JPS626433B2 - - Google Patents

Info

Publication number
JPS626433B2
JPS626433B2 JP50126539A JP12653975A JPS626433B2 JP S626433 B2 JPS626433 B2 JP S626433B2 JP 50126539 A JP50126539 A JP 50126539A JP 12653975 A JP12653975 A JP 12653975A JP S626433 B2 JPS626433 B2 JP S626433B2
Authority
JP
Japan
Prior art keywords
chopper
motor
component
output
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50126539A
Other languages
Japanese (ja)
Other versions
JPS5250516A (en
Inventor
Juichi Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP50126539A priority Critical patent/JPS5250516A/en
Publication of JPS5250516A publication Critical patent/JPS5250516A/en
Publication of JPS626433B2 publication Critical patent/JPS626433B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 本発明はチヨツパによつて駆動される直流電動
機の精密な速度制御を行なうと共に、制御系の過
渡特性を任意に設定し得る直流電動機の速度制御
方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a speed control system for a DC motor that is capable of precisely controlling the speed of a DC motor driven by a chopper and that allows the transient characteristics of the control system to be arbitrarily set.

以下直流他励電動機の速度制御を例に挙げて説
明する。
The speed control of a DC separately excited motor will be explained below as an example.

第1図は本発明による速度制御方式の基本的回
路構成図である。基準電圧E1、速度発電機T・
G・出力、負荷端子電圧(チヨツパ出力)は抵抗
R1,R2,R3、OPアンプ積分器1、によつて加算
積分される。ただし負荷端子電圧はコンデンサC
によつて直流成分を遮断し、交流結合となつてい
る。積分器出力は、ヒステリシスを持つたコンパ
レータ2によつてその上限下限を検出し、出力回
路3を通じてチヨツパ4のオン・オフを制御す
る。電動機Mは直流電源Esよりチヨツパ4を通
じて駆動されれる。
FIG. 1 is a basic circuit diagram of a speed control system according to the present invention. Reference voltage E 1 , speed generator T・
G output, load terminal voltage (chopper output) is resistance
The signals are added and integrated by R 1 , R 2 , R 3 and the OP amplifier integrator 1. However, the load terminal voltage is capacitor C
This blocks the DC component and creates AC coupling. The upper and lower limits of the integrator output are detected by a comparator 2 having hysteresis, and the chopper 4 is turned on and off through an output circuit 3. The electric motor M is driven by a DC power supply Es through a chopper 4.

今抵抗R2が接続されず、コンデンサCを短絡
して考えると、チヨツパ4は積分定数とコンパレ
ータ2のヒステリシス幅および基準電圧E1で決
まるオン状態とオフ状態を交互に繰返し、負荷電
圧のチヨツパ1サイクルの平均値(以下単に平均
値と呼ぶ)Vaは Va=−R/RE1 ……(1) で一定値に制御される。抵抗R3によつて負荷電
圧の交流成分(チヨツパのオン・オフによつて生
じる方形波)と負荷電圧の平均値すなわち直流成
分が同時に帰還され、交流成分は積分器1、コン
パレータ2、チヨツパ4のループで3角波−方形
波発振回路を形成してチヨツパ4にオン・オフ動
作を行なわせ、同時に直流成分の帰還によつて負
荷の平均電圧が(1)式のように制御されるのであ
る。
If we assume that the resistor R2 is not connected and the capacitor C is short-circuited, the chopper 4 will alternately repeat the on state and off state determined by the integral constant, the hysteresis width of the comparator 2, and the reference voltage E1 . The average value of one cycle (hereinafter simply referred to as average value) Va is controlled to a constant value by Va=-R 3 /R 1 E 1 (1). The AC component of the load voltage (square wave generated by turning the chopper on and off) and the average value of the load voltage, that is, the DC component, are fed back simultaneously by the resistor R3 , and the AC component is fed back to the integrator 1, comparator 2, and chopper 4. A triangular wave-square wave oscillation circuit is formed in the loop to cause the chopper 4 to perform on/off operations, and at the same time, the average voltage of the load is controlled as shown in equation (1) by feedback of the DC component. be.

