JPS6264989A - Steam separator for boiling water type reactor - Google Patents

Steam separator for boiling water type reactor

Info

Publication number
JPS6264989A
JPS6264989A JP60203317A JP20331785A JPS6264989A JP S6264989 A JPS6264989 A JP S6264989A JP 60203317 A JP60203317 A JP 60203317A JP 20331785 A JP20331785 A JP 20331785A JP S6264989 A JPS6264989 A JP S6264989A
Authority
JP
Japan
Prior art keywords
steam
water
boiling water
separator
standpipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60203317A
Other languages
Japanese (ja)
Inventor
寺坂 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60203317A priority Critical patent/JPS6264989A/en
Publication of JPS6264989A publication Critical patent/JPS6264989A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Water Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は炉心より発生する気水混合流を導びき。[Detailed description of the invention] [Technical field of invention] The present invention guides the mixed flow of steam and water generated from the reactor core.

それぞれ蒸気と水に分離するためにシュラウドヘッド部
に複数配設されている沸騰水型原子炉の気水分離器に関
する。
This invention relates to a steam-water separator for a boiling water reactor, which has a plurality of steam-water separators installed in a shroud head to separate steam and water, respectively.

〔発明の技術的背景〕[Technical background of the invention]

沸騰水型原子炉に用いられている従来の気水分離器は第
4図に示すようにシュラウドヘッド部に複数配設されて
いる。すなわち、炉心1より発生する蒸気と水の混合流
は上部プレナム2に入り。
A plurality of conventional steam/water separators used in boiling water reactors are arranged in a shroud head portion, as shown in FIG. That is, a mixed flow of steam and water generated from the core 1 enters the upper plenum 2.

シュラウドヘッドに林立するスタンドパイプ3を通って
気水分離器4に流入する。気水分離器4は第5図に示す
ような構造を有しており、スタンドパイプ3から流入す
る蒸気と水の混合流は、スタンドパイプ3と同軸同径で
接続するライザ5から旋回羽根6に至り、この旋回羽根
6により旋回力を与えられ、ら線状に旋回しながら旋回
Wi47の内部を上昇していく、この際、比重の大きい
水は遠心力のため旋回胴7の内壁に押しつけられ比重の
小さい蒸気は旋回1B17中心部(コア)を流れるため
に気水分離が行なわれる。旋回胴7の上方には分離した
水を排出するための排水口8が設けられていて、旋回胴
7の内壁を伝って流れてくる水は排水口8に流入し、旋
回胴7と外筒9との間に形成されている環状流路10の
下方に流れ排水される。
The water flows into the steam separator 4 through the stand pipe 3 that stands in the shroud head. The steam-water separator 4 has a structure as shown in FIG. Then, the swirling force is applied by the swirling blades 6, and the water rises inside the rotating Wi 47 while rotating in a spiral shape. At this time, the water with a large specific gravity is pressed against the inner wall of the rotating body 7 due to the centrifugal force. Since the steam with a small specific gravity flows through the center (core) of the swirl 1B17, steam and water separation is performed. A drain port 8 for discharging the separated water is provided above the rotating barrel 7, and water flowing along the inner wall of the rotating barrel 7 flows into the drain port 8, and the water flows through the rotating barrel 7 and the outer barrel. The water flows down the annular flow path 10 formed between the water and the water and is drained.

一方、旋回胴7の中心部を流れる蒸気は旋回胴7の上方
の蒸気排出口11に入り、蒸気排出管12をへて蒸気ド
ーム(図示せず)に流入する。
On the other hand, steam flowing through the center of the rotating shell 7 enters a steam outlet 11 above the rotating shell 7, passes through a steam exhaust pipe 12, and flows into a steam dome (not shown).

以上説明した過程において蒸気と水の混合流は大きな流
動抵抗を受ける。特に上部プレナム2からスタンドパイ
プ3に流入する際の流量配分に起因する圧力損失および
縮流に起因する圧力損失。
In the process described above, the mixed flow of steam and water is subjected to large flow resistance. In particular, pressure loss due to flow distribution when flowing from the upper plenum 2 into the standpipe 3 and pressure loss due to contracted flow.

