JPS6264822A - Process and apparatus for producing polyester - Google Patents

Process and apparatus for producing polyester

Info

Publication number
JPS6264822A
JPS6264822A JP20346585A JP20346585A JPS6264822A JP S6264822 A JPS6264822 A JP S6264822A JP 20346585 A JP20346585 A JP 20346585A JP 20346585 A JP20346585 A JP 20346585A JP S6264822 A JPS6264822 A JP S6264822A
Authority
JP
Japan
Prior art keywords
polyester
tank
wall
thin film
stirring blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20346585A
Other languages
Japanese (ja)
Other versions
JPH0364534B2 (en
Inventor
Shinichi Yamauchi
伸一 山内
Katsuji Sasaki
勝司 佐々木
Eiji Matsumura
松村 英二
Yasuhiko Saito
斉藤 安彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP20346585A priority Critical patent/JPS6264822A/en
Priority to US06/904,180 priority patent/US5053201A/en
Priority to EP86112684A priority patent/EP0215460B1/en
Priority to DE8686112684T priority patent/DE3676399D1/en
Priority to KR1019860007848A priority patent/KR870003146A/en
Publication of JPS6264822A publication Critical patent/JPS6264822A/en
Publication of JPH0364534B2 publication Critical patent/JPH0364534B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain a polyester of excellent quality inexpensively in good efficiency, by forming a thin film of a polyester-forming monomer fed from the upper wall of the tank on the wall by effecting a planetary motion of an impeller in a specified direction and at the same time allowing the thin film to flow down along the wall. CONSTITUTION:When a drive shaft 15 is rotated, upper and lower discs 21 and 22 are rotated, a planetary gear 31 coming into mesh with a main gear 20 goes around it and at the same time it is rotated in the same direction. Therefore, a columnar or cylindrical roller impeller 32 kept in the vicinity of the inside wall of the tank performs a planetary motion in which the direction of rotation and that of revolution coincide with each other along the inside wall. A feed solution comprising a polyester-forming monomer and/or its oligomer is sparged in the peripheral direction by means of the lower disc 22 which is rotating and is spread on the inside wall of the tank. During its revolution, the feed solution is sheared by the impeller 32 to refresh its surface and it is allowed to flow down along the inside wall. Therefore, the reaction can be performed very quickly.

Description

【発明の詳細な説明】 技術分野 本発明はポリエステル、特にポリエチレンテレフタレー
トの重合反応を薄膜重合反応装置を用いて連続的に重合
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for continuously polymerizing polyester, particularly polyethylene terephthalate, using a thin film polymerization reactor.

従来技術 ポリエステルの合成重合体はすぐれた物理的。Conventional technology Polyester synthetic polymers have excellent physical properties.

化学的性質を有するため、種々の用途に広く用いられて
いる。特にポリエチレンテレフタレートはすぐれた耐薬
品性、耐熱性、耐絶縁、高ガス遮断性、高強力、高弾性
率等を有し、衣料用、産業用のmN、フィルム、容器、
一般成型品等として大量に用いられている。従来スケー
ルメリットを生かし、安価に製造するために、バッチ式
重合方式から連続重合方式への切り替えが進められて来
たが、近年の多様化された用途に応するためには各用途
に適した性状の重合体を受部ずつ多品種生産することが
必要となって来た。この場合、連続重合方式の長所を生
かしかつ多様化された用途のポリマーを作成するため、
小容量型の薄膜重合反応機が用いられ葛。例えば特開昭
58−96627号公報に示されるように最終段の前段
の重合機からのプレポリマーを少なくとも2の並列に接
続された最終重合機にフィードし、汎用品は従来使用さ
れて来た横型反応機で大量に製造し、特殊銘柄は切替容
易な小型の薄膜重合反応機(槽)で製造する方法、ある
いは七ツマ−及び/又は低重合体までは大量にtJ造し
、これを重合工程では数種類のラインに並列にフィード
して各ラインを小型の薄膜重合装置(槽)を1基あるい
は数基直列に使用し、各ラインにて別々の特殊銘柄を製
造する方法等がある。
Due to its chemical properties, it is widely used for various purposes. In particular, polyethylene terephthalate has excellent chemical resistance, heat resistance, insulation resistance, high gas barrier properties, high strength, high elastic modulus, etc., and is used for clothing, industrial mN, films, containers, etc.
It is used in large quantities as general molded products. Traditionally, a switch from batch polymerization to continuous polymerization has been made in order to take advantage of economies of scale and produce at low cost.However, in order to respond to the diversification of applications in recent years, It has become necessary to produce a wide variety of polymers with different properties for each receiving part. In this case, in order to take advantage of the continuous polymerization method and create polymers for diversified uses,
A small capacity thin film polymerization reactor is used. For example, as shown in Japanese Patent Application Laid-Open No. 58-96627, the prepolymer from the polymerization machine in the previous stage of the final stage is fed to at least two final polymerization machines connected in parallel, and general-purpose products have conventionally been used. It is possible to produce large quantities using a horizontal reactor and produce special brands using a small thin film polymerization reactor (tank) that is easy to switch, or to produce large quantities of 7-mer and/or low polymers using tj and polymerize them. In the process, there is a method in which several types of lines are fed in parallel, each line is used with one or several small thin film polymerization devices (tanks) in series, and each line produces different special brands.

