中
で400 ’C130分間処理する。さらに30分間C
82中で700 ’Cに加熱処理する。得られた粉末に
対して1.0重量係に相当する白金を含有する塩化白金
酸カリウムを水溶液から吸着させ、インプロパツールと
水とピロガロールの混合溶液中で紫外線照射により白金
を還元する。この粉末をさらに700℃のC,9□中で
30分間加熱し、さらに400°Cの酸素中で30分間
加熱して本発明の亜鉛化合物を得た。
Example 1: Grinding with 10 parts by weight of hydroquinone in an electromagnetic vibrating mortar for 1 hour (comparable oxidized lead was treated in C82 at 0.1'rorr for 130 minutes at 700°C, then in 1 atm of oxygen for 400' Process for 130 minutes.C for an additional 30 minutes.
82 to 700'C. Potassium chloroplatinate containing 1.0 weight percent of platinum is adsorbed from an aqueous solution to the obtained powder, and the platinum is reduced by ultraviolet irradiation in a mixed solution of Impropatol, water, and pyrogallol. This powder was further heated in C, 9□ at 700°C for 30 minutes, and further heated in oxygen at 400°C for 30 minutes to obtain the zinc compound of the present invention.

次に前記手鎖化合物03gを、10 mlノ0.35 
M#度のNa 2SO3溶液に入れ、光波長領域480
 nm〜750 nmの光を300μアイ/シユタイ〉
照射した。
Next, add 0.35 g of the hand chain compound to 10 ml.
M# degree of Na2SO3 solution, light wavelength range 480
nm ~ 750 nm light at 300μ eye/shaft>
Irradiated.

その結果光エネルギーの変換効率23チで水素0.83
m1を発生させることができた。またこの際水相には0
83μモルの硫酸イオンを生成させることができた。
As a result, the conversion efficiency of light energy is 23 cm and hydrogen is 0.83 cm.
It was possible to generate m1. Also, at this time, the water phase has 0
It was possible to generate 83 μmol of sulfate ions.

実施例2゜ 酸化カドミウムと酸化亜鉛をモル比で1:1の割に混合
したものを電磁式撮動乳鉢で1時間粉砕混合したものを
実施例1と同じ方法で硫化・酸化処理および白金添加を
行って本発明の亜鉛化合物を得た。
Example 2 A mixture of cadmium oxide and zinc oxide at a molar ratio of 1:1 was pulverized and mixed in an electromagnetic mortar for 1 hour, and then sulfurized and oxidized and platinum was added in the same manner as in Example 1. The zinc compound of the present invention was obtained.

次にここに得た鰍鉛化合物0.3.9を実施例1と同じ
方法で0.35M岨硫酸ソーダ水溶液中で可視光照射を
行ったところ、光エネルギーの変換効率22係で水素0
.79 mlを発生させることができた。
Next, when 0.3.9 of the lead compound obtained here was irradiated with visible light in a 0.35M sodium sulfate aqueous solution in the same manner as in Example 1, the conversion efficiency of light energy was 22, and hydrogen was 0.
.. It was possible to generate 79 ml.

また水溶液中に33μモルの硫酸イオンが生成した。Additionally, 33 μmol of sulfate ions were generated in the aqueous solution.

Claims (1)

【特許請求の範囲】[Claims] (1)白金又はカドミウムを含有させた亜鉛の酸化物を
硫化酸化処理することによりZnイオンあるいはCdイ
オンを粒子表面に高分散度に形成させることを特徴とす
る光触媒活性を有する亜鉛化合物。
(1) A zinc compound having photocatalytic activity, which is characterized by forming Zn ions or Cd ions with a high degree of dispersion on the particle surface by subjecting a zinc oxide containing platinum or cadmium to a sulfiding oxidation treatment.
JP60203865A 1985-09-14 1985-09-14 Zinc compound having photocatalytic activity Granted JPS6265743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203865A JPS6265743A (en) 1985-09-14 1985-09-14 Zinc compound having photocatalytic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203865A JPS6265743A (en) 1985-09-14 1985-09-14 Zinc compound having photocatalytic activity