スタンドパイプ3を通過する際の圧力損失および旋回羽
根を通過する際の圧力損失が大きい、圧力損失が大きい
と再循環ポンプの負荷が大きくなり。
The pressure loss when passing through the standpipe 3 and the pressure loss when passing through the swirl vane is large. If the pressure loss is large, the load on the recirculation pump will be large.

また再循環ポンプ停止時の自然循環流量が減少するため
沸騰水型原子炉の熱水力学的安定性が悪くなることが考
えられる。従って気水分離器の設計において最も重要な
点は気水分離性能を損なわずに可能な限り圧力損失低減
を図ることである。
Furthermore, it is thought that the thermal-hydraulic stability of the boiling water reactor deteriorates because the natural circulation flow rate decreases when the recirculation pump is stopped. Therefore, the most important point in designing a steam/water separator is to reduce pressure loss as much as possible without impairing steam/water separation performance.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情に鑑みてなされたもので、その目的
は気水分離器の圧力損失の低減を図って再循環ポンプ負
荷を低減せしめるようにした沸騰水型原子炉用気水分離
装置を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a steam and water separator for a boiling water reactor, which reduces the pressure loss of the steam and water separator and reduces the load on the recirculation pump. It is about providing.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、沸騰水型原子炉に
用いる気水分離器において、スタンドパイプとこのスタ
ンドパイプに接続されるライザおよび旋回胴の直径をは
ゾ同一とするとともに前記スタンドパイプから流入する
気水混合流に旋回力を与えるための旋回羽根をスワール
型としたものであるから、縮流圧損およびスタンドパイ
プ、ライザの圧損、旋回羽根の圧損を低減させると同時
に旋回力を増加させ分離性能を向上させたものである。
In order to achieve the above object, the present invention provides a steam-water separator for use in a boiling water nuclear reactor, in which the diameters of a standpipe, a riser connected to the standpipe, and a revolving barrel are made the same, and the diameter of the standpipe is made the same. Since the swirl vane is of a swirl type to give swirling force to the air-water mixed flow flowing in from the air-water mixture, it reduces the contracting flow pressure loss, the pressure drop of the stand pipe and riser, and the pressure drop of the swirl vane, and at the same time increases the swirling force. This improves separation performance.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の気水分離器の概略断面図で
ある。沸騰水型原子炉に用いられる本実施例の気水分離
器20は図示しないシュラウドヘッド部に複数配設され
ている。そして炉心より発生する蒸気と水の混合流は上
部プレナムに入り、シュラウドヘッドに林立するスタン
ドパイプ21を通って気水分離器20に入る0本実施例
の気水分離器20はスタンドパイプ21.ライザ22お
よび旋回胴24の直径とほり同一とし旋回羽根23をス
ワール型すなわち軸方向流に周方向流成分を与え、半径
方向流成分はあたえないように構成したものである。
FIG. 1 is a schematic sectional view of a steam separator according to an embodiment of the present invention. A plurality of steam/water separators 20 of this embodiment used in a boiling water nuclear reactor are arranged in a shroud head portion (not shown). The mixed flow of steam and water generated from the reactor core enters the upper plenum and enters the steam separator 20 through the stand pipes 21 arranged in the shroud head. The diameter of the swirling blade 23 is approximately the same as that of the riser 22 and the swirling barrel 24, and the swirling blade 23 is configured to have a swirl type, that is, to give a circumferential flow component to the axial flow, but not to give a radial flow component.

そしてスタンドパイプ21.ライザ22の直径は、従来
の沸騰水型原子炉に用いられている典型的なスタンドパ
イプ、ライザの太さより約20%太く、旋回胴の太さは
約15%細くなるように構成されている。
And stand pipe 21. The diameter of the riser 22 is approximately 20% thicker than that of a typical standpipe or riser used in a conventional boiling water reactor, and the diameter of the rotating shell is approximately 15% thinner. .