かかる薄膜重合反応装置に於いて、その反応方法として
は、 ■ 攪拌翼を設けて高速撹拌させる方法■ 濡れ壁を用
いて自然流下膜を作る方法あるいは ■ 細い多数の糸状体を作成させ揮発性副生物の蒸発表
面積を多くする方法等がある。これらのうち■の方法が
反応物を強制的に撹拌することにより、反応物表面を更
新して揮発性副生物の取り出しを容易にするため高い反
応速度が得られ最も望ましい。しかし本方法に於いては
、(A)中心軸を持ち、これに攪拌翼を設置する場合は
軸及び攪拌翼の取付は部がポリマーにより濡れずいわゆ
るデッドスペースとなり、飛散物が付着したものが長期
間のうちにゲル状異物となる欠点があった。
In such a thin film polymerization reaction apparatus, the reaction methods include: ■ A method of providing high-speed stirring using a stirring blade; ■ A method of creating a gravity-flowing film using a wet wall; There are methods to increase the evaporation surface area of living organisms. Among these methods, method (1) is the most desirable because it forcibly stirs the reactants, thereby renewing the surface of the reactants and facilitating the removal of volatile by-products, resulting in a high reaction rate. However, in this method, (A) has a central shaft, and when the stirring blades are installed on this shaft, the parts where the shaft and stirring blades are attached do not get wet due to the polymer, creating a so-called dead space, which prevents debris from adhering to the shaft. There was a drawback that gel-like foreign matter formed over a long period of time.

(B)また中心軸を有しないカゴ状の円筒に攪拌翼を設
置する場合、確かに中心軸、買付は部へのポリマー飛散
物の付着は少いが、中心軸を持たないため強度的には回
転数のアラブが出来ず、従って薄膜状ポリマーへの剪断
による表面積の更新が十分でなく、反応速度の大巾向上
が困ガであった。
(B) In addition, when installing stirring blades in a cage-shaped cylinder that does not have a central axis, it is true that there is less adhesion of polymer particles to the central axis, but since it does not have a central axis, the strength is However, it was not possible to adjust the rotational speed, and therefore the surface area of the thin film polymer was not sufficiently renewed by shearing, making it difficult to significantly improve the reaction rate.

(C)更にデッドスペースをなくすために特公昭48−
13240号公報で示されたような遊星運動をする機構
も考えられてはいるが、この装置に於ては (1)  壁−翼が接触しているため高速回転が出来ず
、反応速度の向上が十分でない。
(C) To further eliminate dead space
A mechanism with planetary motion as shown in Publication No. 13240 has been considered, but in this device (1) high speed rotation is not possible because the wall and blade are in contact, and it is difficult to improve the reaction speed. is not enough.

(n)  公転と自転の方向が逆で、周速は打ち消し合
う方向で、反応速度の向上が十分でない。
(n) The directions of revolution and rotation are opposite, and the circumferential speeds cancel each other out, so the reaction speed is not sufficiently improved.

(至) 駆動用歯車の数が多く、また反応槽内に壁−翼
を接触させるための球形継手を持つ等機構が複雑である 等の欠点を有していた。
(To) It had drawbacks such as a large number of drive gears and a complicated mechanism such as a spherical joint for bringing the walls and blades into contact within the reaction tank.

発明の 的 び構成 本発明は以−トの事情を背景として為されたものであり
、その目的とするところは、薄膜重合槽を用い分解を抑
えながら高い反応速度を得て、かつデッドスペースより
発生する異物をなくし品質良好なポリエステルを、溶融
重合法により効率よく安価に製造しようとするものであ
る。
OBJECT AND CONSTRUCTION OF THE INVENTION The present invention was made against the background of the following circumstances, and its purpose is to obtain a high reaction rate while suppressing decomposition using a thin film polymerization tank, and to reduce the dead space. The aim is to eliminate generated foreign substances and produce polyester of good quality efficiently and inexpensively by a melt polymerization method.

本発明者らは重合速度の速いポリエステルの溶融重合法
によりポリエステルを製造する方法を鋭意研究した結果
、本発明に到達した。
The present inventors have arrived at the present invention as a result of intensive research into a method for producing polyester by a polyester melt polymerization method that has a high polymerization rate.

すなわち、本発明は連続溶融重合法によってポリエステ
ルを製造するにあたり、実質的に円筒状の垂直槽壁に沿
って近接して回転する円柱もしくは円筒形のローラ状攪
拌翼を1以上有する薄膜式重合装置を用い、攪拌翼を槽
壁に沿って円周方向に自転方向と公転方向とが同一とな
るように遊星運動させて槽壁−に部から供給されるポリ
エステルの単量体および/またはその低重合体を槽壁面
に薄膜状に形成させつつ流下させることを特徴とするポ
リエステルの製造方法および実質的に円筒状の垂直槽壁
に沿って近接して回転する円柱もしくは円筒形のローラ
状攪拌翼を1以上有する薄膜式の重合槽を有するポリエ
ステルの製造装置であって、槽内上部に上から順に固定
された外接形の主歯車、上部ディスクおよび下部ディス
クが配され、これら主歯車等の中心部に主駆動軸が貫通
し、該主駆動軸は主歯車と遊合し、上、下ディスクとは
その少くとも1つと固定しており、上、下ディスクには
1以上の支軸が回転自在に垂設され、その上端部に主歯
車と噛合う遊星歯車が取付けられるとともに下部は前記
攪拌翼が設けられていることを特徴とするポリエステル
の製造装置である。
That is, the present invention provides a thin film polymerization apparatus for producing polyester by a continuous melt polymerization method, which has one or more cylindrical or cylindrical roller-like stirring blades that rotate closely along a substantially cylindrical vertical tank wall. The polyester monomer and/or its monomer, which is supplied from the section to the tank wall, is stirred by moving the stirring blades in a planetary motion in the circumferential direction along the tank wall so that the rotation direction and the revolution direction are the same. A polyester manufacturing method characterized by forming a polymer in a thin film form on a tank wall surface and flowing it down, and a cylindrical or cylindrical roller-shaped stirring blade that rotates closely along a substantially cylindrical vertical tank wall. This is a polyester manufacturing equipment having a thin film type polymerization tank having one or more of A main drive shaft passes through the section, the main drive shaft plays with the main gear, and is fixed to at least one of the upper and lower disks, and one or more spindles rotate on the upper and lower disks. This polyester manufacturing apparatus is freely installed vertically, has a planetary gear attached to its upper end that meshes with the main gear, and is provided with the stirring blades at its lower part.