Publications (2)

Publication Number Publication Date
JPS6265743A true JPS6265743A (en) 1987-03-25
JPH0255373B2 JPH0255373B2 (en) 1990-11-27

Family

ID=16480981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203865A Granted JPS6265743A (en) 1985-09-14 1985-09-14 Zinc compound having photocatalytic activity

Country Status (1)

Country Link
JP (1) JPS6265743A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012668A3 (en) * 1995-09-18 1997-06-19 Korea Res Inst Chem Tech Novel photocatalyst, preparation therefor and method for producing hydrogen using the same
WO1998015352A1 (en) * 1996-10-07 1998-04-16 Korea Research Institute Of Chemical Technology NOVEL ZnS PHOTOCATALYST, PREPARATION THEREFOR AND METHOD FOR PRODUCING HYDROGEN BY USE OF THE SAME
WO2002018049A1 (en) 2000-09-01 2002-03-07 Japanese Science And Technology Corporation Method for preparing highly active photocatalyst and method for treating hydrogen sulfide allowing recovery of hydrogen gas with low energy consumption by use of highly active photocatalyst
WO2002083308A1 (en) * 2001-04-11 2002-10-24 Japan Science And Technology Corporation Method for preparing high active photocatalyst and method for treating hydrogen sulfide using the high active photocatalyst
WO2003051512A1 (en) * 2001-12-19 2003-06-26 Japan Science And Technology Corporation Thin-film photocatalyst, its production method, hydrogen sulfide processing method using the thin-film optical catalyst, and hydrogen producing method
JP2006082071A (en) * 2004-02-20 2006-03-30 Sekisui Jushi Co Ltd Photocatalytic composition, building material for interior finish, coating material, synthetic resin molded body, method for utilizing photocatalyst and method for decomposing harmful substance
JP2007070675A (en) * 2005-09-06 2007-03-22 Nissan Motor Co Ltd Semiconductor electrode and energy conversion system using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012668A3 (en) * 1995-09-18 1997-06-19 Korea Res Inst Chem Tech Novel photocatalyst, preparation therefor and method for producing hydrogen using the same
WO1998015352A1 (en) * 1996-10-07 1998-04-16 Korea Research Institute Of Chemical Technology NOVEL ZnS PHOTOCATALYST, PREPARATION THEREFOR AND METHOD FOR PRODUCING HYDROGEN BY USE OF THE SAME
CN1108866C (en) * 1996-10-07 2003-05-21 韩国化学研究所 ZnS photocatalyst, preparation thereof and use thereof the producing hydrogen
WO2002018049A1 (en) 2000-09-01 2002-03-07 Japanese Science And Technology Corporation Method for preparing highly active photocatalyst and method for treating hydrogen sulfide allowing recovery of hydrogen gas with low energy consumption by use of highly active photocatalyst
EP1314478A1 (en) * 2000-09-01 2003-05-28 Japanese Science and Technology Corporation Method for preparing highly active photocatalyst and method for treating hydrogen sulfide allowing recovery of hydrogen gas with low energy consumption by use of highly active photocatalyst
EP1314478A4 (en) * 2000-09-01 2004-10-20 Japan Science & Tech Agency Method for preparing highly active photocatalyst and method for treating hydrogen sulfide allowing recovery of hydrogen gas with low energy consumption by use of highly active photocatalyst
US6964755B2 (en) * 2000-09-01 2005-11-15 Japan Science And Technology Agency Method for producing high activity photocatalyst, photoactivity catalyst, and method for treating hydrogen sulfide for recovering hydrogen gas under low energy by using high activity photocatalyst
WO2002083308A1 (en) * 2001-04-11 2002-10-24 Japan Science And Technology Corporation Method for preparing high active photocatalyst and method for treating hydrogen sulfide using the high active photocatalyst
WO2003051512A1 (en) * 2001-12-19 2003-06-26 Japan Science And Technology Corporation Thin-film photocatalyst, its production method, hydrogen sulfide processing method using the thin-film optical catalyst, and hydrogen producing method
JP2006082071A (en) * 2004-02-20 2006-03-30 Sekisui Jushi Co Ltd Photocatalytic composition, building material for interior finish, coating material, synthetic resin molded body, method for utilizing photocatalyst and method for decomposing harmful substance
JP2007070675A (en) * 2005-09-06 2007-03-22 Nissan Motor Co Ltd Semiconductor electrode and energy conversion system using the same

