JPS626520Y2 - - Google Patents
Info
- Publication number
- JPS626520Y2 JPS626520Y2 JP19263781U JP19263781U JPS626520Y2 JP S626520 Y2 JPS626520 Y2 JP S626520Y2 JP 19263781 U JP19263781 U JP 19263781U JP 19263781 U JP19263781 U JP 19263781U JP S626520 Y2 JPS626520 Y2 JP S626520Y2
- Authority
- JP
- Japan
- Prior art keywords
- container
- bottom plate
- heat
- thallium
- infrared absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 claims description 12
- 229920003023 plastic Polymers 0.000 claims description 8
- 239000004033 plastic Substances 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 7
- 238000000862 absorption spectrum Methods 0.000 claims description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- PGAPATLGJSQQBU-UHFFFAOYSA-M thallium(i) bromide Chemical compound [Tl]Br PGAPATLGJSQQBU-UHFFFAOYSA-M 0.000 claims description 3
- CMJCEVKJYRZMIA-UHFFFAOYSA-M thallium(i) iodide Chemical compound [Tl]I CMJCEVKJYRZMIA-UHFFFAOYSA-M 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000013032 Hydrocarbon resin Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229920006270 hydrocarbon resin Polymers 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M potassium chloride Inorganic materials [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【考案の詳細な説明】
本考案は、化学的組成分析の分野に於いて、混
合物について各種の分別機器により分離した時、
分離溶液を多数の容器に分取し、各分取物につい
て赤外線吸収スペクトルを測定するための液体用
受器に関するものである。[Detailed description of the invention] This invention is used in the field of chemical composition analysis, when a mixture is separated using various sorting devices,
This invention relates to a liquid receiver for fractionating a separated solution into a number of containers and measuring the infrared absorption spectrum of each fraction.
多成分の混合物、例えば天然有機物、化学的合
成物、もしくは工業的各種混合組成物の分析に際
しては、各種の分別機器、例えば液体クロマト分
析装置を用いて、キヤリアー溶媒と共に順次流出
滴下する分離液を、清浄なる適当な受器を用いて
各成分毎に分取する。分取した多数の分離液を脱
溶媒して各分取容器の底部に分取物を残留付着さ
せる。 When analyzing multi-component mixtures, such as natural organic substances, chemical compounds, or various industrial mixed compositions, various fractionation equipment, such as a liquid chromatography analyzer, is used to separate the separated liquid that is sequentially discharged and dropped together with a carrier solvent. , separate each component using a suitable clean container. A large number of fractionated liquids are removed from the solvent, and the fractions remain attached to the bottom of each fractionation container.
従来法によれば、多数の容器に残留する各分取
物について、各々赤外線スペクトル測定に供すべ
く試料調製を行う。 According to the conventional method, each fraction remaining in a large number of containers is subjected to sample preparation for infrared spectral measurement.
試料調製には各種の方法があるが、例えば臭化
カリウム錠剤法に於いては、分取物の適当量、例
えば0.5〜1mg及び精製・乾燥された臭化カリウ
ム粉末の適当量、例えば300〜1000mgを清浄なる
メノー乳鉢に採取する。メノー棒を用いてこれを
磨砕しスパチエラーを用いて混合する。この操作
を3回以上繰り返して分取物と臭化カリウム粉末
の微粒で均一なる混合粉末を得る。 There are various methods for sample preparation, but for example, in the potassium bromide tablet method, an appropriate amount of the aliquot, e.g. 0.5 to 1 mg, and an appropriate amount of purified and dried potassium bromide powder, e.g. Collect 1000mg into a clean agate mortar. Grind this using an agate rod and mix using a spatula. This operation is repeated three or more times to obtain a fine and uniform mixed powder of the fraction and potassium bromide powder.
次にこの混合粉末を清浄なる真空式錠剤成形器
に充填し、5mmHg以下の真空度で約5t/cm3の圧
力で3〜6分圧縮し、円板状錠剤を得る。成形器
より錠剤を取り出し、ホルダーに保持して赤外線
分光光度計の試料室光路に挿入すれば、分取物の
赤外線吸収スペクトルが測定出来る。 The mixed powder is then loaded into a clean vacuum tablet press and compressed for 3 to 6 minutes at a pressure of about 5 t/ cm3 under a vacuum of 5 mmHg or less to obtain a disk-shaped tablet. The tablet is removed from the press, held in a holder, and inserted into the sample chamber light path of an infrared spectrophotometer to measure the infrared absorption spectrum of the fraction.
即ち、多数の分別物、例えば5〜20個につい
て、夫々混合粉砕、錠剤成形及び赤外線吸収スペ
クトル測定を行い、混合物の全組成内容を知る事
が出来る。 That is, a large number of fractionated products, for example, 5 to 20 fractions, are mixed, crushed, tablet-formed, and subjected to infrared absorption spectroscopy to determine the entire composition of the mixture.