本発明においては加熱、真空状態に保持された縦型の反
応器にポリエステルの11 量体および/またはその低
重合体を導入して連続的にポリエステルを重合する際に
、円柱もしくは円筒形のローラ状攪拌翼を槽壁に沿って
円周方向に自転方向と公転方向とを同一方向として遊星
運動させることによって槽壁および攪拌翼に薄膜を形成
させることを大きな特徴としているが、特に攪拌翼の槽
壁に対する自転と公転速度との合計の周速が0.3m/
秒以上となるようにし、槽壁と攪拌翼のクリアランスを
5繭以下、好ましくは0.5〜5mmと狭くすることに
よって高速で槽壁と攪拌翼の間のポリマーに効果的な剪
断を与え、反応速度を大巾に向−トさせると共に攪拌翼
が全面的に濡れデッドスペースの発生をほぼ完全に防止
することを可能にしている。
In the present invention, when polyester 11-mer and/or its low polymer is introduced into a vertical reactor heated and maintained in a vacuum state to continuously polymerize polyester, a cylindrical or cylindrical roller is used. The main feature is that a thin film is formed on the tank wall and the stirring blade by causing the shaped stirring blade to move planetarily along the tank wall in the circumferential direction with the rotation direction and the revolution direction in the same direction. The total circumferential speed of rotation and revolution speed with respect to the tank wall is 0.3 m/
applying effective shear to the polymer between the tank wall and the stirring blade at high speed by narrowing the clearance between the tank wall and the stirring blade to 5 mm or less, preferably 0.5 to 5 mm; The reaction rate is greatly increased, and the stirring blades wet the entire surface, making it possible to almost completely prevent the generation of dead spaces.

又、この場合攪拌翼にはポリマーの送り機構をもたせる
ためかき下げ型の溝構造を設けるのが好ましいが、きわ
めて溶融粘度の低いモノマー又は低重合物を反応させる
際にはかき上げ構造を有する溝にすることができる。
Additionally, in this case, it is preferable to provide the stirring blade with a groove structure of a scraping type in order to provide a polymer feeding mechanism, but when reacting monomers or low polymers with extremely low melt viscosity, grooves with a scraping type structure are preferably provided. It can be done.

ここで本発明において言うポリエステルは、テレフタル
酸又はテレフタル酸ジアルキルエステル(アルキル基の
炭素数は通常1〜4個)とエチレングリコールとをエス
テル化又はエステル交換及び重縮合反応せしめて得られ
るポリエチレンテレフタレートを主たる対象とするが、
テレフタル酸又はテレフタル酸ジアルキルエステルの一
部(通常20モル%以下)を例えばイソフタル酸、フタ
ル酸、ナフタリンジカルボン酸の如き芳香族ジカルボン
酸、アジピン酸、セパチン酸の如き脂肪族ジカルボン酸
の如きオキシカルボン酸等のアルキルエステルで置き換
えても良く、またエチレングリコールの一部又は全部を
例えばプロピレングリコール。テトラメチレングリコー
ルの如きHO(CI−12)n  (H(nは3〜10
)で表わされるグリコールで置き換えてもよい。
Here, the polyester referred to in the present invention is polyethylene terephthalate obtained by esterifying or transesterifying and polycondensing terephthalic acid or terephthalic acid dialkyl ester (alkyl group usually has 1 to 4 carbon atoms) and ethylene glycol. Although the main target is
A portion (usually 20 mol % or less) of terephthalic acid or dialkyl terephthalate is added to an oxycarboxylic acid such as an aromatic dicarboxylic acid such as isophthalic acid, phthalic acid, or naphthalene dicarboxylic acid, or an aliphatic dicarboxylic acid such as adipic acid or sepatic acid. An alkyl ester such as an acid may be substituted, and a part or all of ethylene glycol may be replaced with, for example, propylene glycol. HO (CI-12)n (H (n is 3 to 10) such as tetramethylene glycol
) may be substituted with a glycol represented by

本発明においてエステル交換触媒としてマンガン化合物
、亜鉛化合物及びマグネシウム化合物等が用いられるが
、エステル交換能を有するものであれば特に制限する必
要はなく、例えばハロゲン化物、酸化物の如き無機化合
物及び有機酸塩等であり、特に好ましいものとして耐酸
塩、プロピオン酸塩、サルチル酸塩、安息香酸等の有機
酸塩があげられる。
In the present invention, manganese compounds, zinc compounds, magnesium compounds, etc. are used as transesterification catalysts, but there is no need to limit them as long as they have transesterification ability, and examples include inorganic compounds such as halides and oxides, and organic acids. Salts, etc., and particularly preferred are organic acid salts such as salt-resistant salts, propionates, salicylates, and benzoic acids.

以下本発明を図面に基いて説明する。第1図は本発明に
係る重合装置の具体例である斜視断面図。
The present invention will be explained below based on the drawings. FIG. 1 is a perspective sectional view of a specific example of a polymerization apparatus according to the present invention.

第2図は第1図の駆動機構部の拡大斜視図である。2 is an enlarged perspective view of the drive mechanism section of FIG. 1. FIG.

図において、11は円筒状の槽本体で上部に軸封室14
、下部に取出室36が設けられると共に槽本体11のほ
ぼ外周全面にわたって外筒12が取囲まれ槽本体11と
の間に加熱用のジャケラ1〜室13が形成されている。
In the figure, 11 is a cylindrical tank body with a shaft sealing chamber 14 at the top.
A take-out chamber 36 is provided in the lower part, and an outer cylinder 12 is surrounded over almost the entire outer circumference of the tank body 11, and heating jackets 1 to 13 are formed between the tank body 11 and the outer cylinder 12.