Also Published As

Publication number Publication date
JPH0255373B2 (en) 1990-11-27

Similar Documents

Publication Publication Date Title
Liu et al. A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation
CN104998660B (en) A kind of stannic disulphide nano slice loads the preparation method of tin dioxide nanocrystal composite nano materials
US4623437A (en) Catalysts for photo-assisted oxidation-reduction reactions
JPWO2015146830A1 (en) Photocatalyst and method for producing the same
JPH01210037A (en) Method of forming alloy on carrier
CN109529814B (en) Visible light driven inverse proteolith photocatalytic material, preparation method thereof and degradation removal of organic pollutants in water body by using visible light driven inverse proteolith photocatalytic material
Gao et al. Effects of pH on the hierarchical structures and photocatalytic performance of Cu-doped BiVO4 prepared via the hydrothermal method
CN108855131A (en) A kind of preparation and application of silver-nickel bimetal doping titanium dioxide nano composite material
Liu et al. A novel Ag@ AgBr-Ag2Mo3O10 ternary core-shell photocatalyst: Energy band modification and additional superoxide radical production
JPS6265743A (en) Zinc compound having photocatalytic activity
WO2023108950A1 (en) PREPARATION METHOD FOR Z-SCHEME α-FE2O3/ZNIN2S4 COMPOSITE PHOTOCATALYST AND USE THEREOF
Liu et al. Multi-mode photocatalytic performances of CdS QDs modified CdIn 2 S 4/CdWO 4 nanocomposites with high electron transfer ability
Liu et al. Novel Tb2O3/Ag2MO2O7 heterojunction photocatalyst for excellent photocatalytic activity: In-built Tb4+/Tb3+ redox center, proliferated hydroxyl radical yield and promoted charge carriers separation
Devi et al. Room temperature synthesis of colloidal platinum nanoparticles
JP2006224036A (en) Photocatalyst and method of photocatalytic reaction
KR101706846B1 (en) A manufacturing method of nanocomposite photocatalyst
JP3870267B2 (en) Bismuth complex oxide visible light responsive photocatalyst of alkali metal and Ag and method for decomposing and removing harmful chemicals using the same
Rafaeloff et al. Incorporation of a recyclable surface-active electron donor in synthetic vesicles: application to photosensitized hydrogen formation by vesicle-stabilized rhodium-coated colloidal cadmium sulfide particles
Roselin et al. Transformation of Commercial TiO2 into Anatase with Improved Activity of Fe, Cu and Cu–Fe Oxides Loaded TiO2
CN114471707A (en) Catalyst-containing hydrogel spheres, preparation method thereof and application thereof in photocatalytic treatment of organic pollutants
CN108126713B (en) It is the photochemical catalyst and its preparation method and application in solid conduction channel based on pole narrow-band semiconductor
Chawda et al. Undoped and carbon-doped calcium molybdate as photocatalyst for degradation of methylene blue
JPS63107815A (en) Niobium compound with photocatalytic activity
JPS62191045A (en) Rare earth element compound having photocatalytic activity
Radhika et al. Fluorescent biomolecules capped ZnSe quantum dots and their photocatalytic activities

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term