JPS6264948A - Method for detailed flaw detection of welded part - Google Patents

Method for detailed flaw detection of welded part

Info

Publication number
JPS6264948A
JPS6264948A JP60204971A JP20497185A JPS6264948A JP S6264948 A JPS6264948 A JP S6264948A JP 60204971 A JP60204971 A JP 60204971A JP 20497185 A JP20497185 A JP 20497185A JP S6264948 A JPS6264948 A JP S6264948A
Authority
JP
Japan
Prior art keywords
flaw
flaw detection
defect
echo
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60204971A
Other languages
Japanese (ja)
Inventor
Shinji Asanuma
浅沼 真二
Tetsuya Hidaka
徹也 日高
Koji Kawamura
河村 皓二
Kiyoharu Hiramoto
平本 清春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60204971A priority Critical patent/JPS6264948A/en
Publication of JPS6264948A publication Critical patent/JPS6264948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable detailed inspection and the judgement of a flaw by certainly detecting only a harmful flaw, by arranging probes each having a narrow beam width in a mesh pattern so that the passing loci of the ultrasonic beams from the probes mutually have proper superposed flanges. CONSTITUTION:A preset area to be inspected, the positions of probes known in relative positional relation, a flaw position classified by a flaw kind, an echo height and a flaw length are preliminarily stored in the judge matrix of a signal processor 26' and, at first, an echo position 21 and and echo height 22 are obtained from a flaw detection signal 20 in a flaw detection apparatus 20'. The position 21 is corrected by the seam monitor signal 23 from a seam monitor apparatus 23'. A length measuring device 17' takes synchronous relation to the apparatus 20' and performs the measurement of a flaw length 18 and a position 19 in a longitudinal direction due to a flaw echo in a real time. The matrix 26 having taken in these signals compares the kind, size and acceptance of a flaw with preset information to evaluate the same and subsequently performs the delivery of a spray marker 24 to a material to be inspected and that of a signal to the automatic input to an on-line computer system 25.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶接部、の超音波探傷において精密な検査、
精密な欠陥判定を可能とする溶接部の探傷方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to precise inspection in ultrasonic flaw detection of welded parts.
The present invention relates to a method for detecting welds that enables precise defect determination.

〔従来の技術〕[Conventional technology]

従来、溶接部の超音波探傷による検査においては、超音
波ビーム幅の広い汎用的プローブを使用し、ビーム幅の
広さでもって必要探傷範囲をカバーし、検査していた。
Conventionally, when inspecting welds using ultrasonic flaw detection, a general-purpose probe with a wide ultrasonic beam width has been used to cover the necessary flaw detection range with the wide beam width.

第6図、第7図は従来法における説明図であるが、以下
にパイプの上側からの水ギヤツブ式自動斜角深傷装置を
例にとって説明する。
Although FIGS. 6 and 7 are explanatory views of the conventional method, an explanation will be given below using a water gear-type automatic bevel deep wound apparatus as an example in which the method is applied from above the pipe.

第6図は、被検材の溶接部内面側を探傷している状況を
示したものである。1は被検材、2は探傷対象である溶
接部、3はプローブ、4はプローブホルダー、5は超音
波ビームの通過軌跡で、黒く塗りつぶされている範囲で
は、欠陥エコーの位置評価のために超音波ビームのビー
ム路程だけという一元的な探傷信号しか得られないため
、これが図の様に広いということは、精密な検査、精密
な欠陥判定が困難であることを意味する。6は探傷有効
範囲を決定する電気的ゲートである。
FIG. 6 shows a situation in which flaws are being detected on the inner surface of a welded part of a material to be inspected. 1 is the test material, 2 is the welded part to be detected, 3 is the probe, 4 is the probe holder, and 5 is the trajectory of the ultrasonic beam.The blacked out area is used for position evaluation of defect echoes. Since only a unified flaw detection signal can be obtained from the beam path of the ultrasonic beam, the fact that it is wide as shown in the figure means that precise inspection and accurate defect determination are difficult. 6 is an electrical gate that determines the effective flaw detection range.

第7図は、従来法での探傷状況を超音波深傷装置のCR
T画面上でみた場合の図で、7は送信パルス、8は検出
し、認識できた欠陥エコーである。
Figure 7 shows the conventional method of flaw detection using an ultrasonic deep flaw device.
In the figure when viewed on the T screen, 7 is the transmitted pulse and 8 is the detected and recognized defective echo.