軸封室14には中央部を貫通する駆動軸15が軸受16
を介して回転自在に支持され、駆動軸15の上端は図示
しないブーり等を介して又は駆動体に直接連結されてい
る。軸封室14の下端はメカニカルシール等の軸封手段
17が設けられ槽本体11を高真空に耐える如くシール
している。
A drive shaft 15 passing through the center of the shaft sealing chamber 14 has a bearing 16.
The upper end of the drive shaft 15 is directly connected to the drive body via a boob (not shown) or the like. A shaft sealing means 17 such as a mechanical seal is provided at the lower end of the shaft sealing chamber 14 to seal the tank body 11 so as to withstand high vacuum.

槽本体11の上部には仕切板18にボルト19等を介し
て固定された静止の主歯車20.槽内壁に近接した大き
さの上部ディスク21および下部ディスク22が上方か
ら下方に向って所定間隔で配設され、これら主歯車20
、上、下ディスク21.22にはその中央部に透孔23
,24.25が穿孔され、該透孔23〜25を駆動軸1
5が貫通し、下部ディスク22に達している(下部ディ
スク22も貫通してもよい)。駆動軸15は主歯車20
には接することなく遊合状態で通り抜け、上、下部ディ
スク21.22とはキーなど(図示せず)により固定さ
れ一体化するようにされている。この固定は上、下部デ
ィスク21.22で行うのが好ましいが、上、下部ディ
スク21.22の1つのみで行うこともできる。
At the top of the tank body 11, a stationary main gear 20 is fixed to the partition plate 18 via bolts 19 and the like. An upper disk 21 and a lower disk 22 of a size close to the inner wall of the tank are arranged at a predetermined interval from above to below, and these main gears 20
, the upper and lower disks 21 and 22 have a through hole 23 in their center.
, 24, 25 are bored, and the through holes 23 to 25 are connected to the drive shaft 1.
5 passes through and reaches the lower disk 22 (it may also pass through the lower disk 22). The drive shaft 15 is the main gear 20
The upper and lower disks 21 and 22 are fixed and integrated with the upper and lower disks 21 and 22 by a key or the like (not shown). Preferably, this fixation is carried out with the upper and lower discs 21.22, but it is also possible to carry out with only one of the upper and lower discs 21.22.

上、下部ディスク21.22にはそれぞれ対応して複数
の透孔26,27が設けられ(第1図では等間隔に6孔
)、この透孔26,27を貫通し透孔26,27に設け
られた軸受28,29を介して支軸30が回転自在に保
持されている。支軸30の上端には主歯車20と噛合う
遊星歯車31が固定されると共に下部ディスク22を出
た下方部は円柱形のローラ状攪拌翼32が槽内壁と近接
するように連結されている。攪拌翼32(支軸30〉は
通常バランス上から等間隔に2本以上取り付けられるが
、1本にすることもできる。
A plurality of through holes 26 and 27 are provided in the upper and lower disks 21 and 22 in correspondence with each other (six holes are equally spaced in FIG. 1). A support shaft 30 is rotatably held via provided bearings 28 and 29. A planetary gear 31 that meshes with the main gear 20 is fixed to the upper end of the support shaft 30, and a cylindrical roller-shaped stirring blade 32 is connected to the lower part extending from the lower disk 22 so as to be close to the inner wall of the tank. . Two or more stirring blades 32 (support shafts 30) are usually installed at equal intervals for balance, but they can also be installed as one.

下部ディスク22の側面外周には凹凸状に多数の斜溝3
3が刻設されると共に対向する槽内壁に反応液の供給ノ
ズル34が設4Jられ、供給ノズル34からフィードさ
れた反応液が下部ディスク22の凹凸部に当たり反応液
の分散が行われる如くなされ、下部ディスク22はポリ
マー分散体としての機能を有するようにされている。
A large number of diagonal grooves 3 are formed on the outer periphery of the side surface of the lower disk 22 in an uneven manner.
3 is engraved, and a reaction liquid supply nozzle 4J is provided on the inner wall of the opposing tank so that the reaction liquid fed from the supply nozzle 34 hits the uneven portion of the lower disk 22 and is dispersed. The lower disk 22 is adapted to function as a polymer dispersion.

ポリマー分散を行う斜溝(凹凸部)33は回転に応じて
反応液が下方に進む力が加わる向きに刻設され、その角
度αは10〜30°前後にするのが好ましい。
The diagonal grooves (uneven portions) 33 for dispersing the polymer are carved in a direction in which force is applied to the reaction solution downward in response to rotation, and the angle α thereof is preferably about 10 to 30 degrees.

攪拌翼32は通常下方への送り作用を与えるため全周に
わたって螺旋状の溝35が形成されるが、反応液が低粘
度のときは逆にかき上げ作用を有するように逆方向の螺
旋状の溝を形成するようにしてもよい。又撹拌別32は
槽内壁に近接して回転する如く配されるが、その間隔す
なわち攪拌翼32の外径(溝35を有するときは凸面)
と槽内壁とのりリアランスは5 mm以下、好ましくは
0.5〜5#、特に0.5〜3 mmにするのがよい。
The stirring blade 32 normally has a spiral groove 35 formed all around the circumference in order to provide a downward feeding action, but when the reaction liquid has a low viscosity, a spiral groove 35 is formed in the opposite direction to provide a stirring action. A groove may also be formed. Further, the stirring blade 32 is arranged so as to rotate close to the inner wall of the tank, but the distance between them, that is, the outer diameter of the stirring blade 32 (when it has a groove 35, it is a convex surface)
The adhesive clearance between the inner wall of the tank and the inner wall of the tank is preferably 5 mm or less, preferably 0.5 to 5 mm, particularly 0.5 to 3 mm.

