JPS6263913A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPS6263913A
JPS6263913A JP20471885A JP20471885A JPS6263913A JP S6263913 A JPS6263913 A JP S6263913A JP 20471885 A JP20471885 A JP 20471885A JP 20471885 A JP20471885 A JP 20471885A JP S6263913 A JPS6263913 A JP S6263913A
Authority
JP
Japan
Prior art keywords
optical
magneto
wedge
piezoelectric element
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20471885A
Other languages
Japanese (ja)
Inventor
Satoshi Ishizuka
石塚 訓
Kazuo Toda
戸田 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20471885A priority Critical patent/JPS6263913A/en
Publication of JPS6263913A publication Critical patent/JPS6263913A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • G02B6/4209Optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To intercept completely the reflected return light even if the ambient temperature is changed, by providing a wedge-shaped magnetooptic element, whose thickness is changed gradually in the direction vertical to the optical axis, for a piezoelectric element which has one end part fixed and is displaced by a voltage. CONSTITUTION:When the ambient temperature rises, the polarized light component whose rotation in the polarization direction is shifted from 45 deg. in an analyzer 7 is not transmitted through the analyzer 7 and becomes a reflected component. This reflected component is received by a photodetector 20, and the electric output after photoelectric conversion is amplified by an amplifier 21 and is led to a piezoelectric element controller 22, and a voltage corresponding to the reception power of the photodetector 20 is outputted from the piezoelectric element controller 22. This voltage is led to an electrode part 23 of a piezoelectric element 10, whose one end part is fixed by a fixing part 11, to displace the piezoelectric element 10. The thickness on the optical axis of a wedge-shaped magnetooptic element 1 which is provided for the piezoelectric element 10 and is joined with a magnet 9 into one body is changed along a guide 12 in accordance with said displacement, and the rotation angle of the polarization direction of the light transmitted through the wedge-shaped magnetooptic element 1 is increased and is corrected to 45 deg..

Description

【発明の詳細な説明】 産業上の利用分野 2ページ 本発明は、光通信等の光信号伝送に用いられる光アイソ
レータに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application Page 2 The present invention relates to an optical isolator used for optical signal transmission such as optical communication.

従来の技術 半導体レーザを光通信等の光信号伝送系の光源として用
いる場合、半導体レーザからの出射光の一部が、伝送路
あるいは伝送用光学部品の各接続部で反射・して、半導
体レーザへ帰還した場合、半導体レーザの発振特性の不
安定化や雑音増加をひき起す原因となる。この戻シ光が
帰還するのを防止する為に、一般的に光アイソレータが
使用される。
Conventional Technology When a semiconductor laser is used as a light source for an optical signal transmission system such as optical communication, a part of the light emitted from the semiconductor laser is reflected at the transmission path or at each connection of the transmission optical components, causing the semiconductor laser to emit light. If it returns to , it causes instability of the oscillation characteristics of the semiconductor laser and an increase in noise. An optical isolator is generally used to prevent this reflected light from returning.

従来の光アイソレークは、例えば特開昭66−2111
3号公報に示す様に第2図a及びbの様な構成となって
いた。第2図aはファイバ型光アイソレータ、第2図す
は半導体レーザ結合型光アインレータである。
Conventional optical isolake is disclosed in Japanese Patent Application Laid-Open No. 66-2111, for example.
As shown in Publication No. 3, the structure was as shown in Figure 2 a and b. 2A shows a fiber type optical isolator, and FIG. 2A shows a semiconductor laser-coupled optical insulator.