9は検出はしたが、欠陥としては認識されないノイズエ
コー、10は探傷有効範囲を決定する電気的なゲート、
11はリジェクトレベルで、このリジェクトレベルの高
さを超えたエコー高さで、ゲ−l−10の内側に入った
エコーを欠陥エコーと認識させるものである。
9 is a noise echo that has been detected but is not recognized as a defect; 10 is an electrical gate that determines the effective range of flaw detection;
Reference numeral 11 is a reject level, and an echo having a height exceeding this reject level and entering inside the gate 10 is recognized as a defective echo.

又、近年公開されている特許、実用新案をみてみると、
検査部分に対してタンデムに配置した斜角探触子による
探傷方法(特開昭56−67750)では、見掛上高感
度になるだけであり、信号処理装置等による欠陥評+i
1[1tJst能がないために最終評価ができず、マニ
ュアルUSTによる再探傷が必要となる。開口合成法を
用いる探傷装置(特開昭58−156853)では、欠
陥評価機能がないために最終評価ができないのみならず
、−回反射深傷、また、被検材が曲率を有している場合
等に有効でない。被検材を多方向から異なったビーム方
向で探傷するための複数の探触子を有する探傷装置(実
開58−145556)でもやはり、欠陥評価機能がな
いために最終評価ができない。
Also, if we look at the patents and utility models that have been published in recent years,
The flaw detection method (Japanese Patent Laid-Open No. 56-67750) using bevel probes arranged in tandem with respect to the inspection part only has an apparent high sensitivity, and defect evaluation using signal processing equipment, etc.
1 [1tJst capability, the final evaluation cannot be performed, and re-detection using manual UST is required. Flaw detection equipment that uses the aperture synthesis method (Japanese Unexamined Patent Publication No. 156853/1982) not only cannot perform final evaluation because it does not have a defect evaluation function, but also has deep flaws due to repeated reflections and curvature of the material to be inspected. It is not effective in some cases. Even with a flaw detection device (Japanese Utility Model Application Publication No. 58-145556) which has a plurality of probes for flaw detection of the test material from multiple directions with different beam directions, final evaluation cannot be performed because it does not have a defect evaluation function.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の溶接欠陥の超音波探傷方法には、以下に示す欠点
がある。すなわち、少ないプローブ数で検査できるメリ
ットがある反面、ビームが広いことによって複数の欠陥
を同時に検出してしまい、有害な大欠陥と無害な微小欠
陥との識別ができなかったり、ビードエコー、水エコー
等のノイズエコー(検出しようとしている欠陥エコー以
外のエコー)を検出したりすることによって精密な検査
、精密な欠陥判定ができない欠点があった。従って、溶
接部の超音波探傷の効率化を図るために自動探傷装置を
導入してもオーバーマークが著しいため、その消し込み
のためにマニュアルUSTをかけ、自動探傷した後の欠
陥マーク部を再度探傷して精密な検査、精密な欠陥判定
をするという2度手間を強いられて来た。具体例では、
第7図のゲートlOの端部が、倣い機能を付加しても完
全には抑制できないために発生する被検材の物理的挙動
によってふらつき、該ゲート端の近傍にあるノイズエコ
ー9を欠陥エコーと誤認してしまうことである。
Conventional ultrasonic flaw detection methods for welding defects have the following drawbacks. In other words, although it has the advantage of being able to inspect with a small number of probes, the wide beam makes it possible to detect multiple defects at the same time, making it impossible to distinguish between harmful large defects and harmless microscopic defects, as well as bead echoes, water echoes, etc. This method has the disadvantage that precise inspection and precise defect determination cannot be performed by detecting noise echoes (echoes other than the defect echo to be detected). Therefore, even if automatic flaw detection equipment is introduced to improve the efficiency of ultrasonic flaw detection of welded parts, there are significant overmarks, so manual UST is applied to erase the overmarks, and the defect marks after automatic flaw detection are re-examined. I was forced to go through the trouble twice: flaw detection, precise inspection, and precise defect determination. In a specific example,
The edge of the gate 1O in FIG. 7 fluctuates due to the physical behavior of the test material that occurs because it cannot be completely suppressed even with the addition of a copying function, causing the noise echo 9 near the gate edge to become a defective echo. This is a misunderstanding.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の欠点を改善したもので、複数の欠陥が
隣接して存在したり、ノイズエコーがあったりした場合
でもそれらを識別し、精密な検査、1?を密な欠陥判定
を可能とすることを目的とする。
The present invention improves the above-mentioned drawbacks, and allows for accurate inspection by identifying multiple defects even when they are adjacent to each other or when there are noise echoes. The purpose is to enable precise defect determination.