このクリアランスが5 mmを越えるとショートパスが
多くなって反応速度が上がらず、又デッドスペースが発
生し易くなる。又0,5mm以下あるいは槽内壁と常時
接触すると撹拌抵抗が大きくなって反応液に有効な剪断
を付与するための適当な周速を与えることが難しくなる
ことがある。この場合、反応液に特に有効な剪断を与え
、混合を促進し反応速度を早めるためには攪拌翼を自転
方向と公転方向とが同一となるように遊星運動されると
共にその周速、自転速度と公転速度の合計速度が0.3
711/秒、殊に望ましくは0.5rrt/秒以上とす
るのが好ましい。この速度が0.3m/秒以上で上記の
ような遊星運動を行っても2反応が十分に進まず優れた
品質の製品を安定して得ることができないことがある。
If this clearance exceeds 5 mm, short passes will increase, the reaction speed will not increase, and dead spaces will likely occur. Further, if the diameter is less than 0.5 mm or if it is in constant contact with the inner wall of the tank, the stirring resistance becomes large and it may become difficult to provide an appropriate circumferential speed to impart effective shear to the reaction liquid. In this case, in order to apply particularly effective shear to the reaction liquid, promote mixing, and accelerate the reaction rate, the stirring blades are moved in a planetary motion so that the direction of rotation and the direction of revolution are the same, and the circumferential speed and rotation speed of the stirring blades are The total speed of orbital speed is 0.3
711/sec, particularly preferably 0.5 rrt/sec or more. Even if the above-mentioned planetary motion is performed at a speed of 0.3 m/sec or more, the two reactions may not proceed sufficiently and it may not be possible to stably obtain a product of excellent quality.

槽本体11の下部に位置する反応液の取出室36は下端
に反応液取出用のノズル37が設けられると共に側方部
に真空吸引用のノズル38が取付けられている。
A reaction liquid extraction chamber 36 located at the lower part of the tank body 11 is provided with a nozzle 37 for taking out the reaction liquid at the lower end and a nozzle 38 for vacuum suction at the side part.

このような装置において、図示しない駆動手段により駆
動軸15が回転されると、これに伴って上下部ディスク
21.22が矢印方向に回転する。この回転によってM
星歯車31は主歯車20に噛み合ってその廻りを回転す
ると同時に自体も同一方向に回転し、従って攪拌翼32
は槽内壁に近接しつつ槽内壁に沿って自転方向と公転方
向とが同一方向となるように遊星運動を行う。
In such a device, when the drive shaft 15 is rotated by a drive means (not shown), the upper and lower disks 21, 22 rotate in the direction of the arrow. By this rotation, M
The star gear 31 meshes with the main gear 20 and rotates around it, and at the same time rotates itself in the same direction, so that the stirring blade 32
moves close to the inner wall of the tank and makes a planetary motion along the inner wall of the tank so that the direction of rotation and the direction of revolution are in the same direction.

ジャケット13には熱媒等の加熱手段により槽本体11
.取出室36が所定温度に加熱されると同時に真空発生
手段に通ずるノズル38により槽本体11等は高真空に
保持される。しかして槽本体上部のノズル34より供給
された原料液(モノマー又はプレポリマー、以下ポリマ
ーと言う)は回転する下部ディスク22により円周方向
にほぼ均一に分散され槽内壁に塗布される。
The tank body 11 is heated to the jacket 13 by heating means such as a heating medium.
.. At the same time as the extraction chamber 36 is heated to a predetermined temperature, the tank body 11 and the like are maintained in a high vacuum by the nozzle 38 communicating with the vacuum generating means. The raw material liquid (monomer or prepolymer, hereinafter referred to as polymer) supplied from the nozzle 34 at the top of the tank body is dispersed almost uniformly in the circumferential direction by the rotating lower disk 22 and applied to the inner wall of the tank.

ポリマーは公転しながら公転方向と同一方向に自転する
攪拌翼32により剪断を受けつつ下方に流下していく。
The polymer flows downward while being sheared by the stirring blades 32 that rotate in the same direction as the revolution direction.

このようにしてポリマーは攪拌翼32および槽内壁に塗
布され耐えず表面更新しつつ壁面どのクリアランスによ
り効果的な剪断を受けながら下方に移動するので、特に
撹拌m32の表面ポリマーはぎねめで表面更新が早く薄
膜状の反応面となり、反応が非常に速く行われる。
In this way, the polymer is coated on the stirring blades 32 and the inner wall of the tank, and moves downward while being subjected to effective shearing due to the clearance between the wall surfaces, while undergoing surface renewal without being resistant. The reaction surface quickly becomes a thin film, and the reaction takes place very quickly.

周知の様にポリマーの重縮合反応はポリマー中の反応生
成物であるジオール(例えばポリエステルではエチレン
グリコール)の拡散が律速であるが、以上述べた様な機
構を採用することにより大1]な反応速度を得ることが
出来る。
As is well known, the rate of polycondensation reactions in polymers is determined by the diffusion of diol (e.g., ethylene glycol in polyester), which is a reaction product in the polymer. You can get speed.

更にもう1つのメリットは買が全面的に濡れ、いわゆる
デッドスペースが発生しない。例えば第4図に示すよう
に中心軸1を持ちこれに攪拌翼2を備えた反応器3の場
合は薄膜状のポリマーを造るが、軸1及び攪拌翼2の取
付部となる付は根がポリマーにより濡れずいわゆるデッ
ドスペースとなり、飛散物が付着したものが長期間のう
ちにゲル状異物となる欠点がある。
Another advantage is that the buying position is completely wetted, so there is no so-called dead space. For example, as shown in Fig. 4, in the case of a reactor 3 having a central shaft 1 and equipped with stirring blades 2, a thin film-like polymer is produced, but the attachment points for the shaft 1 and stirring blades 2 have roots. There is a disadvantage that the polymer does not get wet, resulting in a so-called dead space, and the adhered particles become gel-like foreign substances over a long period of time.