スタンドパイプ21から流入する蒸気と水の混合流は、
スタンドパイプと同軸同径で接続するライザ22から旋
回羽根23に至り、旋回羽根23により旋回力を与えら
れら線状に旋回しながら旋回胴24の内部を上昇してい
く、この際、比重の大きい水は遠心力のため旋回151
24の内壁に押しつけられ比重の小さい蒸気は旋回胴2
4の中心部(コア)を流れるために気水分離が行なわれ
る。旋回胴24の上方には分離した水を排出するための
排水口25が設けられていて、旋回胴24の内壁を伝っ
て流れてくる水は排y%口25に流入し、旋回胴24と
外筒26との間に形成されている環状流路27を下方に
流れ排水される。一方、旋回胴24の中心部を流れる蒸
気は旋回胴24の上方の蒸気排出口28に入り、蒸気排
出管29をへて図示しない蒸気ドームに流入する。
The mixed flow of steam and water flowing in from the standpipe 21 is
The riser 22, which is connected coaxially and with the same diameter as the standpipe, reaches the swirling blade 23, and is given a swirling force by the swirling blade 23 and ascends inside the rotating body 24 while rotating linearly.At this time, the specific gravity Large water rotates due to centrifugal force151
The steam that is pressed against the inner wall of the rotating shell 2 and has a low specific gravity is
Steam and water separation is performed in order to flow through the center (core) of 4. A drain port 25 for discharging separated water is provided above the rotating barrel 24, and water flowing along the inner wall of the rotating barrel 24 flows into the drain port 25 and is drained from the rotating barrel 24. The water flows downward through an annular flow path 27 formed between the outer cylinder 26 and is drained. On the other hand, the steam flowing through the center of the rotating shell 24 enters the steam outlet 28 above the rotating shell 24, passes through the steam exhaust pipe 29, and flows into a steam dome (not shown).

次に、以上のように成形した気水分離器を用いることに
より圧力損失が低減することを説明する。
Next, it will be explained that pressure loss is reduced by using the steam/water separator molded as described above.

まず上部プレナム2からスタンドパイプ3に流入する際
の縮流損失ΔPi。は なる0式で与えられる。ここで ζ:縮流損失係数 ρf:飽和水密度 φ2:二相圧損増倍係数 m:気水分離器1体あたりに流入する流量Aニスタンド
パイブの流路面積 なお、縮流損失係数ζは0.01〜0.04程度の値で
ありスタンドパイプの流路面積Aには依存しない。
First, the contraction loss ΔPi when flowing from the upper plenum 2 to the standpipe 3. is given by the formula 0. Here, ζ: Contraction loss coefficient ρf: Saturated water density φ2: Two-phase pressure loss multiplication coefficient m: Flow rate A flowing into one steam-water separator Flow path area of Nistand pipe Note that Contraction loss coefficient ζ is It is a value of about 0.01 to 0.04 and does not depend on the flow path area A of the standpipe.

今、気水分離器の総数は同じとすると気水分離器1体あ
たりに流入する流量mは同じである。また上記ζ、φ、
ρも同じとなるので本実施例の気水分離器の縮流損失Δ
Pγ□ と典型的な従来気水分離器の縮流損失ΔP?。
Now, assuming that the total number of steam-water separators is the same, the flow rate m flowing into each steam-water separator is the same. Also, the above ζ, φ,
Since ρ is also the same, the contraction loss Δ of the steam-water separator in this example is
Pγ□ and the contraction loss ΔP of a typical conventional steam/water separator? .

 との比は下記■式となる。The ratio with is the following formula (■).

上記■式で示されるように本実施例においては総流損失
は約半分となる。なお、■式において添字Nは本実施例
の気水分離器、添字0は従来の気水分離器を表わす。
As shown by the above equation (2), in this embodiment, the total flow loss is approximately half. In the equation (2), the subscript N represents the steam/water separator of this embodiment, and the subscript 0 represents the conventional steam/water separator.

次にスタンドパイプ3およびライザ5を通過する際の損
失△PsRは なる0式で与えられる。ここで f :壁面摩擦係数 L ニスタンドパイブとライザの長さの和D ニスタン
ドパイブ、ライザの内径 ρ、:二相混合流の平均密度 g :重力加速度 φf2:二相摩擦圧損増倍係数 しかして、スタンドパイプおよびライザの直径が変って
も上記f、L、ρsagは変化せず、ρf2は内径が大
きくなるとわずかながら小さくなる。
Next, the loss ΔPsR when passing through the stand pipe 3 and riser 5 is given by the following equation. Here, f: Wall friction coefficient L Sum of lengths of Nistand pipe and riser D Inner diameter of Nistand pipe and riser ρ: Average density of two-phase mixed flow g: Gravitational acceleration φf2: Two-phase friction pressure loss multiplication factor However Therefore, even if the diameters of the standpipe and riser change, the above f, L, and ρsag do not change, and ρf2 becomes slightly smaller as the inner diameter increases.