〔問題点を解決するための手段〕[Means for solving problems]

従来から超音波探傷は怪しきものを全て罰するという一
次判定方式を採用しており、最終的にはX線透過検査で
判定し、又、X線透過検査で判定できないもの(合格で
あるもの)については、多くの時間と労力を必要とする
ものの精密マニュアルUSTにかければ済むとして来た
。従って、超音波探傷装置としては単純な機能が一般的
であり、例えば超音波ビーム幅ができるだけ広いプロー
ブを使用してプローブ数を減らし、また、欠陥エコーの
評価も超音波ビームの拡がりを敢えて無視して主ビーム
だけのビーム路程とエコー高さを監視する評価機能であ
るために単純な信号処理系でよい等、簡素な構成で広く
普及して来た。これらのことが、超音波探傷に高度な判
定を可能とする楕密探(1!j機能を持たせることの実
現を、その実現に必要な技術的進歩を遅滞せしめる大き
な原因となり、現在に至っているものである。
Conventionally, ultrasonic flaw detection has adopted a primary judgment method in which all suspicious items are punished, and the final judgment is made by X-ray transmission inspection, and those that cannot be determined by X-ray transmission inspection (those that pass) are judged. Although it requires a lot of time and effort, it was said that it could be done by using a precision manual UST. Therefore, ultrasonic flaw detection equipment generally has simple functions, such as reducing the number of probes by using probes with as wide an ultrasonic beam width as possible, and intentionally ignoring the spread of the ultrasonic beam when evaluating defect echoes. Since it is an evaluation function that monitors the beam path and echo height of only the main beam, it has become widely popular due to its simple configuration, such as requiring a simple signal processing system. These factors have been a major cause of delaying the technological progress necessary to achieve the elliptical detection (1! It is something.

以下に本発明法について、詳細に説明する。The method of the present invention will be explained in detail below.

探傷方法は、水浸法、水ギヤツプ法等いずれでもよく、
又、探傷方向(上向き、下向き)も問わない。1個のプ
ローブで本発明を満足させるプローブがあればそれを使
用することでよいが、一般には本発明を満足させるため
には複数のプローブが必要となる。以下に便宜上、複数
のプローブを通用する場合を対象に説明する。充分にビ
ーム幅の狭いプローブをその超音波ビームの通過軌跡が
互いに適切な重なり代を持ちつつ精の目の如くになる様
にプローブを配置する。第1図、第2図は、本発明に係
る説明図である。
The flaw detection method may be water immersion method, water gap method, etc.
Also, the direction of flaw detection (upward or downward) does not matter. If there is one probe that satisfies the present invention, that probe may be used, but generally, a plurality of probes are required to satisfy the present invention. For convenience, the case where a plurality of probes are used will be described below. Probes with sufficiently narrow beam widths are arranged so that the passing trajectories of their ultrasonic beams have an appropriate amount of overlap with each other and become like a fine line. FIG. 1 and FIG. 2 are explanatory diagrams according to the present invention.

第1図は超音波ビームのビーム幅の狭い複数のプローブ
によって網の目の如く超音波ビームが通遇してゆく軌跡
を示したもので、12は被検材、13はプローブ、14
はプローブホルダー、15は超音波ビームの通過した軌
跡、16は探傷有効範囲を決定する電気的ゲートである
Figure 1 shows the trajectory of the ultrasonic beam as it travels like a net through multiple probes with narrow beam widths, where 12 is the material to be inspected, 13 is the probe, and 14 is the trajectory of the ultrasonic beam.
1 is a probe holder, 15 is a trajectory of the ultrasonic beam, and 16 is an electric gate that determines the effective flaw detection range.

第2図は、信号処理装置の評価機能における信号の流れ
を示したもので、17は欠陥長さの測長信号、18は欠
陥長さ、19は長手方向位置、20は探傷信号、21は
エコー位置、22はエコー高さ、23はシーム倣い信号
、24は被検材部のスプレーマーキング、25はオンラ
インコンピューターシステムへの自動インプット信号、
26は判定マトリクスである。第1表には本発明におけ
る判定マトリクスの例を示した。
Fig. 2 shows the signal flow in the evaluation function of the signal processing device, where 17 is a measurement signal of the defect length, 18 is the defect length, 19 is the longitudinal position, 20 is the flaw detection signal, and 21 is the defect length measurement signal. 22 is the echo height, 23 is the seam tracing signal, 24 is the spray marking of the part to be inspected, 25 is the automatic input signal to the online computer system,
26 is a determination matrix. Table 1 shows an example of the determination matrix in the present invention.