直流成分のみに着目して考えるならば、負荷電
圧平均値Vaは抵抗R1,R3と基準電圧E1によつて
決まる。OPアンプ(演算増幅器)回路と比較し
てみると、入力インピーダンスZ〓iをR1、帰還イ
ンピーダンスZ〓fをR3、入力電圧E〓iをE1、出
力電圧E〓0をVaと考えると E〓0=−Z〓f/Z〓iE〓i …(1)′ となり、OPアンプ回路と同じ関係が成立してい
る。(E〓,Z〓など文字の上点は位相も考慮して
いることを表わしている。)増幅器そのものの利
得は入出力特性に関係せず、Z〓i,Z〓fの外部素
子で出力電圧と入力電圧の比E〓0/E〓iが決ま
つている。すなわち積分器1、コンパレータ2、
出力回路3、チヨツパ4で1個のOPアンプ(演
算増幅器)と等価な特性を持つていることにな
り、外部素子によつて種々の入出力特性にするこ
とができる。ただし、交流成分が帰還され、前述
の発振回路が形成されなければならない制約はあ
る。(特公昭56−2503号公報参照) なお、ここで、直流成分とは直流を含むチヨツ
パのオン・オフ繰返し周波数より低い周波数成分
すべてを指す。また交流成分とは、繰返し周波数
以上の周波数成分を指し、交流成分は平均値の取
扱いにより直流成分には影響を与えない。
Considering only the DC component, the load voltage average value Va is determined by the resistors R 1 and R 3 and the reference voltage E 1 . Comparing it with an OP amplifier (operational amplifier) circuit, consider that the input impedance Z〓i is R 1 , the feedback impedance Z〓f is R 3 , the input voltage E〓i is E 1 , and the output voltage E〓 0 is Va and E〓 0 = -Z〓f/Z〓iE〓i...(1)', and the same relationship as in the OP amplifier circuit is established. (The upper point of letters such as E〓, Z〓, etc. indicates that the phase is also taken into account.) The gain of the amplifier itself is not related to the input/output characteristics, and is output by external elements Z〓i, Z〓f. The ratio of voltage to input voltage E〓 0 /E〓i is determined. That is, integrator 1, comparator 2,
The output circuit 3 and chopper 4 have characteristics equivalent to one OP amplifier (operational amplifier), and various input/output characteristics can be obtained by using external elements. However, there is a restriction that the AC component must be fed back and the above-mentioned oscillation circuit must be formed. (Refer to Japanese Patent Publication No. 56-2503.) Here, the DC component refers to all frequency components including DC that are lower than the on/off repetition frequency of the chopper. Furthermore, the AC component refers to a frequency component that is higher than the repetition frequency, and the AC component does not affect the DC component because it is treated as an average value.

第1図の接続では上の例と異なり、抵抗R3
は直列にコンデンサCが接続されているので、定
常状態では交流成分のみ帰還し、定常時の直流成
分は別に接続された抵抗R2により帰還されてい
る。過度時には負荷電圧平均値Vaが変化するの
で抵抗R3とコンデンサCの直列回路は直流成分
も帰還し、Vaの変化を遅らせる作用をするので
制御系全体の過度振動を制動する効果を持たせる
ことができる。普通チヨツパは1KHz以上の繰返
し周波数で動作させることができ、一方電動機M
の速度応答時定数は普通数百ミリ秒より大きいの
で、直列回路R3Cの時定数を電動機Mの時定数よ
り決まる最適値(後述)に決めた場合、チヨツパ
4のオン・オフ繰返し周波数においてはR3−C
の直列回路を交流結合回路とみなすことができ
る。なお、チヨツパ4の繰返し周波数は、積分コ
ンデンサを小さくすることによつて、任意に高く
することができる。
In the connection shown in Figure 1, unlike the above example, capacitor C is connected in series with resistor R 3 , so only the AC component is fed back in steady state, and the DC component in steady state is fed back to resistor R 2 which is connected separately. It has been returned by. In the event of a transient, the load voltage average value Va changes, so the series circuit of resistor R 3 and capacitor C also feeds back the DC component, which acts to delay the change in Va, so it has the effect of damping transient vibrations in the entire control system. I can do it. Typical choppers can be operated at repetition frequencies of 1 KHz or higher, while electric motors M
The speed response time constant of is usually larger than several hundred milliseconds, so if the time constant of the series circuit R 3 C is set to the optimal value determined by the time constant of the motor M (described later), the on/off repetition frequency of the chopper 4 is R 3 −C
The series circuit of can be considered as an AC coupled circuit. Note that the repetition frequency of the chopper 4 can be increased arbitrarily by reducing the size of the integrating capacitor.