従って0式においてヘッドρwa−gLを除いた摩擦損
失は となり、約40%減少する。
Therefore, in formula 0, the friction loss excluding the head ρwa-gL is reduced by about 40%.

さらに旋回羽根6の圧損はスワール型の方が従来のもの
より低くなる。
Furthermore, the pressure loss of the swirl vane 6 is lower in the swirl type than in the conventional type.

一方旋回胴7は約15%細くなるが、旋回羽根6による
旋回力により二相混合流はきれいな環状流(内筒7の内
面に沿って液膜が流れ、中央部を蒸気が流れる。)とな
るため摩擦圧損の増加は比較的少なく約25%程度であ
る。
On the other hand, the swirling body 7 becomes thinner by about 15%, but due to the swirling force of the swirling vanes 6, the two-phase mixed flow becomes a clean annular flow (a liquid film flows along the inner surface of the inner cylinder 7, and steam flows in the center). Therefore, the increase in frictional pressure loss is relatively small, about 25%.

詳細な解析コードを使用して上記の計算を行ない本実施
例の圧損低減割合を調べたところ第2図の結果を得た。
When the above calculation was performed using a detailed analysis code and the pressure drop reduction rate of this example was investigated, the results shown in FIG. 2 were obtained.

これからも本実施例が圧損低減に効果があることが明ら
かである。第3図は自然循環量の増加と熱水力学的安定
余裕の増加を模式的に示したものである。第3図におい
てaは従来の原子炉の自然循環曲線、bは本発明の気水
分離器を用いた原子炉あ自然循環曲線、Cは安定限界線
であり本発明により沸騰水型原子炉の自然循環運転特性
がAよりBに向上することがわかる。
It is clear from this that this example is effective in reducing pressure loss. Figure 3 schematically shows the increase in natural circulation and the increase in thermo-hydraulic stability margin. In Fig. 3, a is the natural circulation curve of a conventional nuclear reactor, b is a natural circulation curve of a nuclear reactor using the steam separator of the present invention, and C is a stability limit line. It can be seen that the natural circulation operation characteristics are improved in B compared to A.

次に気水分離器の分離性能について述べる。旋回羽根6
による二相混合流の旋回速度ωは種々の実験の結果 ωoc 1/rn          ■となることが
分っており、通常nは0.5〜1.0の間の値をとる。
Next, we will discuss the separation performance of the steam separator. Swirl blade 6
As a result of various experiments, it has been found that the swirling speed ω of a two-phase mixed flow is ωoc 1/rn (2), and n usually takes a value between 0.5 and 1.0.