本発明によれば、従来法で問題となったノイズエコーを
実欠陥エコーと識別することが可能となる。すなわち、
プローブの超音波ビーム幅は狭ければ狭いほど、より精
密な検査、より精密な欠陥判定が可能となるが、狭くな
るにつれて必要なプローブ数がそれに比例して増大して
くるため、世実的には2〜3龍が最適である。プローブ
の選定の際には、超音波ビームの有効ビーム幅をチェッ
クすると共に有効ビーム幅の平行部長さく超音波ビーム
の狭いビーム部が平行にビーム路程上で続いている長さ
)をチェックしておく必要がある。
According to the present invention, it is possible to distinguish noise echoes, which were problematic in the conventional method, from real defective echoes. That is,
The narrower the ultrasonic beam width of the probe, the more precise inspection and more precise defect determination become possible. 2 to 3 dragons is optimal for this. When selecting a probe, check the effective beam width of the ultrasound beam, as well as the parallel length of the effective beam width (the length of the narrow beam section of the ultrasound beam continuing in parallel along the beam path). It is necessary to keep it.

プローブの数は、被検材の板厚、探傷範囲、精密な検査
、及び精密な欠陥判定における精密さの程度、そしてプ
ローブの超音波ビーム幅の選定結果から決定されるが、
目安として検査対象の板厚が50mで溶接部全域を探傷
範囲とする場合、プローブ数は5Qch程度が適当であ
る。プローブホルダー14は、採用した探傷方式に従っ
て適宜選定する。
The number of probes is determined based on the thickness of the material to be inspected, the flaw detection range, the degree of precision in detailed inspection and defect determination, and the selection results of the ultrasonic beam width of the probes.
As a guide, if the thickness of the plate to be inspected is 50 m and the entire welded area is to be detected, the appropriate number of probes is about 5 Qch. The probe holder 14 is appropriately selected according to the adopted flaw detection method.

信号処理装置は、プローブから受取った多数の探傷信号
を使用して最終的に検査、欠陥判定を精密に行なう装置
である。信号処理装置に持たせる評価機能としては、判
定マトリクス方式が最適である。すなわち、ある欠陥が
、配置した全てのプローブによって探傷された時点で、
その欠陥のそれぞれのプローブにおける欠陥位置評価、
欠陥エコー高さ評価、及び欠陥長さ評価を判定マトリク
ス上で実行し、あらかじめ記憶させておいた実欠陥パタ
ーンとの対応をとるものである。また、本発明法だけを
導入して探傷する場合は、超音波ビームのデッドゾーン
が生じない様にプローブを配置し、それに見合った多数
のプローブを準備する必要があるが、従来法と併用した
り、溶接部を局所的に精密な検査、精密な欠陥判定をし
たい場合等はこの限りでない。
The signal processing device is a device that uses a large number of flaw detection signals received from the probe to perform final inspection and defect determination precisely. A decision matrix method is optimal as an evaluation function to be provided in a signal processing device. In other words, when a certain defect is detected by all the placed probes,
defect position evaluation in each probe of that defect;
Defect echo height evaluation and defect length evaluation are performed on a determination matrix, and correspondence is established with an actual defect pattern stored in advance. In addition, when introducing only the method of the present invention for flaw detection, it is necessary to arrange the probes so that no dead zone of the ultrasonic beam occurs and prepare a corresponding number of probes, but it is necessary to prepare a corresponding number of probes. This does not apply to cases where it is desired to perform a localized precise inspection of a welded part or a precise defect determination.

第   1    表 次に欠陥判定マトリクス26についてであるが、第9図
に主要な溶接欠陥を溶接部の断面で示す。
Table 1 Next, regarding the defect determination matrix 26, major welding defects are shown in a cross section of a welded part in FIG.