すなわち、光アイソレータは第2図の様に、光ファイバ
2.あるいは半導体レーザ3.レンズ4゜及び6.偏光
子6.磁気光学素子14.検光子7゜光ファイバ2′、
よシ構成されている。いま、光73 ・− アイバ2.あるいは半導体レーザ3から出射しだ光13
は、レンズ4で半行光となり、偏光+6により直線偏光
成分のみか透過し、磁気光学素子14により偏光方向が
46°回転し、検光T−7を透過し、集光用レンズ5で
、光ファイバ2′に集光される。ここで検光子7は磁気
光字素−f14を透過後の光がほとんど損失なく透過す
る様に軸が合せである。−力、反射戻り光は、前述と同
径路を逆にたどりレンズ5.検光子7を通シ、磁気光学
素子14を透過後、偏光方向がさらに45°回転される
為、偏光子6の偏光軸方向と直交する偏光成分となり、
完全に遮断され、光ファイノく2、あるいは半導体レー
ザ3に戻る事はないというものである0 発明が解決しようとする問題点 しかしながら、一般的前記磁気光学素子14は周囲温度
の変化により偏光方向の回転角が変化する性質を有して
いる。第3図にYIGの例を示す(応用磁気学会研究会
資料、瓜、MSJ38−7゜P42)。
That is, as shown in FIG. 2, the optical isolator consists of optical fibers 2. Or semiconductor laser 3. Lens 4° and 6. Polarizer 6. Magneto-optical element 14. Analyzer 7° optical fiber 2',
It is well structured. Now, Hikari 73 - Aiba 2. Or the light 13 emitted from the semiconductor laser 3
becomes semi-linear light at the lens 4, only the linearly polarized component is transmitted by the polarization +6, the polarization direction is rotated by 46 degrees by the magneto-optical element 14, transmitted by the analyzer T-7, and the light is transmitted by the condensing lens 5, The light is focused onto an optical fiber 2'. Here, the axes of the analyzer 7 are aligned so that the light after passing through the magnetic optical element -f14 is transmitted with almost no loss. - The reflected return light follows the same path as described above in the opposite direction through the lens 5. After passing through the analyzer 7 and passing through the magneto-optical element 14, the polarization direction is further rotated by 45 degrees, so that the polarization component becomes orthogonal to the polarization axis direction of the polarizer 6.
It is completely blocked and does not return to the optical fiber 2 or semiconductor laser 3. Problems to be Solved by the Invention However, the general magneto-optical element 14 has a problem in that the direction of polarization changes due to changes in ambient temperature. It has the property of changing the rotation angle. An example of YIG is shown in FIG. 3 (Materials of the Japan Society of Applied Magnetics, Research Group, Melon, MSJ38-7°P42).

すなわち、室温付近では、温度上昇に抗い、回転角が減
少し、この為、ある温度で回転角が45゜となる様に磁
気光学素子14の厚さを決定しても、温度変化により回
転角が45°よりずれでしまい、結果的には反射戻り光
の偏光方向が偏光子6の偏光方向に対して90°よりず
れることになり、前記反射戻り光の一部が偏光子6を透
過し2光ファイバ2.あるいは半導体し・−ν′3へ帰
還してしまうことになる。
That is, near room temperature, the rotation angle decreases against the rise in temperature. Therefore, even if the thickness of the magneto-optical element 14 is determined so that the rotation angle is 45 degrees at a certain temperature, the rotation angle will change due to temperature changes. deviates from 45°, and as a result, the polarization direction of the reflected return light deviates from 90° with respect to the polarization direction of the polarizer 6, and a portion of the reflected return light passes through the polarizer 6. 2 optical fiber 2. Otherwise, it becomes a semiconductor and returns to -v'3.

問題点を解決するだめの手段 本発明は、上記の問題点を解決するために、厚さが光軸
に対して垂直力向に徐々に変化するくさび状とした磁気
光学素子を、一方の端部を[^」定された電圧により変
化する圧電素子に設置し、偏光分離素子からの反射光の
変化により、前記くさび状磁気光学素子が光軸に対して
垂直方向に変位させるものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a wedge-shaped magneto-optical element whose thickness gradually changes in the direction of force perpendicular to the optical axis. The wedge-shaped magneto-optical element is disposed in a piezoelectric element that changes with a fixed voltage, and the wedge-shaped magneto-optical element is displaced in a direction perpendicular to the optical axis due to changes in reflected light from the polarization separation element.