以上の分析手法は、混合物の組成分析に於いて
必要且つ有効なる分析法であるが、分析試料1個
について多数の分別物を得て、夫々繁雑な手作業
を繰返し行わなければならない。即ち、分析熟練
者であつても多くの労働と時間を消耗する事が要
求される。 The above analytical method is a necessary and effective analytical method for analyzing the composition of mixtures, but it requires that a large number of fractions be obtained for one analysis sample, and complicated manual operations must be repeated for each fraction. In other words, it requires a lot of labor and time even for analytical experts.
本考案はこの様な手作業を省略し、多数の分別
物について、直ちに赤外線吸収スペクトル測定に
供する事ができ、しかも取扱いの容易な分取容器
に関する考案である。 The present invention is an invention regarding a preparative container that can omit such manual work and can be used for immediate infrared absorption spectrum measurement of a large number of fractionated materials, and is easy to handle.
本考案の具体例を図面に従い更に詳細に説明す
る。第1図の1はプラスチツク、ガラス又は金属
類を成形又は加工して成る受容器部、2は受容器
部1の底部に赤外線透過板を固定するための結合
部、3は臭化カリウム又は塩化ナトリウムの単結
晶板、もしくは沃化タリウムと臭化タリウム混晶
物よりなる受容器の底板である。 A specific example of the present invention will be explained in more detail with reference to the drawings. In Fig. 1, 1 is a receiver made of molded or processed plastic, glass, or metal, 2 is a joint for fixing an infrared transmitting plate to the bottom of the receiver 1, and 3 is potassium bromide or chloride. The bottom plate of the receiver is made of a single crystal plate of sodium or a mixed crystal of thallium iodide and thallium bromide.
2の結合部はプラスチツク類、例えばビニル樹
脂組成物、炭化水素樹脂組成物又は弗化炭化水素
樹脂組成物等を特別に熱収縮性を賦与した材料で
成る熱収縮性プラスチツクチユーブを裁断して作
製する。受容器部1、結合部2及び底板3を第2
図の如く設定し、結合部2を加熱、例えば熱放射
又は加熱炉に挿入すれば、結合部2は熱収縮し
て、第3図に示す様に一体化し、分取容器が完成
する。 The joint part 2 is made by cutting a heat-shrinkable plastic tube made of plastic, such as a vinyl resin composition, a hydrocarbon resin composition, or a fluorinated hydrocarbon resin composition, which has been specially given heat-shrinkability. do. The receiver part 1, the coupling part 2 and the bottom plate 3 are connected to the second
When the joint part 2 is set as shown in the figure and heated, for example by heat radiation or inserted into a heating furnace, the joint part 2 is thermally shrunk and integrated as shown in FIG. 3, thereby completing a preparative container.
本考案の分取容器を10個乃至は50個を常備し、
分別機器、例えば液体クロマト分析装置から流出
滴下する分別溶液の分取容器として用い、夫々溶
媒を揮散除去後分取容器の底部に分析用試料を付
着させたまま分取容器ごと、または底板を取りは
ずし、そのままあるいは該底板と同種の結晶板で
サンドイツチ状とし、赤外線分光光度計の試料室
光路に挿入すれば、従来法において要する試料調
整操作を全て省略し、各分別物について直ちに、
赤外線吸収スペクトルを測定する事が出来る。更
に分取物が底部に付着した多数の分取容器につい
て、順次赤外線吸収スペクトルを測定すれば、分
析試料である混合物の全組成内容を知る事が出来
る。 Keep 10 to 50 preparative containers of this invention on hand,
It is used as a container for fractionating solution dripping from a fractionation device, such as a liquid chromatography analyzer, and after the respective solvents have been volatilized and removed, the entire container can be removed with the sample for analysis attached to the bottom of the container, or the bottom plate can be removed. By inserting it as it is or by making it into a sandwich-like shape with a crystal plate of the same type as the bottom plate and inserting it into the optical path of the sample chamber of an infrared spectrophotometer, all the sample preparation operations required in the conventional method can be omitted, and each fraction can be processed immediately.
Infrared absorption spectra can be measured. Furthermore, by sequentially measuring the infrared absorption spectra of a large number of preparative containers with fractions attached to the bottom, it is possible to know the entire composition of the mixture that is the analysis sample.