尚、反応能力等(ポリマー人口、出口の極限粘度差、生
産量等)を変更することができるように上、下部ディス
ク21.22に複数個、好ましくは3以上、特に4〜6
個の透孔26,27を設けておき、必要に応じて攪拌翼
32の入れ替え、あるいは増減が行えるようにするのが
好ましく、このようにすることによって同一本体ηイズ
において従来の反応槽がもつフレキシビリティ以上の反
応能力変更が可能となる。
In addition, in order to be able to change the reaction capacity, etc. (polymer population, intrinsic viscosity difference at the exit, production amount, etc.), there are a plurality of discs, preferably 3 or more, especially 4 to 6, on the upper and lower disks 21 and 22.
It is preferable to provide through holes 26 and 27 so that the stirring blades 32 can be replaced or increased or decreased as needed. It becomes possible to change reaction ability beyond flexibility.

実施例 以下、代表的な熱可塑性重合体であるポリエチレンテレ
フタレートについての実施例で本発明の方法を更に詳し
く説明するが、本発明はこの実施例に限定されるもので
はない。
EXAMPLES The method of the present invention will be explained in more detail in the following examples using polyethylene terephthalate, which is a typical thermoplastic polymer, but the present invention is not limited to these examples.

なお、[η]はオルソクロロフェノールを溶媒とし35
℃で測定して得た粘度から求めた極限粘度である。
In addition, [η] is 35 using orthochlorophenol as a solvent.
This is the intrinsic viscosity determined from the viscosity measured at °C.

実施例−1 テレフタル酸ジメチル(D M T ’)  390部
/hr及びエチレングリコール(E G )  280
部/hrを酢酸マンガン0.0511101e%/DM
T、酢酸亜鉛0.01mole%/DMTの触媒と共に
第3図の連続式エステル交換反応槽5に連続的に供給し
、メタノールを留去させながら150℃から250℃に
加熱してエステル交換反応させた。滞留時間は6時間に
した。
Example-1 Dimethyl terephthalate (DMT') 390 parts/hr and ethylene glycol (EG) 280 parts/hr
part/hr to manganese acetate 0.0511101e%/DM
T and zinc acetate 0.01 mole%/DMT catalyst are continuously supplied to the continuous transesterification reactor 5 shown in Fig. 3, and the mixture is heated from 150°C to 250°C while methanol is distilled off to carry out the transesterification reaction. Ta. The residence time was 6 hours.

次いで得られたエステル交換反応生成物にあリン酸0.
1モル%/DM1、更に重合触媒として三酸化アンチモ
ン0.03mole%/r)MTを加えた後。
Then, 0.0% phosphoric acid was added to the resulting transesterification product.
After adding 1 mole%/DM1 and further antimony trioxide (0.03 mole%/r)MT as a polymerization catalyst.

初期重合槽6に連続的にフィードし50sH(1゜26
0℃で1時間反応させ[η] = 0.15のポリマー
を得た。更にこれを溶融状態のまま中期重合槽7で5摩
H(1,280℃で2時間反応さ、せ、[η]−〇、5
のポリマーを得た。次にこれを第1図で示した薄膜重合
槽(装置)10へ溶融状態のまま連続的にフィードし1
mH(]、  300℃で20分間で反応させ[η]−
1.0.カルボキシル末端濃度13eq/ Tのポリマ
ーを得た。
Continuously feed the initial polymerization tank 6 at 50sH (1°26
The reaction was carried out at 0°C for 1 hour to obtain a polymer with [η] = 0.15. Further, this was reacted in a molten state in a medium-term polymerization tank 7 for 5 hours (at 1,280°C for 2 hours), and [η]-〇, 5
of polymer was obtained. Next, this is continuously fed in a molten state to the thin film polymerization tank (device) 10 shown in Fig. 1.
mH(], reacted at 300°C for 20 minutes [η]-
1.0. A polymer with a carboxyl terminal concentration of 13 eq/T was obtained.

ここで第1図で示した薄膜重合槽全体にポリマーかき下
げのための深さ2mの螺旋状の溝を有する攪拌翼を2本
取付け、自転と公転の方向は周方向でこれらの合計速度
が0.5TrL/SeCの周速とし、また攪拌翼と横壁
とのクリアランスは2#どして運転した。なお1ケ月運
転して解体点検したところ、翼にはデッドスペースが全
くなかった。
Here, two stirring blades with spiral grooves 2 m deep for stirring down the polymer were installed throughout the thin film polymerization tank shown in Figure 1, and the directions of rotation and revolution were in the circumferential direction, and the total speed of these blades was The operation was carried out at a circumferential speed of 0.5 TrL/SeC and a clearance between the stirring blade and the side wall of 2#. When I disassembled and inspected the aircraft after driving it for a month, I found that there was no dead space in the wings.