第9図において、28は溶接部、29〜38は溶接部と
溶接部近傍に発生する溶接欠陥である。これらのうち2
9は内面ビード割れ、30は外面ビード割れ、31は外
面右トウ割れ、32は内面右トウ割れ、33は内面左ト
ウ割れ、34は外面左トウ割れ、35は右側介在物、3
6は左側介在物、37はブローホール、38はスラグ捲
込みの各欠陥である。これらの欠陥は、それぞれ特徴を
持っており、発生する位置と方向及び形状が決っている
ので複数のプローブで異なった位置からビームを通過さ
せることによって、それぞれの欠陥の特徴を的確にとら
え、その欠陥が有害なものか、無害なものか判定できる
In FIG. 9, 28 is a welded portion, and 29 to 38 are welded defects occurring in the welded portion and in the vicinity of the welded portion. 2 of these
9 is an inner bead crack, 30 is an outer bead crack, 31 is an outer right toe crack, 32 is an inner right tow crack, 33 is an inner left tow crack, 34 is an outer left tow crack, 35 is a right inclusion, 3
6 is a left-side inclusion, 37 is a blowhole, and 38 is a slag entrainment defect. Each of these defects has its own characteristics, and the position, direction, and shape where they occur are determined. By passing the beam from different positions with multiple probes, we can accurately capture the characteristics of each defect and identify it. Determine whether a defect is harmful or harmless.

第3図に本発明法における欠陥の判定フローを示す。第
1表は欠陥の種類とそのエコーについて示した信号処理
装置内部でmlする判定マトリクスの例であるが、第1
表においてエコー位置は欠陥エコーのビーム路程から算
出し決定したものであり、エコー高さ単位はdBで示す
。まず第3図において、大別できるものから欠陥A(割
れ、アンダーカット)かA以外かをプローブNo、 1
 。
FIG. 3 shows the defect determination flow in the method of the present invention. Table 1 is an example of a judgment matrix for ml inside the signal processing device, which shows the types of defects and their echoes.
In the table, the echo position is calculated and determined from the beam path of the defective echo, and the echo height unit is expressed in dB. First, in Fig. 3, determine whether the defect is A (cracks, undercuts) or something other than defect A (cracks, undercuts) using probe No. 1.
.

No、2・・・・・・によりそのエコー高さ及びエコー
位置から判別し、A以外であれば、それが欠陥B(ブロ
ーホール、スラグl奄込み)かあるいは第1表にない欠
陥C(ラミネーション、介在物)かどうかを判別する。
No., 2... is determined from the echo height and echo position, and if it is other than A, it is defect B (blowhole, slag inclusion) or defect C (not listed in Table 1). laminations, inclusions).

更に欠陥Bであればそれが球状か伸延状であるかによっ
てブローホールかスラグR,込みかを識別し、最終的に
有害な欠陥かどうかを判断する。
Furthermore, if the defect is B, it is determined whether it is a blowhole or a slag R, depending on whether it is spherical or elongated, and finally it is determined whether it is a harmful defect.

〔発明の効果〕〔Effect of the invention〕

第4図及び第5図は、本発明による効果を定量的に示し
たものである。これらの図においてイは従来法の場合、
口は本発明法の場合のグラフであるが、従来の自動超音
波探傷装置では、欠陥マーク本数率が平均20%、欠陥
オーバーマーク率が平均85%であるが、本発明法を導
入することにより、それぞれ平均3%、5%という様に
激減させ、精密な検査、精密な欠陥判定が可能となる。
FIGS. 4 and 5 quantitatively show the effects of the present invention. In these figures, A is for the conventional method;
The graph shown above is for the method of the present invention, but with conventional automatic ultrasonic flaw detection equipment, the average number of defect marks is 20% and the average defect overmark rate is 85%, but by introducing the method of the present invention. As a result, they can be drastically reduced to an average of 3% and 5%, respectively, allowing precise inspection and accurate defect determination.

ただし、オーバーマーク率は、 である。However, the overmark rate is It is.

第8図は、本発明による探傷状況を超音波探傷装置のC
R7画面上で信号処理装置による欠陥評価機能を通して
見た場合の図である。7は送信パルス、8は検出し、認
識できたエコーで、欠陥評価機能を通しているために欠
陥エコー以外は表示されない。10は探傷有効範囲を決
定する電気的なゲート、11はリジェクトレベルである
Figure 8 shows the flaw detection status of the ultrasonic flaw detection device according to the present invention.
It is a diagram when viewed through the defect evaluation function by the signal processing device on the R7 screen. 7 is a transmitted pulse, 8 is an echo that has been detected and recognized, and since it is passed through a defect evaluation function, only defective echoes are displayed. 10 is an electrical gate that determines the effective range of flaw detection, and 11 is a reject level.