作  用 本発明は」二記の力法により、周囲温度変化に伴い前記
偏光分離素子からの反射光量が変化し、こ5′\−・ れに対応して、前記くさび状磁気光学素子を光軸に対し
て垂直方向に変位させるものであり、すなわち、周囲温
度変化に対応して、磁気光学素子を透過後の光の偏光方
向の回転角が常に45°となるように前記磁気光学素子
の厚さを制御することができ、周囲温度が変化しても、
反射戻り光を完全に遮断することが可能となるものであ
る。
According to the force method described in Section 2, the amount of light reflected from the polarized light splitting element changes as the ambient temperature changes, and in response to this, the wedge-shaped magneto-optical element is In other words, in response to changes in ambient temperature, the magneto-optical element is displaced in a direction perpendicular to the axis so that the rotation angle of the polarization direction of the light after passing through the magneto-optical element is always 45 degrees. The thickness can be controlled, even when the ambient temperature changes.
This makes it possible to completely block reflected return light.

実施例 第1図に、本発明の光アイソレータについての一実施例
を示す。第1図aは光フアイバ型光アイソレータ、第1
図すは、半導体レーザ結合型光アイソレータであり、一
般的に半導体レーザからの出射光は、TE直線偏光であ
り、半導体レーザへの反射戻り光が半導体レーザからの
出射光に対して直交する直線偏光となっている場合、半
導体レーザ自体に悪影響を及ぼさないことから、偏光子
を省略した構成である。
Embodiment FIG. 1 shows an embodiment of the optical isolator of the present invention. Figure 1a shows an optical fiber type optical isolator;
The figure shows a semiconductor laser coupled optical isolator. Generally, the light emitted from the semiconductor laser is TE linearly polarized light, and the light reflected back to the semiconductor laser is a straight line orthogonal to the light emitted from the semiconductor laser. If the light is polarized, it will not have an adverse effect on the semiconductor laser itself, so the configuration does not include a polarizer.

第1図aにおいて、光ファイバ2からの出射光は、コリ
メート用レンズ4で平行光となり、偏光分離素子である
偏光子6により直線偏光成分のみが透過した後、磁石9
による磁気回路中の厚さが光軸に対して垂直力向に徐々
に変化するくさび状磁気光学素子1と、前記くさび状磁
気光学素子1と等しい屈折率を有し、且つ磁気光学効果
を持たない光学素子8とを、光の入射面と出射面が互い
に平行となるように一体化した磁気光学部品を透過し、
偏光方向が45°回転し、偏光分離素子である検光子7
を透過後、集光用レンズ6で光ファイバ2′に集光され
る。また、反射戻り光は同じ径路を逆にたどり、レンズ
5.検光子7を透過し、前記一体化磁気光学部品を透過
後、偏光方向がさらに45°回転し、偏光子6の偏光方
向と直交する偏光成分となり、ここで完全に光は遮断さ
れる。
In FIG. 1a, the light emitted from the optical fiber 2 becomes parallel light by the collimating lens 4, and only the linearly polarized component is transmitted by the polarizer 6, which is a polarization separation element, and then the magnet 9
a wedge-shaped magneto-optical element 1 whose thickness in a magnetic circuit gradually changes in the force direction perpendicular to the optical axis; a wedge-shaped magneto-optical element 1 having a refractive index equal to that of the wedge-shaped magneto-optical element 1; and a magneto-optic effect. The light passes through a magneto-optical component that integrates an optical element 8 such that the light incident surface and light exit surface are parallel to each other,
The polarization direction is rotated by 45 degrees, and the analyzer 7 is a polarization separation element.
After passing through, the light is focused onto the optical fiber 2' by the focusing lens 6. Also, the reflected return light follows the same path in the opposite direction and passes through lens 5. After passing through the analyzer 7 and passing through the integrated magneto-optical component, the polarization direction is further rotated by 45 degrees to become a polarization component perpendicular to the polarization direction of the polarizer 6, at which point the light is completely blocked.