更に、本考案の分取容器では底板を固定してい
る熱収縮プラスチツクチユーブを容易に破断する
ことにより底板をとりはずし、容器の洗浄も簡便
に行なうことが出来、又必要に応じて底板の取り
かえもきわめて容易に出来、更に熱収縮性プラス
チツクチユーブは底板を受容器底部に液密に捕捉
固定でき、熱収縮性プラスチツクチユーブは受容
器部1と底板3とに均一にフイツトする。また熱
収縮性プラスチツクチユーブは底板とする臭化カ
リウム又は塩化ナトリウムの単結晶板や沃化タリ
ウムと臭化タリウム混晶物は非常に脆くこわれ易
く、受容器部にソフトに均一に固定できる底板を
保護出来る上取扱い、操作上利点の多いものであ
る。 Furthermore, in the preparative container of the present invention, the bottom plate can be removed by easily breaking the heat-shrinkable plastic tube that fixes the bottom plate, and the container can be easily cleaned, and the bottom plate can be replaced if necessary. It is very easy to make, and furthermore, the heat-shrinkable plastic tube can capture and fix the bottom plate to the bottom of the receiver in a liquid-tight manner, and the heat-shrinkable plastic tube fits uniformly to the receiver part 1 and the bottom plate 3. In addition, heat-shrinkable plastic tubes use single-crystal plates of potassium bromide or sodium chloride as base plates, or mixed crystals of thallium iodide and thallium bromide, which are extremely brittle and break easily. It can be protected and has many advantages in terms of handling and operation.
第1図は本考案の分取容器の構成材料の1例を
示す概略図、第2図は分取容器の製造に当り、各
構成材料を設定した状態を示す1例の概略図、第
3図は本考案分取容器の1例を示す概略図であ
る。
Fig. 1 is a schematic diagram showing an example of the constituent materials of the preparative container of the present invention, Fig. 2 is a schematic diagram of an example showing the state in which each constituent material is set in manufacturing the preparative container, and Fig. 3 The figure is a schematic diagram showing an example of the preparative container of the present invention.
Claims (1)
臭化カリウム又は塩化ナトリウムの単結晶板もし
くは、沃化タリウムと臭化タリウム混晶物の赤外
線透過材料で成る底板を熱収縮性プラスチツクチ
ユーブで捕捉固定していることを特徴とする赤外
線吸収スペクトル測定用液体分取容器。 A hollow concave container, the bottom of which is
Infrared absorption spectrum measurement characterized by capturing and fixing a single crystal plate of potassium bromide or sodium chloride or a bottom plate made of an infrared transmitting material of a mixed crystal of thallium iodide and thallium bromide with a heat-shrinkable plastic tube. liquid separation container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981192637U JPS5897544U (en) | 1981-12-25 | 1981-12-25 | preparative container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981192637U JPS5897544U (en) | 1981-12-25 | 1981-12-25 | preparative container |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5897544U JPS5897544U (en) | 1983-07-02 |
JPS626520Y2 true JPS626520Y2 (en) | 1987-02-14 |
Family
ID=30106031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981192637U Granted JPS5897544U (en) | 1981-12-25 | 1981-12-25 | preparative container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5897544U (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4955386U (en) * | 1972-08-23 | 1974-05-16 |
-
1981
- 1981-12-25 JP JP1981192637U patent/JPS5897544U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5897544U (en) | 1983-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gohlke | Time-of-flight mass spectrometry and gas-liquid partition chromatography | |
Gimet et al. | Quantitative determination of polymorphic forms in a formulation matrix using the near infra-red reflectance analysis technique | |
Bol'shov et al. | Determination of lead in Antarctic ice at the picogram-per-gram level by laser atomic fluorescence spectrometry | |
EP0586012B1 (en) | Equipment for sampling and work-up for analysis of PAH and other organic compounds, and hydrogen fluoride and sulphur oxides | |
JPS626520Y2 (en) | ||
Fukasawa et al. | Heavy-liquid separation and X-ray diffraction analysis of airborne particulates | |
Anderson | Quartz Flow Cells for Continuous Spectrophotometric Analysis Column Effluents | |
US4329153A (en) | Test tube construction and method for testing for copper aerosols | |
IE44010B1 (en) | Method and apparatus for examining the infrared spectrum of small quantities of materials in the vapour phase | |
JPS5844333A (en) | Portioning vessel | |
GB2061497A (en) | Detection of nickel in air | |
Adams et al. | Vibrational spectroscopy at very high pressures. Part 15. Raman and infrared study of mercury (II) chloride | |
Lodder et al. | A disposable liquid microcell for near-infrared reflectance analysis | |
Barrow et al. | The internuclear distance in gaseous SrF | |
JPS61184440A (en) | Method for preparing specimen for infrared spectroscopic analysis | |
US3496777A (en) | Sampling device | |
Campbell et al. | Air sampling and analysis with microcolumns of silica gel | |
Stark et al. | Device for Monitoring Absorbance of Column Eluates in a Spectrophotometer | |
Kenyon et al. | Automatic ultraviolet spectral scanning of chromatographic effluents | |
Fiebig et al. | Small Dry Box For Sampling | |
US3187786A (en) | Apparatus for chromatographic analysis | |
US3584957A (en) | Method for infrared spectroscopy | |
CN207964622U (en) | A kind of UV-VIS spectrophotometry measurement device | |
SCHAEFER | Infrared analysers and other industrial photometers(Characteristics and applications of industrial photometers for analyzing constituent parts of liquid and gaseous mixtures) | |
Brown | Filter-Paper Method for Obtaining Dust-Concentration Results Comparable to Impinger Results |