以上に説明した様に、本発明によれば有害な欠陥のみを
確実に検出することができる。なお本発明は斜角探傷に
限定されるものではなく、又、応用できる溶接分野とし
ても完全滲込みの溶接部だけでなく、超音波ビームのビ
ーム幅をさらに狭いものにし、プローブ数を増大させて
検査、判定の精密さの程度を大きくすることによって不
完全溶造みの溶接部にも適用可能である。
As explained above, according to the present invention, only harmful defects can be reliably detected. Note that the present invention is not limited to angle flaw detection, and can also be applied to the welding field, not only for completely seepage welds, but also for narrowing the beam width of the ultrasonic beam and increasing the number of probes. By increasing the degree of precision of inspection and judgment, it can also be applied to incompletely welded parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水ギヤツブ式深傷における本発明の導入による
探傷状況図、第2図は、本発明によって評価機能を持た
せる信号処理装置のブロック線図、第3図は本発明法に
よる溶接欠陥の判定フローチャート、第4図は従来法と
本発明法の欠陥マーク本数率の推移グラフ、第5図は従
来法と本発明法の欠陥オーバーマーク率の推移グラフ、
第6図は従来法における水ギヤツプ式探傷状況図、第7
図は従来法における探傷状況のCRT画面の説明図、第
8図は本発明法におけ探傷状況のCRT画面の説明図、
第9図はビード断面内の溶接欠陥を示す説明図である。 1・・・被検材、 2・・・溶接部、 3・・・プロー
ブ、4・・・プローブホルダー、 5・・・超音波ビー
ムの通過軌跡、 6・・・探傷有効範囲を決定する電気
的ゲート、 7・・・送信パルス、 8・・・欠陥エコ
ー、9・・・ノイズエコー、  10・・・探傷有効範
囲を決定する電気的ゲート、  11・・・リジェクト
レベル、12・・・被検材、 13・・・被プローブ、
 14・・・プローブホルダー、  15・・・超音波
ビームの通過軌跡、 16・・・探傷有効範囲を決定す
る電気的ゲート、 17・・・欠陥長さの測長信号、 
18・・・欠陥長さ、  19・・・長手方向位置、 
20・・・探傷信号、21・・・エコー位122・・・
エコー高す、23・・・シーム倣い信号、 24・・・
被検材へのスプレーマーキング、  25・・・オンラ
インコンピューターシステムへの自動インプ・ノド、 
 26・・・判定マトリクス、 29〜38・・・溶接
欠陥。 出 願 人  新日本製鐵株式会社 代理人弁理士  青 柳    稔 第1図 第2図 同期→ 第4図 第5図 第6図 第7図 第8図 第9図 手続補正書(自発) L事件の表示 昭和60年特許願第204971、 発明の名称 溶接部の精密探傷方法 1補正をする者 事件との関係   特許出願人 住所  東京都千代田区大手町二丁目6番3号名称 (
665)新日本製鐵株式会社 代表者  武  1)  豊 4、代理人 〒101 住所  東京都千代田区岩本町3丁目4番5号第−東ビ
ル氏 名  (7017)弁理士  青  柳    
;稔・−421゜ 8、補正の内容 ill明III第7頁5〜12行の「第2図〜である。 」を次のように補正する。 [第2図は、信号処理装置の評価機能における信号の流
れをブロック図で例示したもので、大きく分類して4つ
の機器構成によって信号の流れが得られる。信号処理装
置26′としての判定マトリクス26には、事前にブリ
セントした検査対象部位と相対的位置関係の既知な各プ
ローブ位置、欠Iv1種類別の欠陥位置、エコー高さ、
及び欠陥長さをあらかじめ覚え込ませておき、まず探傷
装置20’から探傷信号20としてエコー位置21とエ
コー高さ22を得る。エコー位置21は、シーム監視装
置23′からのシーム監視信号23によって補正されて
いる。測長袋r!t1 ?’ は電気的に探傷装置20
′と同期をとっており、欠陥エコーによる長手方向の欠
陥長さ18及び位置19の測長を探傷中リアルタイムに
行なうものである。以上の信号を全て連続的に取込んだ
判定マトリクス26は、当該欠陥の種類、大きさ、合否
を事前にプリセットされている欠陥情報と対比、評価し
た後に被検材24へのスプレーマーカー、及びオンライ
ンコンピューターシステム25への信号のひき渡しを行
なう、」 (2)同第12頁8行の「断する。」の後へ次の文を挿
入する。 「図中、LPは溶込み不足、Siはスラグ捲込み、BH
はブローホールの略称である。」 (3)図面第2図および第3図を別紙の通りに補正する
Fig. 1 is a diagram of the state of flaw detection by introducing the present invention in water gear type deep flaws, Fig. 2 is a block diagram of a signal processing device equipped with an evaluation function according to the present invention, and Fig. 3 is a weld defect detection state by the method of the present invention. Fig. 4 is a graph of the change in defective mark number rate between the conventional method and the present invention, Fig. 5 is a graph of change in the defective overmark rate between the conventional method and the present invention.
Figure 6 is a water gap type flaw detection status diagram using the conventional method.
The figure is an explanatory diagram of a CRT screen showing the flaw detection status in the conventional method, and Figure 8 is an explanatory diagram of the CRT screen showing the flaw detection status in the method of the present invention.