ここで周囲温度が変化した場合、例えば今、温度が−j
−昇した場合には、磁気光学素子を透過後の光の偏光方
向の回転は45°に満たない状態となる。この時、検光
子7において、前記偏光方向の回転が45°よりずれた
偏光成分は、前記検光イアを透過せず、反射成分となる
If the ambient temperature changes here, for example, now the temperature is −j
- When the magneto-optical element is raised, the rotation of the polarization direction of the light after passing through the magneto-optical element is less than 45 degrees. At this time, in the analyzer 7, the polarized light component whose rotation of the polarization direction deviates from 45 degrees does not pass through the analysis ear and becomes a reflected component.

この反射成分は、前記偏光方向の回転か45°か7 /
・−5 らずれるほど多くなる。この反射成分を受光素子2oで
受光し、光−電気変換後の電気出力を増巾器21で増巾
後、圧電素子制御器22に導き、前記受光電素子20で
の受光パワーに対応した電圧を前記圧電素子制御器22
から出力し、固定部11により一方の端部が固定された
圧電素子10の電極部23に導くことにより、温度上昇
に伴い、図中矢印の方向に、前記圧電素子10が変位す
る。
This reflected component is determined by the rotation of the polarization direction or by 45° or 7/
-5 The more it shifts, the more it increases. This reflected component is received by the light-receiving element 2o, and the electrical output after optical-to-electrical conversion is amplified by the amplifier 21, and then guided to the piezoelectric element controller 22 to generate a voltage corresponding to the power received by the photo-receiving element 20. The piezoelectric element controller 22
The piezoelectric element 10 is outputted from and guided to the electrode part 23 of the piezoelectric element 10 whose one end is fixed by the fixing part 11, so that the piezoelectric element 10 is displaced in the direction of the arrow in the figure as the temperature rises.

これに伴い、前記圧電素子10に設置した、磁石9と一
体化されたくさび状磁気光学素子1も、ガイド12に沿
って、光軸に対して垂直方向に変位、光軸上の厚さが変
化し、(本実施例の場合は厚さが増す方向に作用)、く
さび状磁気光学素子1を透過後の光の偏光方向の回転角
を増加させ、45゜に補正することが可能となる。また
、温度が降下した場合には上述の逆の作用により偏光方
向の回転角の補正が実現できる。
Along with this, the wedge-shaped magneto-optical element 1 integrated with the magnet 9 installed on the piezoelectric element 10 is also displaced in the direction perpendicular to the optical axis along the guide 12, and the thickness on the optical axis is reduced. (in the case of this embodiment, the action is in the direction of increasing the thickness), increasing the rotation angle of the polarization direction of the light after passing through the wedge-shaped magneto-optical element 1, and making it possible to correct it to 45 degrees. . Furthermore, when the temperature drops, the rotation angle of the polarization direction can be corrected by the opposite effect described above.

尚、前記くさび状磁気光学素子1が、光軸が垂直方向に
移動した場合でも、前記くさび状磁気光学素子1と一体
化された、前記くさび状磁気光学素子1と等しい屈折率
を有し、磁気光学効果を持たない光学素子8の効果によ
り、光ファイバ2′に対する焦点位置は変化せず、良好
な結合特性を示すものである。
Note that the wedge-shaped magneto-optical element 1 has a refractive index equal to that of the wedge-shaped magneto-optical element 1 that is integrated with the wedge-shaped magneto-optic element 1 even when the optical axis moves in the vertical direction, Due to the effect of the optical element 8 having no magneto-optic effect, the focal position with respect to the optical fiber 2' does not change, and good coupling characteristics are exhibited.

