JPS6263848A - Nmr imaging device - Google Patents

Nmr imaging device

Info

Publication number
JPS6263848A
JPS6263848A JP60191527A JP19152785A JPS6263848A JP S6263848 A JPS6263848 A JP S6263848A JP 60191527 A JP60191527 A JP 60191527A JP 19152785 A JP19152785 A JP 19152785A JP S6263848 A JPS6263848 A JP S6263848A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
gradient
detection sensor
nmr imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60191527A
Other languages
Japanese (ja)
Other versions
JPH049413B2 (en
Inventor
Hiroyuki Matsuura
裕之 松浦
Noriaki Yamada
山田 範明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Medical Systems Ltd filed Critical Yokogawa Electric Corp
Priority to JP60191527A priority Critical patent/JPS6263848A/en
Publication of JPS6263848A publication Critical patent/JPS6263848A/en
Publication of JPH049413B2 publication Critical patent/JPH049413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56563Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To correct the variation of a static magnetic field by outputting a signal which has compensated the influence caused by a gradient magnetic field at the time when the gradient magnetic field is applied to the static magnetic field, by a magnetic field detecting sensor. CONSTITUTION:By a static magnetic field coil 2, a uniform static magnetic field H0 is formed in the (z) axis direction, and also by a (z) axis coil of a gradient magnetic field coil 4, a linear gradient magnetic field in the (z) axis direction is applied, and superposed to the static magnetic field H0. In such a case, to two pieces of gradient compensating coil 7C, a current of the same waveform as a current for energizing the (z) axis coil flows. Also, in the vicinity of a sensor coil 7B, a magnetic field for cancelling the linear gradient magnetic field in the (z) axis direction, which is superposed to the static magnetic field H0 is formed. By (x) axis and (y) axis coils of the gradient magnetic field coil 4, the gradient magnetic field in the (x) axis and the (y) axis directions is applied successively by a prescribed pattern, and a high frequency pulse based on a spin echo method is applied from an exciting coil 9. In such a case, as for a magnetic field detecting sensor 7, since an (x) gradient magnetic field and a (y) magnetic field are installed at a position of zero, the influence of the (x) gradient magnetic field and the (y) gradient magnetic field does not appear in the sensor coil 7B.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、被検体中の対象原子核の位置を核磁気共鳴現
象に」:って把握するNMRイメージング装置(核磁気
共鳴画像表示装置)に関し、更に詳しくは、静磁場に勾
配磁場を印加したとき、該勾配磁場による影響を補償し
前記静磁場による強度のみに対応する信号を出力する磁
場検出センサを設け、該磁場検出センサによる検出信号
を用いて前記静磁場の変動を補正するようにしたNMR
イメージング装置に関する、。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an NMR imaging device (nuclear magnetic resonance image display device) that determines the position of a target atomic nucleus in a specimen based on nuclear magnetic resonance phenomena. More specifically, when a gradient magnetic field is applied to a static magnetic field, a magnetic field detection sensor is provided that compensates for the influence of the gradient magnetic field and outputs a signal corresponding only to the intensity of the static magnetic field, and the detection signal by the magnetic field detection sensor is NMR, which is used to correct fluctuations in the static magnetic field.
Relating to an imaging device.

(従来の技術) NMRイメージング装置は、一様な静磁場i−+ 。(Conventional technology) The NMR imaging device uses a uniform static magnetic field i-+.

を作る静磁場二】イル及び静磁場1−1oと同一方向隅
揚′C″x、y、zの各方向に夫々直線勾配をもつ磁場
を作る勾配磁場コイルから成る磁り部、践磁石部で形成
される磁場内に設置づる被検体に高周波パルス(高周波
電磁波)を加え、被検体からのNMR信号を検出する送
・受信部、誤送・受信部及び前記磁石部の動作を制御し
たり、検出データの処理をして画像表示する制御・画像
処叩部′8を右している。
A magnetic part, a magnetic part, consisting of a gradient magnetic field coil that creates a magnetic field with a linear gradient in each of the x, y, and z directions. A high-frequency pulse (high-frequency electromagnetic wave) is applied to a subject placed in a magnetic field formed by the subject, and the operation of the transmitting/receiving unit, the erroneous transmitting/receiving unit, and the magnet unit that detects the NMR signal from the subject is controlled. , a control/image processing unit '8 for processing detected data and displaying an image is shown on the right.