比較例−1 実施例1と同様のプロセス(第3図)を用いたが、重合
槽の攪拌翼駆動機構を特公昭48−13240号公報に
示される内接歯車式遊星機構として実施例1とほぼ同条
件(反応条件、攪拌翼回転数等)で公転・自転の方向を
逆にして運転した。撹拌爽の合計周速痕は、自転の方が
早く、0.05 m/secになったが、有効な撹拌が
得られず、得られたポリマーは[η] = (1,60
までしかアップせず、十分な反応速度が得られなかった
。更に回転数を増加し能力限界まで行ったが、攪拌翼の
合計周速は0.15 m/sec以上トl;1 a ラ
f、ホ’J マ(7) [77]も0.64を越えるも
のは得られなかった。
Comparative Example-1 The same process as in Example 1 (Fig. 3) was used, but the stirring blade drive mechanism of the polymerization tank was replaced with the internal gear type planetary mechanism shown in Japanese Patent Publication No. 13240/1983. It was operated under almost the same conditions (reaction conditions, stirring blade rotation speed, etc.) with the directions of revolution and rotation reversed. The total circumferential speed of the stirrer was 0.05 m/sec, which was faster due to autorotation, but effective stirring was not obtained, and the resulting polymer was [η] = (1,60 m/sec).
However, the reaction speed was not sufficiently high. The rotation speed was further increased to reach the capacity limit, but the total circumferential speed of the stirring blades was 0.15 m/sec or more. I couldn't get anything to surpass it.

比較例−2 実施例1と同様なプロセス(第3図)を用いたが反応槽
としては第4図に示すような中心軸に攪拌翼を設置した
ものを使用した。翼の周速は0.5m/ 88(iと実
施例−1と同等とした。
Comparative Example 2 The same process as in Example 1 (Fig. 3) was used, but the reaction tank was one in which a stirring blade was installed on the central axis as shown in Fig. 4. The circumferential speed of the blade was 0.5 m/88 (i), which was the same as in Example-1.

反応表面積が、この場合は実施例−1の半分以下であり
、得られたポリマーは[η] −0,65までしかアッ
プせず十分な反応速度が得られなかった。
In this case, the reaction surface area was less than half that of Example-1, and the obtained polymer increased only to [η] -0.65, so that a sufficient reaction rate could not be obtained.

なお、この方法で1力月連続運転したところ、ポリマー
中にゲル状異物の混入が認められた。解体点検したどこ
ろ中心軸及び翼のつけ根にゲル状異物が付着し、デッド
スペースになっていることを確認した。
In addition, when this method was continuously operated for one month, gel-like foreign matter was found to be mixed into the polymer. Upon disassembly and inspection, it was discovered that gel-like foreign matter had adhered to the center shaft and the root of the wing, creating a dead space.

発明の効果 本発明によれば、従来の薄膜重合槽によるものに較べて
更に反応速度が早く、また異物特にデッドスペースより
発生ずるゲル状異物を防止することができ品質良好なポ
リマーを安定して得ることが可能となる。しかも反応速
度が非常、に早いため、生成ポリマーはカルボキシル末
端濃度の低い品質良好な高重合疾ポリエステルを得るこ
とができ、繊幀、フィルム、その他成型品素材としてき
わめて有用である。
Effects of the Invention According to the present invention, the reaction rate is faster than that in conventional thin film polymerization tanks, and foreign matter, especially gel-like foreign matter generated from dead spaces, can be prevented, and polymers of good quality can be stably produced. It becomes possible to obtain. In addition, since the reaction rate is extremely fast, the resulting polymer can be a high quality polyester with a low concentration of carboxyl terminals and a high polymerization resistance, making it extremely useful as a material for textiles, films, and other molded products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の具体例を示す重合装置の斜視断面図、
第2図は第1図の駆動部を示す拡大斜視図、第3図は本
発明の詳細な説明するためのT程図、第4図は従来の装
置の説明図である。 11・・・槽本体、14・・・軸封室、15・・・駆動
軸。 20・・・主歯車、21・・・」二部ディスク。 22・・・下部ディスク、30・・・支軸、31・・・
遊星歯車。 32・・・攪拌翼、33・・・斜溝、35・・・溝。 36・・・取出室 図面の浄書(内容−二変更なし) 第2図 カ3図 十+図 手続補正書(放) 昭和60年12月10日
FIG. 1 is a perspective sectional view of a polymerization apparatus showing a specific example of the present invention;
FIG. 2 is an enlarged perspective view showing the drive section of FIG. 1, FIG. 3 is a T-section diagram for explaining the present invention in detail, and FIG. 4 is an explanatory diagram of a conventional device. 11... Tank body, 14... Shaft sealing chamber, 15... Drive shaft. 20...Main gear, 21...''Two-part disc. 22... Lower disk, 30... Support shaft, 31...
planetary gear. 32... Stirring blade, 33... Diagonal groove, 35... Groove. 36... Engraving of the extraction room drawing (Contents - 2 unchanged) Figure 2 F3 Figure 10 + Drawing procedure amendment (released) December 10, 1985

Claims (1)