また、第1図すは、半導体レーザ3からの出射光を、レ
ンズ4によ受光ファイバ2′に集光し、レンズ4と光フ
ァイバ2′との間に磁気光学素子1 。
Further, as shown in FIG. 1, the light emitted from the semiconductor laser 3 is focused onto a light receiving fiber 2' by a lens 4, and a magneto-optical element 1 is placed between the lens 4 and the optical fiber 2'.

検光子7、及び磁石9を設置する場合の他の実施例を示
す。この場合でも第1図aの場合と同様の作用により、
温度変化によるアインレーション比(逆方向損失)の劣
化を防止することができる。
Another example in which an analyzer 7 and a magnet 9 are installed will be shown. In this case as well, due to the same effect as in the case of Figure 1a,
Deterioration of the ainlation ratio (reverse direction loss) due to temperature changes can be prevented.

発明の効果 以上述べてきたように、本発明によれば周囲温度変化に
伴い、くさび状磁気光学素子が光軸に対して垂直方向に
変位するため、周囲温度変化に対応して磁気光学素子透
過後の光の偏光方向の回転角が常に45°となるように
磁気光学素子の厚さを制御することができ、周囲温度が
変化しても、反射戻受光を完全に遮することが可能とな
るものである。
Effects of the Invention As described above, according to the present invention, the wedge-shaped magneto-optical element is displaced in the direction perpendicular to the optical axis as the ambient temperature changes. The thickness of the magneto-optical element can be controlled so that the rotation angle of the polarization direction of the subsequent light is always 45°, and even if the ambient temperature changes, it is possible to completely block reflected light. It is what it is.

9′″′ ・9′″′・

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の光アイソレータの一実施例を示す要
部概略構成図、第1図すは本発明の他の実施例を示す要
部概略構成図、M2図a、bは従来の光アイソレータを
示す要部概略構成図、第3図は磁気光学素子の一例とし
てYIGのファデー回転角(光の偏光方向の回転角)の
温度特性を示す特性図である。 1・・・・・・くさび状磁気光学素子、2,2′・・・
・・・光ファイバ、3・・・・・・半導体レーザ、4,
5・・・・・・レンズ、6・−・・・・偏光子、7・・
・−・・検光子、8・・・・・・くさび状磁気光学素子
と等しい屈折率を有し磁気光学効果を持たない光学素子
、9・・・−・磁石、1o・・・・・・圧電素子、11
・・・・・・圧電素子の一方の端部を固定する固定部、
12・・・−・−ガイド、13・・・・・・出射ビーム
、20・・・・・・受光素子、21・・・・・・増巾器
、22・・・・・・圧電素子制御器、23・・・・・・
圧電素子電極部。
FIG. 1a is a schematic diagram of the essential parts showing one embodiment of the optical isolator of the present invention, FIG. 1 is a schematic diagram of the essential parts showing another embodiment of the invention, and FIGS. FIG. 3 is a schematic diagram showing the main part of an optical isolator, and FIG. 3 is a characteristic diagram showing the temperature characteristics of the Fade rotation angle (rotation angle of the polarization direction of light) of YIG as an example of a magneto-optical element. 1... Wedge-shaped magneto-optical element, 2, 2'...
...Optical fiber, 3...Semiconductor laser, 4,
5... Lens, 6... Polarizer, 7...
... Analyzer, 8... Optical element having a refractive index equal to that of the wedge-shaped magneto-optical element and having no magneto-optic effect, 9... Magnet, 1o... Piezoelectric element, 11
...Fixing part that fixes one end of the piezoelectric element,
12...-Guide, 13... Outgoing beam, 20... Light receiving element, 21... Amplifier, 22... Piezoelectric element control Vessel, 23...
Piezoelectric element electrode part.