このようなNMRイメージング装置におい一τ、一般的
に、静磁場発生部(静磁場=コイルを含む磁石部)のト
リ゛ノドを零にすることは難しく、経時的に共鳴条件が
所定の条件から外れでゆくことが知られている。そして
、共鳴周波数のずれが大きくなるとNMRの励起が不可
能になる。又、Jt鳴同周波数ずれが小さい場合には、
NMRの励起が行われるけれども、画像の解像度が低下
しまたり、アーヂファクトが現れたりして、画像の品質
の低下を招くことが知られている。
In such an NMR imaging device, it is generally difficult to reduce the trigonometric value of the static magnetic field generating section (static magnetic field = magnet section including the coil) to zero, and the resonance condition changes over time from the predetermined condition. It has been known to wander off. When the resonance frequency shift becomes large, NMR excitation becomes impossible. Also, if the Jt ringing frequency shift is small,
Although NMR excitation is performed, it is known that the resolution of the image is reduced and artifacts appear, leading to a reduction in the quality of the image.

一方、磁石部による磁場は、静磁場と勾配磁場とが重畳
した合成磁場となっているため、静lIt&場のみの強
度を所定の値に制御するのは容易ではない。
On the other hand, since the magnetic field generated by the magnet section is a composite magnetic field in which a static magnetic field and a gradient magnetic field are superimposed, it is not easy to control the strength of only the static field to a predetermined value.

従来、これらの課題を解決せんとしてなされたNMRイ
メージ:/グ装置として、例えば、特開昭6(1−11
1141号に開示されたものがある。
Conventionally, as an NMR image/image system that has been developed to solve these problems, for example,
There is one disclosed in No. 1141.

該NMRイメージング装置は、静磁場の変動に基づくア
ナログ信号を出力するプロトン磁力計と、プロトン磁力
計からの出力信号をfイジタル信号に変換するA/D変
挽回路と、A / D変換回路の出力信号を入力し、ラ
ッチ制御回路からの信号によって動作するラッチ回路と
、ランチ回路の出力信号をアナログ信号に変換するD/
A変換回路と、D/A変換回路からの信号によって静磁
場発生部を操作する磁界制御回路とを有している。
The NMR imaging device includes a proton magnetometer that outputs an analog signal based on fluctuations in a static magnetic field, an A/D conversion circuit that converts the output signal from the proton magnetometer into an f digital signal, and an A/D conversion circuit. A latch circuit that inputs an output signal and operates according to a signal from a latch control circuit, and a D/D converter that converts the output signal of the launch circuit into an analog signal.
It has an A conversion circuit and a magnetic field control circuit that operates a static magnetic field generator based on a signal from the D/A conversion circuit.

以トの構成においで、ラッチ回路は、ラッチ制御回路か
らの制御信号にJ:って、勾配磁界が印加される直前の
Δ/D変換回路の出力をホールドする。そして、勾配磁
界が印加されているとき、ホールドした信号を出力する
。史に、勾配磁界が印加されていないとき、A / D
変換回路の信号を出力する。これに、より、磁界υ1郊
回路は、勾配磁界の影響を受けない信号を測定値とした
制御動作をすることができ、静磁場の安定化を図ること
がて゛きる。
In the above configuration, the latch circuit holds the output of the Δ/D conversion circuit immediately before the gradient magnetic field is applied in response to the control signal from the latch control circuit. Then, when a gradient magnetic field is applied, a held signal is output. Historically, when no gradient magnetic field is applied, A/D
Outputs the conversion circuit signal. As a result, the magnetic field υ1 subcircuit can perform a control operation using a signal that is not affected by the gradient magnetic field as a measured value, and the static magnetic field can be stabilized.

(発明が解決しようとする問題魚) しかし、従来のNMRイメージング装’;5にあっては
、勾配la場が印加されているとさのit、!l il
l演0の測定信号は過去のデータ、即ら、勾配!a鳴印
加直前のA/D変換器の出力をホ゛−ルドし、その(1
t1を測定信号と1)でいるため、静磁場の制御]1性
を高めるにも限界があった1、従って、高品質の画像を
連続的に得ることが難しいという問題があった。
(Problem to be solved by the invention) However, in conventional NMR imaging equipment, when a gradient la field is applied, it... l il
The measured signal of 0 is past data, that is, the slope! The output of the A/D converter immediately before the application of the audible sound is held, and its (1
Since t1 is the same as the measurement signal, there is a limit to the ability to control the static magnetic field.1) Therefore, there is a problem in that it is difficult to continuously obtain high-quality images.

本発明は、かかる点に鑑み(行われたI)のであり、そ
の目的は、高品質の画像を連続的に1びることのでさる
N M Rイメージング装置を提供することにある。
The present invention was made in view of the above points, and an object of the present invention is to provide an NMR imaging apparatus that can continuously generate high-quality images.