【特許請求の範囲】 1、連続溶融重合法によってポリエステルを製造するに
あたり、実質的に円筒状の垂直槽壁に沿って近接して回
転する円柱もしくは円筒形のローラ状攪拌翼を1以上有
する薄膜式重合装置を用い、攪拌翼を槽壁に沿って円周
方向に自転方向と公転方向とが同一となるように遊星運
動させて槽壁上部から供給されるポリエステルの単量体
および/またはその低重合体を槽壁面に薄膜状に形成さ
せつつ流下させることを特徴とするポリエステルの製造
方法。 2、攪拌翼の壁面に対する周速が0.3m/秒以上であ
る特許請求の範囲第1項記載のポリエステルの製造方法
。 3、実質的に円筒状の垂直槽壁に沿って近接して回転す
る円柱もしくは円筒形のローラ状攪拌翼を1以上有する
薄膜式の重合槽を有するポリエステルの製造装置であっ
て、槽内上部に上から順に固定された外接形の主歯車、
上部ディスクおよび下部ディスクが配され、これら主歯
車等の中心部に主駆動軸が貫通し、該主駆動軸は主歯車
と遊合し、上、下ディスクとはその少くとも1つと固定
しており、上、下ディスクには1以上の支軸が回転自在
に垂設され、その上端部に主歯車と噛合う遊星歯車が取
付けられるとともに下部は前記攪拌翼が設けられている
ことを特徴とするポリエステルの製造装置。 4、槽壁と攪拌翼とのクリアランスが5mm以下である
特許請求の範囲第3項記載のポリエステルの製造装置。 5、攪拌翼にかき下げもしくはかき上げ用の螺旋状の溝
が刻設されている特許請求の範囲第3項又は第4項記載
のポリエステルの製造装置。
[Claims] 1. A thin film having one or more cylindrical or cylindrical roller-shaped stirring blades that rotate closely along a substantially cylindrical vertical tank wall when producing polyester by a continuous melt polymerization method. Polyester monomers and/or polyester monomers are supplied from the upper part of the tank wall using a type polymerization apparatus, and the stirring blades are moved in a planetary manner in the circumferential direction along the tank wall so that the rotation direction and the revolution direction are the same. A method for producing polyester, which comprises forming a low polymer in the form of a thin film on the wall of a tank and allowing it to flow down. 2. The method for producing polyester according to claim 1, wherein the peripheral speed of the stirring blade relative to the wall surface is 0.3 m/sec or more. 3. A polyester manufacturing apparatus having a thin film type polymerization tank having one or more cylindrical or cylindrical roller-like stirring blades that rotate closely along a substantially cylindrical vertical tank wall, the upper part of the tank being Circumscribed main gear fixed from top to bottom,
An upper disk and a lower disk are arranged, a main drive shaft passes through the center of these main gears, etc., the main drive shaft plays with the main gear, and the upper and lower disks are fixed to at least one of them. One or more spindles are vertically rotatably installed on the upper and lower disks, a planetary gear that meshes with the main gear is attached to the upper end of the spindle, and the stirring blade is provided at the bottom of the spindle. polyester manufacturing equipment. 4. The polyester manufacturing apparatus according to claim 3, wherein the clearance between the tank wall and the stirring blade is 5 mm or less. 5. The polyester manufacturing apparatus according to claim 3 or 4, wherein the stirring blade has a spiral groove for scraping down or scraping up.
JP20346585A 1985-09-17 1985-09-17 Process and apparatus for producing polyester Granted JPS6264822A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP20346585A JPS6264822A (en) 1985-09-17 1985-09-17 Process and apparatus for producing polyester
US06/904,180 US5053201A (en) 1985-09-17 1986-09-05 Process and apparatus for preparation of polyesters
EP86112684A EP0215460B1 (en) 1985-09-17 1986-09-13 Process and apparatus for preparation of polyesters
DE8686112684T DE3676399D1 (en) 1985-09-17 1986-09-13 METHOD AND APPARATUS FOR PRODUCING POLYESTERS.
KR1019860007848A KR870003146A (en) 1985-09-17 1986-09-17 Manufacturing method and apparatus of polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20346585A JPS6264822A (en) 1985-09-17 1985-09-17 Process and apparatus for producing polyester

Publications (2)

Publication Number Publication Date
JPS6264822A true JPS6264822A (en) 1987-03-23
JPH0364534B2 JPH0364534B2 (en) 1991-10-07

Family

ID=16474577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20346585A Granted JPS6264822A (en) 1985-09-17 1985-09-17 Process and apparatus for producing polyester

Country Status (1)

Country Link
JP (1) JPS6264822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503518A (en) * 2003-05-19 2007-02-22 テサ・アクチエンゲゼルシヤフト Method for producing solvent-free UV-crosslinkable acrylate pressure-sensitive adhesive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503518A (en) * 2003-05-19 2007-02-22 テサ・アクチエンゲゼルシヤフト Method for producing solvent-free UV-crosslinkable acrylate pressure-sensitive adhesive
JP4839217B2 (en) * 2003-05-19 2011-12-21 テーザ・ソシエタス・ヨーロピア Method for producing solvent-free UV-crosslinkable acrylate pressure-sensitive adhesive

Also Published As

Publication number Publication date
JPH0364534B2 (en) 1991-10-07

Similar Documents

Publication Publication Date Title
US3161710A (en) Polymerization process for polyester films
US5635589A (en) Process for production of condensation polymers
TW541321B (en) Process and apparatus for continuous polycondensation
US4056514A (en) Continuous manufacture of polybutylene terephthalates
US5677415A (en) Apparatus and process for a polycondensation reaction
KR20020093793A (en) Process of discontinuous polycondensation and stirring reactor therefor
GB1558910A (en) Continuous process for the production of polybutylene terephthalates
US5856423A (en) Apparatus and process for a polycondensation reaction
US5331066A (en) Process for producing polyester ether copolymer
US6699545B2 (en) Method for increasing solid state polymerization rate of polyester polymers
EP0889922B1 (en) Apparatus and process for a polycondensation reaction
KR100684683B1 (en) Polytrimethylene Terephthalate Resin
WO1997035902A9 (en) Apparatus and process for a polycondensation reaction
WO1996030428A1 (en) Process for preparing polyesters
JPS6264822A (en) Process and apparatus for producing polyester
EP0215460B1 (en) Process and apparatus for preparation of polyesters
JP4144967B2 (en) Horizontal reactor
JP3602958B2 (en) Horizontal reaction tank
JP3573576B2 (en) Polyester continuous reaction method and apparatus
KR100467403B1 (en) Appartus and Process for a Polycondensation Reaction
JPS62131017A (en) Polymerizer for polyester
CA2247239C (en) Apparatus and process for a polycondensation reaction
JP2002105184A (en) Method for continuously producing high-molecular weight polybutylene succinate
JP3799249B2 (en) Stirring apparatus and polymer production method using the apparatus
JPH06192403A (en) Method of continuous batch polymerization of liquid crystalline polyester