第1図の接続で定常状態における積分器1入
力、積分器1出力、チヨツパ4のオン・オフの関
係を第2図に示す。電流i3はコンデンサCにより
直流成分は持たず、平均値は零で、振幅(P−P
値)Es/R3の方形波である。電流i3は積分器1に
よつて3角波に変換され、コンパレータ2によつ
て方形波となり、チヨツパ4のオンオフを制御す
る。積分器1の出力がコンパレータ2の上限また
は下限に達するとコンパレータ出力およびチヨツ
パ4のオン・オフが反転し、したがつて電流i3
極性が反転して積分器出力の傾斜が反転する。チ
ヨツパ4のデユーテイフアクタは電動機Mの速度
が所定の回転速度Wmになるために必要な平均電
圧Vaが得られる値に到達している。
FIG. 2 shows the on/off relationship between the integrator 1 input, the integrator 1 output, and the chopper 4 in a steady state with the connections shown in FIG. 1. The current i3 has no DC component due to the capacitor C, its average value is zero, and the amplitude (P-P
value) Es/R 3 square wave. The current i 3 is converted into a triangular wave by the integrator 1 and converted into a square wave by the comparator 2, which controls the on/off of the chopper 4. When the output of the integrator 1 reaches the upper or lower limit of the comparator 2, the on/off state of the comparator output and the chopper 4 is reversed, so that the polarity of the current i 3 is reversed and the slope of the integrator output is reversed. The duty factor of the chopper 4 has reached a value at which the average voltage Va required for the speed of the electric motor M to reach a predetermined rotational speed Wm is obtained.

このように、電流i3の交流成分はチヨツパ4の
オン・オフ動作にのみ作用し、電動機も交流成分
には応答しないので、直流成分とは分離して取扱
うことができる。以下、直流成分の制御特性につ
いて述べる。
In this way, the alternating current component of the current i3 acts only on the on/off operation of the chopper 4, and the motor does not respond to the alternating current component, so it can be handled separately from the direct current component. The control characteristics of the DC component will be described below.

定常状態における積分器入力の直流成分の大き
さは、コンデンサCで回路が開かれていると考え
られるので、電流i1とi2の和である。但し、 i1=E/R ……(2) i2=Kt・Wm/R ……(3) で与えられる。なおここで、 Wm:電動機の回転速度 Kt・Wm:速度発電機T.G.の出力電圧 積分器1の入力は、前述の等価OPアンプの入
力端であるから入力の総和は零、即ち Σi=0 ……(4) である。定常状態では電流i3の直流成分は零であ
るから(2)〜(4)式より Wm=−R/RKt・E1 ……(5) となり、回転速度は正確に基準電圧E1に比例
し、負荷の大小並びに直流電源Esの変動に影響
されない。
Since the circuit is considered to be open with capacitor C, the magnitude of the DC component of the integrator input in a steady state is the sum of currents i 1 and i 2 . However, it is given by i 1 =E 1 /R 1 ...(2) i 2 =Kt·Wm/R 2 ...(3). Here, Wm: Rotational speed of the motor Kt・Wm: Output voltage of the speed generator TG Since the input of the integrator 1 is the input terminal of the equivalent OP amplifier mentioned above, the sum of the inputs is zero, that is, Σi=0... …(4). In steady state, the DC component of current i 3 is zero, so from equations (2) to (4), Wm = -R 2 /R 1 Kt・E 1 ...(5), and the rotation speed is exactly equal to the reference voltage E. 1 and is not affected by the size of the load or fluctuations in the DC power source Es.