(問題点を解決するための手段) L2目的を達成づ−る本発明のN M Rイメージング
装置は、静磁場に勾配′v11鴨を印加したとき、該勾
配置a場による影響を補償し前記静磁場による強度のみ
に対応する信号を出力する磁場検出センサを設け、該磁
場検出センサによる検出信号を用いて前記静磁場の変動
を補正する構成となっている。
(Means for Solving the Problems) The NMR imaging apparatus of the present invention that achieves the L2 objective compensates for the influence of the gradient a field when a gradient 'v11' is applied to the static magnetic field. A magnetic field detection sensor that outputs a signal corresponding only to the intensity of the static magnetic field is provided, and the detection signal from the magnetic field detection sensor is used to correct fluctuations in the static magnetic field.

(実施例) 以下、図面を参照し本発明について詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図乃至第3図は、本発明の一実施例を示す構成図で
あり、第1図は、NMRイメージング装置の構成図、第
2図は、磁場検出センサの設δ位置説明図、第3図は、
静磁場測定・制御部の構成図である。
1 to 3 are configuration diagrams showing one embodiment of the present invention, FIG. 1 is a configuration diagram of an NMR imaging apparatus, FIG. 2 is a diagram explaining the setting δ position of a magnetic field detection sensor, and FIG. Figure 3 is
FIG. 3 is a configuration diagram of a static magnetic field measurement/control unit.

NMRイメージング装置の磁石部は、静la場コイル駆
動部1によって付勢される静磁場コイル2ど、勾配磁場
コイル駆動部3によって付勢される勾配磁場コイル4と
で構成される。静磁鳴コイル駆動部1は、磁石部内の特
定の箇所(後述)からの磁場強度信号を人力し、所定の
叫埋をりる静磁場測定・制御部5によって操作される(
駆動のスタート、ストップは」ンHo−ラ(3からの信
号に従う)。勾配磁場コイル4は、x、y、zの各1袖
のコイルを備え、各=]コイル付勢モードは、勾配磁場
コイル駆動部3を操作づる」ンl−D−ラ6の制御信号
に従う。磁場検出センサ7は、11鳴周波数が磁場1−
(oに依存づる物質、例えば・F水D20が収納された
容器7△と、この容器7Aの周囲に巻回するセン1ナニ
]イル7Bと、容器7Aを間にして配置する2個のコイ
ルから成るZ勾配補償〕イル7Cとで構成されている。
The magnet section of the NMR imaging apparatus is composed of a static magnetic field coil 2 energized by a static LA field coil driver 1 and a gradient magnetic field coil 4 energized by a gradient magnetic field coil driver 3 . The magnetostatic coil drive unit 1 is operated by a static magnetic field measurement/control unit 5 that manually receives a magnetic field strength signal from a specific location within the magnet unit (described later) and receives a predetermined signal (
The start and stop of driving is done by following the signal from 3. The gradient magnetic field coil 4 includes one coil each for x, y, and z, and each coil energization mode follows the control signal of the driver 6 that operates the gradient magnetic field coil drive unit 3. . The magnetic field detection sensor 7 has a ringing frequency of 11 when the magnetic field 1-
A container 7△ containing a substance that depends on o, for example, F water D20, a coil 7B wound around this container 7A, and two coils placed with the container 7A in between. Z gradient compensation] file 7C.

7勾配補償二】イル7Cには、勾配磁場コイル駆動部3
の出力と同一波形の電流が増幅器8を介しで与えられる
。そして、2勾配補償コイル7Cは、磁場検出センサ”
7を第2図(第2図の4) 及び4Z2はZ@勾配磁場
コイル)に示1位置、即ち、Z軸上で、かつ、画像領域
に近(14プで設置したとき、センサ」イル7Bの位置
近傍におけるl勾配磁場の影替を打消すように成ってい
る。
7 Gradient Compensation 2] The gradient magnetic field coil drive unit 3 is installed in the coil 7C.
A current having the same waveform as the output of is provided via amplifier 8. The second gradient compensation coil 7C is a magnetic field detection sensor.
7 is shown in Figure 2 (4 in Figure 2) and 4Z2 is Z@gradient magnetic field coil). It is designed to cancel the shadow change of the l gradient magnetic field near the position of 7B.