Claims (2)

【特許請求の範囲】[Claims] (1)偏光分離素子、磁気光学素子、ビーム変換用レン
ズ、磁気回路材料、及び光ファイバを備え、厚さが光軸
に対して垂直方向に徐々に変化するくさび状とした前記
磁気光学素子を、一方の端部が固定された電圧により変
位する圧電素子に設置し、前記偏光分離素子からの反射
光の変化により、前記くさび状磁気光学素子が光軸に対
して垂直方向に変位するようにしてなる光アイソレータ
(1) The magneto-optical element is provided with a polarization separation element, a magneto-optic element, a beam conversion lens, a magnetic circuit material, and an optical fiber, and is shaped like a wedge and whose thickness gradually changes in a direction perpendicular to the optical axis. , installed on a piezoelectric element whose one end is displaced by a fixed voltage, so that the wedge-shaped magneto-optical element is displaced in a direction perpendicular to the optical axis due to a change in reflected light from the polarization separation element. optical isolator.
(2)磁気光学素子として、前記くさび状磁気光学素子
と等しい屈折率を有し、かつ磁気光学効果を持たない光
学素子と、前記くさび状磁気光学素子とを、光の入射面
と出射面とが互いに平行となるように一体化した磁気光
学部品を使用してなる特許請求の範囲第1項記載の光ア
イソレータ。
(2) As a magneto-optical element, an optical element having a refractive index equal to that of the wedge-shaped magneto-optical element and having no magneto-optic effect, and the wedge-shaped magneto-optical element are used as a light incident surface and a light exit surface. 2. The optical isolator according to claim 1, which uses magneto-optical components that are integrated so that they are parallel to each other.
JP20471885A 1985-09-17 1985-09-17 Optical isolator Pending JPS6263913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20471885A JPS6263913A (en) 1985-09-17 1985-09-17 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20471885A JPS6263913A (en) 1985-09-17 1985-09-17 Optical isolator

Publications (1)

Publication Number Publication Date
JPS6263913A true JPS6263913A (en) 1987-03-20

Family

ID=16495156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20471885A Pending JPS6263913A (en) 1985-09-17 1985-09-17 Optical isolator

Country Status (1)

Country Link
JP (1) JPS6263913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642165A1 (en) * 1989-01-20 1990-07-27 Comp Generale Electricite Method for adjusting an optical isolator
WO1991007684A1 (en) * 1989-11-14 1991-05-30 Namiki Precision Jewel Co., Ltd. Optical isolator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642165A1 (en) * 1989-01-20 1990-07-27 Comp Generale Electricite Method for adjusting an optical isolator
WO1991007684A1 (en) * 1989-11-14 1991-05-30 Namiki Precision Jewel Co., Ltd. Optical isolator

Similar Documents

Publication Publication Date Title
CA1169282A (en) Optical modulator device
US5299056A (en) Optical passive component assembly
US4239329A (en) Optical nonreciprocal device
US4375910A (en) Optical isolator
US5848203A (en) Polarization-independent optical isolator
US5602673A (en) Optical isolator without polarization mode dispersion
EP0915358B1 (en) Multi-stage combined optical device
JPS6263913A (en) Optical isolator
US5559633A (en) Optical isolator with reduced relative walk-off
JPS597312A (en) Optical isolator
Sato et al. In-line optical isolators integrated into a fiber array without alignment
JPS6263914A (en) Optical isolator
US20060139727A1 (en) Hybrid fiber polarization dependent isolator, and laser module incorporating the same
CN218728159U (en) Light splitting isolator
US7043101B1 (en) Integrated optical pump module
US11700062B2 (en) Optical transceiver
KR100255650B1 (en) Optical amplifier
US7142362B2 (en) Optical attenuator
JPS62150210A (en) Semiconductor laser and optical fiber coupling module with optical isolator
JPS62196620A (en) Laser module
JPH041523Y2 (en)
Witte Optical tapping element for multimode fibers
JPS6240423A (en) Laser module provided with light isolator
JPS6219817A (en) Optical branching and coupling device
JP3502132B2 (en) Optical circulator