ここでさらに第2図によつて詳細に説明する
と、今電動機Mの回転速度が(5)式で示される所定
の値より小さいとすれば、i1+i2=0が成立せ
ず、積分器入力は交流成分i3の方形波に直流成分
|i2|−|i1|が加算されたものとなる。したが
つて積分器出力の傾斜はチヨツパ4のオン状態で
ゆるやかに、オフ状態で急になる。コンパレータ
2の上限・下限の幅は一定であるから、チヨツパ
4のオン時間が長く、オフ時間が短くなり、チヨ
ツパ4の出力平均電圧が上昇する。電動機Mの速
度は端子電圧の増加にともなつて上昇する。一連
の動作の結果未だ回転速度が所定の値に達してい
なければ新しい直流成分i1,i2,i3の関係におい
て上述の変化が繰返され回転速度が上昇し、i2
増加して直流成分i1+i2=0となつて、定常状態
となる。
To explain in more detail with reference to FIG. 2, if the rotational speed of the electric motor M is now smaller than the predetermined value shown by equation (5), i 1 + i 2 = 0 does not hold, and the integrator The input is the square wave of the AC component i 3 plus the DC component |i 2 |−|i 1 |. Therefore, the slope of the integrator output is gentle when the chopper 4 is on, and steep when it is off. Since the widths of the upper and lower limits of the comparator 2 are constant, the on time of the chopper 4 becomes longer and the off time becomes shorter, and the output average voltage of the chopper 4 increases. The speed of motor M increases as the terminal voltage increases. As a result of the series of operations, if the rotation speed has not yet reached the predetermined value, the above changes are repeated in the relationship between the new DC components i 1 , i 2 , i 3 and the rotation speed increases, i 2 increases and the DC The component i 1 +i 2 = 0, resulting in a steady state.

次に過度特性も含めて述べる。チヨツパ4のオ
ン・オフ周期が電動機Mの持つ諸時定数より十分
短く、電動機M端子電圧の平均値をVaとし、第
1図の系を伝達関数表示すれば第3図となる。交
流成分は、周波数が高く、電動機は応答しないの
で省略してある。図でKmは電気系−機械系変換
定数、τaは電動機の電気時定数、τmは電動機
Mの始動時定数、TLは負荷トルクである。また
電動機Mの慣性モーメントをJで表わす。
Next, we will discuss transient characteristics as well. If the on/off cycle of the chopper 4 is sufficiently shorter than the various time constants of the motor M, and the average value of the voltage at the terminals of the motor M is Va, then the system shown in FIG. 1 is expressed as a transfer function as shown in FIG. 3. The AC component is omitted because it has a high frequency and the motor does not respond. In the figure, Km is an electrical system-mechanical system conversion constant, τa is an electric time constant of the electric motor, τm is a starting time constant of the electric motor M, and T L is a load torque. Further, the moment of inertia of the electric motor M is represented by J.

電動機Mのみの伝達関数は Wm(S)=1/τmτaS+τmS+1・Va(S)/Km−(τaS+1)τm/τmτaS+τmS+1
・T(S)/J……(6) で与えられるから、伝達関数Wm(S)/Va
(S)は である。
The transfer function of electric motor M only is Wm(S)=1/τmτaS 2 +τmS+1・Va(S)/Km−(τaS+1)τm/τmτaS 2 +τmS+1
・Since it is given by T L (S)/J...(6), the transfer function Wm(S)/Va
(S) is It is.