FIG. 9 is an explanatory diagram showing welding defects within the bead cross section. DESCRIPTION OF SYMBOLS 1... Test material, 2... Welded part, 3... Probe, 4... Probe holder, 5... Trajectory of ultrasonic beam, 6... Electricity that determines the effective range of flaw detection Target gate, 7... Transmission pulse, 8... Defect echo, 9... Noise echo, 10... Electrical gate that determines the effective flaw detection range, 11... Reject level, 12... Target Inspection material, 13... probed material,
14... Probe holder, 15... Passage locus of ultrasonic beam, 16... Electrical gate that determines the effective flaw detection range, 17... Length measurement signal of defect length,
18... Defect length, 19... Longitudinal position,
20...Flaw detection signal, 21...Echo position 122...
Echo height, 23... Seam tracing signal, 24...
Spray marking on the material to be inspected, 25... Automatic impingement/nodding to the online computer system,
26... Judgment matrix, 29-38... Welding defect. Applicant Nippon Steel Corporation Patent Attorney Minoru Aoyagi Figure 1 Figure 2 Same period → Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Procedural amendment (voluntary) L case Indication of 1985 Patent Application No. 204971, Name of the invention Precision flaw detection method for welded parts 1 Relationship to the case of the person making the amendment Patent applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (
665) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent 101 Address No. 4-5 Iwamoto-cho 3-chome, Chiyoda-ku, Tokyo - Higashi Building Name (7017) Patent attorney Aoyagi
; Minoru・-421°8, Contents of the Amendment The phrase "Figure 2..." on page 7, lines 5-12 of Illustrated III is corrected as follows. [FIG. 2 is a block diagram illustrating the signal flow in the evaluation function of the signal processing device, and the signal flow can be roughly classified into four types of equipment configurations. The determination matrix 26 as the signal processing device 26' includes each probe position whose relative positional relationship is known with respect to the inspection target site that has been briskened in advance, the defect position for each type of defect Iv1, the echo height,
and defect length are memorized in advance, and first, an echo position 21 and an echo height 22 are obtained as a flaw detection signal 20 from the flaw detection device 20'. The echo position 21 is corrected by a seam monitoring signal 23 from a seam monitoring device 23'. Length measurement bag r! t1? ' is an electrical flaw detection device 20
', and measures the longitudinal defect length 18 and position 19 using defect echoes in real time during flaw detection. The determination matrix 26 that continuously captures all of the above signals compares and evaluates the type, size, and pass/fail of the defect with preset defect information, and then displays the spray marker on the test material 24, and (2) Insert the following sentence after "Disconnect." on page 12, line 8. "In the figure, LP has insufficient penetration, Si has slag rolled in, and BH
is an abbreviation for blowhole. (3) Figures 2 and 3 of the drawings are corrected as shown in the attached sheet.