尚、通常、NMRイメージング装置における勾配磁場は
、画像領域の中心Oを原点としで、その左右、又は、上
Fで符号(向き)が変わり、大きさが直線的変化Jるよ
うに与えられている。
Normally, the gradient magnetic field in an NMR imaging device is applied so that the origin is at the center O of the image area, and the sign (orientation) changes to the left, right, or above F of the center, and the magnitude changes linearly. There is.

励磁コイル9及び検出コイル10は、Z軸を中心にして
90’回転させた位置を保持して、前記磁石部内に設置
される。励磁コイル9は、コン]−ローラ6の制御下に
あるゲート回路11、゛パワーアンプ12等を介して冑
られるRF発振器13の出力信号によって付勢され、被
検体(図示けず)に高周波電磁波をりえる(高周波電磁
波の周波数は、測定対像原子核のNMR共鳴条イ′[に
対応する周波数、例えば、プロトンでは42.6MH2
/王となっている)。又、検出コイル10は、被検体の
所望の部位からのN M R信号を検出する。検出され
たN M R信号は、プリアンプ14、位相検波器15
〈基準信号はRF発振器13の出力信号〉等を介してメ
モリ16に入力され格納される。そして、適宜、画像表
示部17に読出される。画像表示部17は、コンピュー
タ、CRT′6で構成され、メモリー6から読込んだデ
ータを用いて所定の処理(再構成処理)をしく−画像表
示を16ようになっている。
The excitation coil 9 and the detection coil 10 are installed in the magnet part while maintaining the positions rotated by 90' around the Z-axis. The excitation coil 9 is energized by an output signal of an RF oscillator 13 which is generated via a gate circuit 11, a power amplifier 12, etc. under the control of a controller 6, and emits high-frequency electromagnetic waves to a subject (not shown). (The frequency of the high-frequency electromagnetic wave is the frequency corresponding to the NMR resonance wave of the atomic nucleus to be measured, for example, 42.6MH2 for protons.
/ has become king). Further, the detection coil 10 detects an NMR signal from a desired part of the subject. The detected NMR signal is sent to a preamplifier 14 and a phase detector 15.
The reference signal is input to the memory 16 via the output signal of the RF oscillator 13 and stored therein. Then, the image is read out to the image display section 17 as appropriate. The image display section 17 is composed of a computer and a CRT'6, and is configured to perform predetermined processing (reconstruction processing) using data read from the memory 6 and display an image.

次に、静磁場測定・制御部5につい−(−第3図を参照
して説明する。
Next, the static magnetic field measurement/control section 5 will be explained with reference to FIG.

静磁場測定・制御部5においで、]」ンデンリC1、C
2、→変容量ダイオードD4.02 、可変容量コンデ
ンサC、コイル713等から<Zる共■ 振回路21と、電界効果型l−ランジスタ(F E T
 )Q、Q、、、帰還]ンデン+j C8等から成る回
路22とで発振回路23が構成される(」ンj″ンリ−
CI−1及びインダクタンスL1−(の「j列共振回路
はイメージングのための高周波除去回路Cある)13周
波数カウンタ24及び誤差検出回路25は、ブを撤回路
23の発掘周波数をRF増巾器26を介しく一計数し、
該計数値と設定値どの差に応じた電圧を可変容量ダイオ
ードD2に印加し′で発振周波数を所定値に保持する(
発振周波数は、磁場検出センサ7が重水素原子核のN 
M R現℃を利用するどさ−16,356MHz /T
i、:設定される)。1ト発振器27は、数10〜数K
H7の低周波信号を出力し、該信号を可変容量ダイオー
ドD1に印加して発振回路23の発振周波数を周波数変
調する。検波回路28は、RF増巾器26の出力をAM
検波し、該検波信号でFET Q2のゲー1〜を操作し
て発振回路23の発振振巾を一定にする。ベースライン
補正回路29は、FET  Q2のドレイン側に接続さ
れ、発振回路23の発振周波数の変化によるΔM酸成分
除去する。位相検波回路30は、し1発振器27の出力
信号を基準信号とし、LF増巾晶31を介して得る発振
回路23の低周波成分に対応する信号を出力する。p+
演算回路32は、メモリ33から与えられる信号を設定
値に、又、位相検波回路30からの信号を測定値とした
制御演算(比例・積分演Fi)をし、静磁場コイル駆動
部1を操作する。
In the static magnetic field measurement/control unit 5,
2.→The resonant circuit 21 from the variable capacitance diode D4.02, the variable capacitor C, the coil 713, etc., and the field effect type l-transistor (FET
) Q, Q,,, feedback] An oscillation circuit 23 is constituted by a circuit 22 consisting of C8, etc.
CI-1 and the inductance L1- (the J-column resonant circuit is a high frequency removal circuit for imaging) 13, the frequency counter 24 and the error detection circuit 25 remove the excavated frequency of the path 23, and the RF amplifier 26 count through
A voltage corresponding to the difference between the counted value and the set value is applied to the variable capacitance diode D2, and the oscillation frequency is maintained at a predetermined value by '.
The oscillation frequency is determined by the magnetic field detection sensor 7
Using MR temperature - 16,356MHz/T
i,: set). The oscillator 27 has a frequency of several tens to several K.
A low frequency signal of H7 is output, and the signal is applied to the variable capacitance diode D1 to frequency modulate the oscillation frequency of the oscillation circuit 23. The detection circuit 28 converts the output of the RF amplifier 26 into AM
The detected signal is used to operate the gates of FET Q2 to keep the oscillation width of the oscillation circuit 23 constant. The baseline correction circuit 29 is connected to the drain side of the FET Q2, and removes a ΔM acid component caused by a change in the oscillation frequency of the oscillation circuit 23. The phase detection circuit 30 uses the output signal of the first oscillator 27 as a reference signal, and outputs a signal corresponding to the low frequency component of the oscillation circuit 23 obtained via the LF amplifying crystal 31. p+
The calculation circuit 32 performs control calculations (proportional/integral calculation Fi) using the signal given from the memory 33 as a set value and the signal from the phase detection circuit 30 as a measurement value, and operates the static magnetic field coil drive section 1. do.