自動制御理論によれば、固有角周波数Wn、減
衰係数ζ、利得Hで2次系の伝達関数G(S)を
表わすと、 G(S)=HWn/S+2ζWnS+Wn……
(8) になるとされており、(7)、(8)式より電動機自体の
Wn、ζは、 で表わされる。Wnは大きいほど応答が速い。ζ
は小さいと過渡応答が振動的となり、大きいと過
制御となる。ζは0.7付近で最も特性が良いとさ
れている。
According to automatic control theory, if the quadratic system transfer function G(S) is expressed by the natural angular frequency Wn, the damping coefficient ζ, and the gain H, then G(S)=HWn 2 /S 2 +2ζWnS+Wn 2 ...
(8), and from equations (7) and (8), the electric motor itself
Wn, ζ is It is expressed as The larger Wn is, the faster the response is. ζ
If is small, the transient response will be oscillatory, and if it is large, it will be over-controlled. It is said that the characteristics are best when ζ is around 0.7.

本発明の構成による第3図の伝達関数は τ=R3Cと置いて Va(s)= −R/R1+τS/τS(E1+R/RKt
Wm(S)…(10) のVa(S)を(6)式に代入して得られ となる。(11)式より、E1,TLが一定ならば、Wm
の定常値はS関数の最終値の定理より(5)式で表わ
され定常誤差はない。
The transfer function of FIG. 3 according to the configuration of the present invention is set as τ 3 =R 3 C, and Va(s) = −R 3 /R 1 1+τ 3 S/τ 3 S(E 1 +R 1 /R 2 Kt
Wm(S)...obtained by substituting Va(S) of (10) into equation (6). becomes. From equation (11), if E 1 and T L are constant, Wm
The steady value of is expressed by equation (5) from the final value theorem of the S function, and there is no steady error.

(11)式はSの3次式であり、制御系は3次系であ
るが、τの時定数を となるように、すなわちCの値を とすれば(11)式より伝達関数Wm(S)/E1(S)
となる。すなわち制御系は2次系として動作す
る。(14)式を(8)式と比べると系の固有角周波数
Wn′、減衰係数ζ′は となり、系のループ利得R3Kt/R2Kmによつてす
なわちR3/R2によつて最良の過渡特性に調整し
うることを示している。
Equation (11) is a cubic equation of S, and the control system is a cubic system, but the time constant of τ 3 is In other words, the value of C is Then, from equation (11), the transfer function Wm (S) / E 1 (S)
teeth becomes. That is, the control system operates as a secondary system. Comparing equation (14) with equation (8), the natural angular frequency of the system is
Wn′, damping coefficient ζ′ is This shows that the best transient characteristics can be adjusted by the system loop gain R 3 Kt/R 2 Km, that is, by R 3 /R 2 .

なお、電動機の減衰係数は普通大きな値となつ
ているので(12)式は ττm ……(17) となり、通常τは電動機の始動時定数にほぼ等
しく選ぶとよい。
Note that since the damping coefficient of an electric motor is usually a large value, equation (12) becomes τ 3 τm (17), and normally τ 3 should be selected to be approximately equal to the starting time constant of the electric motor.

上述のように本発明の速度制御方式によれば電
動機の回転速度を精密に設定できるばかりでな
く、過度応答性も改善することが可能である。
As described above, according to the speed control method of the present invention, it is possible not only to precisely set the rotational speed of the electric motor, but also to improve transient responsiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の直流電動機の速度制御方式の
一実施例を示す回路構成図、第2図は同上の動作
説明図、第3図は同上の系を伝達関数表示で示す
図である。 図中、1:積分器、2:コンパレータ、3:出
力回路、4:チヨツパ、M:電動機、T.G:速度
発電機、E1:基準電圧。
FIG. 1 is a circuit configuration diagram showing an embodiment of the speed control method for a DC motor according to the present invention, FIG. 2 is an explanatory diagram of the same operation, and FIG. 3 is a diagram showing the same system in a transfer function representation. In the figure, 1: integrator, 2: comparator, 3: output circuit, 4: chopper, M: motor, TG: speed generator, E 1 : reference voltage.