Claims (1)

【特許請求の範囲】[Claims] 鋼材の溶接部の超音波探傷において、被検材の探傷部位
に対し、超音波ビームの、互いの入射位置が判る様に、
かつ互いに適当な重なり代を持って網目の如く通過軌跡
ができる様に、ビーム幅の狭い複数個の超音波ビームを
入射させて探傷し、入射させた超音波ビームの数に匹敵
する数量の得られた探傷信号を、溶接部に発生する、又
は発生し得る欠陥を探傷して得た欠陥情報をあらかじめ
記憶させておいて欠陥評価機能を持たせた信号処理装置
に取込み、検出したい欠陥エコーを該欠陥エコー以外の
エコーと識別することを特徴とする溶接部の精密探傷方
法。
In ultrasonic flaw detection of welded parts of steel materials, in order to know the mutual incident positions of the ultrasonic beams with respect to the flaw detection part of the test material,
In addition, flaw detection is performed by injecting multiple ultrasonic beams with narrow beam widths so that a passing locus is created like a mesh with an appropriate amount of overlap between each other, and the number of obtained ultrasonic beams is equivalent to the number of incident ultrasonic beams. The flaw detection signal obtained by detecting flaws that occur or may occur in the weld is input into a signal processing device that is equipped with a defect evaluation function and stores in advance the defect information obtained by detecting flaws that occur or are likely to occur in the weld. A precision flaw detection method for a welded part characterized by distinguishing echoes from echoes other than the defective echoes.
JP60204971A 1985-09-17 1985-09-17 Method for detailed flaw detection of welded part Pending JPS6264948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60204971A JPS6264948A (en) 1985-09-17 1985-09-17 Method for detailed flaw detection of welded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60204971A JPS6264948A (en) 1985-09-17 1985-09-17 Method for detailed flaw detection of welded part

Publications (1)

Publication Number Publication Date
JPS6264948A true JPS6264948A (en) 1987-03-24

Family

ID=16499327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60204971A Pending JPS6264948A (en) 1985-09-17 1985-09-17 Method for detailed flaw detection of welded part

Country Status (1)

Country Link
JP (1) JPS6264948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145200A1 (en) * 2006-06-13 2007-12-21 Sumitomo Metal Industries, Ltd. Ultrasonic flaw detecting method, manufacturing method for welded steel pipe, and ultrasonic flaw detecting apparatus
JP2009198249A (en) * 2008-02-20 2009-09-03 Toshiba Corp Ultrasonic inspection data evaluation device and ultrasonic inspection data evaluation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145200A1 (en) * 2006-06-13 2007-12-21 Sumitomo Metal Industries, Ltd. Ultrasonic flaw detecting method, manufacturing method for welded steel pipe, and ultrasonic flaw detecting apparatus
JPWO2007145200A1 (en) * 2006-06-13 2009-10-29 住友金属工業株式会社 Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
JP4816731B2 (en) * 2006-06-13 2011-11-16 住友金属工業株式会社 Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
JP2009198249A (en) * 2008-02-20 2009-09-03 Toshiba Corp Ultrasonic inspection data evaluation device and ultrasonic inspection data evaluation method

Similar Documents

Publication Publication Date Title
CA1270940A (en) Method for classification of point and elongated single defects in workpieces by means of ultrasonics
CN106198740A (en) A kind of weld joint automatized phased array ultrasonic detecting method of Nuclear power plant main pipeline
JPH0219424B2 (en)
JPH059744B2 (en)
CN117628416A (en) Corrosion sectional detection positioning method in oil transportation process pipeline
CN104713949B (en) A kind of ultrasonic detection method for reinforcing bar full penetration weld
US20210312604A1 (en) Improved characterization and classification of spot welds by ultrasonic diagostic techniques
JPS6264948A (en) Method for detailed flaw detection of welded part
Zippel et al. Crack measurement in steel plates using TOFD method
JP2008164396A (en) Flaw detection method and flaw detector used therefor
CN201444148U (en) Inside burr automatic monitoring device in flaw detecting system
JP3557553B2 (en) Ultrasonic testing method for welded joints
JP3916603B2 (en) Ultrasonic oblique angle flaw detection method and apparatus
JPS60205356A (en) Ultrasonic flaw detecting method of steel tube weld zone
JPH05223788A (en) Method for diagnosing soundness of weld on sheet
JPH11248638A (en) Automatic detection method for surface of press-molded product
JPH07167840A (en) Flaw detection method of inclination angle of axle
Morgan et al. The use of automated ultrasonic testing (AUT) in pipeline construction
Ginzel et al. CIVA Modelling Module for Zonal Discrimination Method Part 1-Calibration Block
Krautkrämer et al. Welded joints
Bredif et al. PHASED‐ARRAY METHOD FOR THE UT‐INSPECTION OF FRENCH RAIL REPAIRS
Inspection Repair
JPH08248011A (en) Oblique ultrasonic inspection system
JP3533506B2 (en) Ultrasonic testing of boiler pipe butt welds
Chen et al. Assessing Internal Pitting Corrosion With Encoded Ultrasonic Scanning