従って旋回胴7を細くすることにより旋回速度は速くな
るので、遠心力F=Mrω”QCMr”−”も旋回fg
A7か細い方が強く、分離性能も向上することがわかる
Therefore, by making the rotating body 7 thinner, the rotating speed increases, so that the centrifugal force F=Mrω"QCMr"-" also increases the rotating speed fg
It can be seen that the thinner the A7, the stronger it is and the separation performance is improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば気水分離器の分離
性能を損なうことなく圧力損失を低減させることができ
るので、沸騰水型原子炉の再循環ポンプの負荷低減およ
び自然循環運転特性の向上が図れ、沸騰水型原子炉の信
頼性も向上させることができる。またスタンドパイプ、
ライザ、旋回胴の直径が同一なので気水分離器の製作が
容易となる。
As explained above, according to the present invention, it is possible to reduce pressure loss without impairing the separation performance of the steam separator, thereby reducing the load on the recirculation pump of a boiling water reactor and improving the natural circulation operation characteristics. It is possible to improve the reliability of boiling water reactors. Also a stand pipe,
Since the riser and rotating barrel have the same diameter, it is easy to manufacture the steam/water separator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る一実施例の断面図、第2図は圧力
損失の低減割合を示す図、第3図は自然循環量と熱水力
学的安定余裕の増加を示す模式図。 第4図は従来の沸騰水型原子炉の炉内構造物の配置を示
す概略図、第5図は第4図の気水分離器の概略断面図で
ある。 20・・・気水分離器   21・・・スタンドパイプ
22・・・ライザ     23・・・旋回羽根24・
・・旋回胴     25・・・排水口26・・・外筒
      27・・・環状流路28・・・蒸気排出口
   29・・・蒸気排出管代理人 弁理士  則 近
 憲 佑 1q            :ニ  イ表  ダl\
  文第4図 第5図
FIG. 1 is a cross-sectional view of one embodiment of the present invention, FIG. 2 is a diagram showing the reduction rate of pressure loss, and FIG. 3 is a schematic diagram showing the increase in the amount of natural circulation and the thermo-hydraulic stability margin. FIG. 4 is a schematic diagram showing the arrangement of reactor internals of a conventional boiling water reactor, and FIG. 5 is a schematic sectional view of the steam-water separator shown in FIG. 4. 20... Steam water separator 21... Stand pipe 22... Riser 23... Swivel vane 24.
...Swivel body 25...Drain port 26...Outer cylinder 27...Annular flow path 28...Steam discharge port 29...Steam discharge pipe agent Patent attorney Noriyuki Chika 1q: Ni Table Dal\
Text Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)沸騰水型原子炉に用いる気水分離器において、ス
タンドパイプとこのスタンドパイプに接続されるライザ
および旋回胴の直径をほゞ同一とするとともに前記スタ
ンドパイプから流入する気水混合流に旋回力を与えるた
めの旋回羽根をスワール型としたことを特徴とする沸騰
水型原子炉用気水分離器。
(1) In a steam separator used in a boiling water reactor, the diameters of the standpipe, the riser and the rotating barrel connected to the standpipe are approximately the same, and the diameter of the steam and water mixture flowing from the standpipe is A steam-water separator for a boiling water nuclear reactor, characterized by a swirl-type swirling vane for applying swirling force.
JP60203317A 1985-09-17 1985-09-17 Steam separator for boiling water type reactor Pending JPS6264989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203317A JPS6264989A (en) 1985-09-17 1985-09-17 Steam separator for boiling water type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203317A JPS6264989A (en) 1985-09-17 1985-09-17 Steam separator for boiling water type reactor

Publications (1)

Publication Number Publication Date
JPS6264989A true JPS6264989A (en) 1987-03-24

Family

ID=16472019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203317A Pending JPS6264989A (en) 1985-09-17 1985-09-17 Steam separator for boiling water type reactor

Country Status (1)

Country Link
JP (1) JPS6264989A (en)

Similar Documents

Publication Publication Date Title
US4629481A (en) Low pressure drop modular centrifugal moisture separator
US4322233A (en) Apparatus for separating entrained liquid from a liquid gas mixture
US5130082A (en) Low pressure drop gas-liquid separator
US5100609A (en) Enhancing load-following and/or spectral shift capability in single-sparger natural circulation boiling water reactors
US3329130A (en) Pressure recovery axial flow vapor-liquid separator
US3253999A (en) Boiling water nuclear reactor with improved vapor separating arrangement
US4947485A (en) Method for obtaining load-following capability in natural circulation, free-surface separation boiling water reactors
US5303275A (en) Forced-circulation reactor with fluidic-diode-enhanced natural circulation
US5885333A (en) Low pressure drop steam separators
EP0493900A1 (en) Steam dryer
US5321731A (en) Modular steam separator with integrated dryer
JPS6264989A (en) Steam separator for boiling water type reactor
JP3971146B2 (en) Steam separator and boiling water reactor
CN113996123A (en) Separation blade and catch water
JPS5815798A (en) Jet pump
JP3762598B2 (en) Steam separator and boiling water reactor
EP0859368A1 (en) Low pressure drop steam separators
JPS6235291A (en) Gas-water separator for nuclear reactor
JP3272142B2 (en) Steam separator and steam separator
JP3964587B2 (en) Reactor steam separator
JP2012117857A (en) Steam separator
GB946909A (en) Improvements in improved axial flow vapor-liquid separator
JP2003307584A (en) Steam separation device
JPH05346483A (en) Steam water separator for bwr
JP2013003083A (en) Steam separator and boiling-water reactor with the same