Claims (1)

【特許請求の範囲】[Claims] 1 基準電圧、直流電動機の速度検出電圧、チヨ
ツパの出力電圧を、OPアンプ式積分器の入力端
子に、それぞれ第1の抵抗、第2の抵抗、第3の
抵抗およびコンデンサの直列回路を通じて接続す
ることにより加算積分し、その積分出力をヒステ
リシスを持つコンパレータに加え、コンパレータ
出力によつて上記チヨツパのオンオフを制御し、
直流電源より上記チヨツパを介して上記直流電動
機を駆動し、基準電圧に応じて電動機の回転速度
を制御するとともに、前記第3の抵抗およびコン
デンサの値の積が示す時定数および第2の抵抗と
第3の抵抗の比を所定の値にして過渡応答特性を
改善したことを特徴とする直流電動機の速度制御
方式。
1 Connect the reference voltage, the speed detection voltage of the DC motor, and the output voltage of the chopper to the input terminal of the OP amplifier type integrator through a series circuit of the first resistor, second resistor, third resistor, and capacitor, respectively. The integrated output is added to a comparator with hysteresis, and the output of the comparator controls the on/off of the chopper.
The DC motor is driven from a DC power source via the chopper, and the rotational speed of the motor is controlled according to a reference voltage, and the time constant and the second resistance are determined by the product of the values of the third resistance and the capacitor. A speed control method for a DC motor, characterized in that the ratio of the third resistance is set to a predetermined value to improve transient response characteristics.
JP50126539A 1975-10-20 1975-10-20 Speed control system for dc motor Granted JPS5250516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50126539A JPS5250516A (en) 1975-10-20 1975-10-20 Speed control system for dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50126539A JPS5250516A (en) 1975-10-20 1975-10-20 Speed control system for dc motor

Publications (2)

Publication Number Publication Date
JPS5250516A JPS5250516A (en) 1977-04-22
JPS626433B2 true JPS626433B2 (en) 1987-02-10

Family

ID=14937684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50126539A Granted JPS5250516A (en) 1975-10-20 1975-10-20 Speed control system for dc motor

Country Status (1)

Country Link
JP (1) JPS5250516A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019734A (en) * 1973-06-27 1975-03-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019734A (en) * 1973-06-27 1975-03-01

Also Published As

Publication number Publication date
JPS5250516A (en) 1977-04-22

Similar Documents

Publication Publication Date Title
JP2818450B2 (en) Electronic control circuit for brushless DC motor
US4266177A (en) Power factor control system for AC induction motors
US4431955A (en) Step motor control circuit
JPS5924635B2 (en) Method and apparatus for generating motor drive current
US4296367A (en) Speed control method for AC motors and an apparatus for the control
JPS63501399A (en) Control circuit for electric motors
JPS626433B2 (en)
JPS6056396B2 (en) speed control device
US4153864A (en) Motor speed regulator
JPH0670594A (en) Fan motor controller for air conditioner
JPH08126374A (en) Control method for dc motor using pulse width modulation signal
EP0056059B1 (en) Speed control device for electric motor
JP2932080B2 (en) Inverter control method
JPH0667253B2 (en) Motor control device
JPS6122557B2 (en)
JPS5843195A (en) Controller for motor
JPS61218372A (en) Dead time forming circuit
JP2513601Y2 (en) Alternator control device
JPS6028782A (en) Controller of induction motor
RU2046539C1 (en) Method of and device for controlling vibratory motor
JPH082199B2 (en) High speed induction motor speed controller
JPS62185597A (en) Electric controller
JPS59144394A (en) Controller for induction motor
JPS5838080B2 (en) Induction motor control device
JPH02151294A (en) Motor driving device