尚、メモリ33には、発振回路23の発条周波数が所定
値のときの位相検波回路30の出力信号値Eoが格納さ
れている。
Note that the memory 33 stores the output signal value Eo of the phase detection circuit 30 when the oscillation frequency of the oscillation circuit 23 is a predetermined value.

次に、上記構成の動作について説明する。Next, the operation of the above configuration will be explained.

静磁場コイル駆動部1、勾配!a揚場−イル駆動部3及
びゲート回路10は、コン1−ローラ6からの操作信号
によって駆動され、各コイル2.4及び9は所定のシー
ケンスで付勢される。即も、静磁場コイル2により、Z
@力方向一様な静1a揚](。
Static magnetic field coil drive unit 1, gradient! The lift station-oil drive section 3 and gate circuit 10 are driven by operating signals from the controller 1-roller 6, and each coil 2.4 and 9 is energized in a predetermined sequence. Immediately, by the static magnetic field coil 2, Z
@ Uniform force direction static 1a lift] (.

が形成される。又、勾配磁場コイル4のZ軸−コイルに
よってZ軸方向の直線勾配置!場が与えられ、静!4!
場1−16に小骨される(スライス面が決定される)。
is formed. Also, the Z-axis of the gradient magnetic field coil 4 - the linear gradient position in the Z-axis direction by the coil! A place is given and silence! 4!
The ossicles are cut into fields 1-16 (the slicing plane is determined).

このとき、2個の7勾配補償]イル7Cには、2軸コイ
ルを付勢する電流と同じ波形の電流が流れる。そして、
センサコイル7Bの近傍において、前記静磁場H61,
:Φ畳する2軸方向の直線勾配!4i場をキャンセルす
る磁場が形成される。この状態にて、勾配la場]イル
4のx@二]イル及びy軸コイルによりX軸方向及びy
軸方向における勾配磁場が順次所定のパターン(パター
ンは2次元フーリエ変換法との関連で決定される)′C
:与えられると共に、このシーケンスにタイミングを合
せて励磁コイル9からスピン・エコー法に基づく高周波
パルスが与えられる。このとき、磁場検出センサ7は、
X勾配磁JΩ及びyll場が零の位置に設置されている
ため、センサコイル7BにはX勾配磁場及びy勾配la
場の影響は現れない。前記高周波パルスの励起によりN
MR信号が発生する。
At this time, a current having the same waveform as the current that energizes the biaxial coil flows through the two 7-gradient compensation coils 7C. and,
In the vicinity of the sensor coil 7B, the static magnetic field H61,
: Linear gradient in two axes that folds into Φ! A magnetic field is created that cancels the 4i field. In this state, the gradient la field]x@2]ile and y-axis coil of the gradient la field]
The gradient magnetic field in the axial direction is sequentially formed into a predetermined pattern (the pattern is determined in conjunction with the two-dimensional Fourier transform method)'C
: is given, and a high frequency pulse based on the spin echo method is given from the excitation coil 9 in synchronization with this sequence. At this time, the magnetic field detection sensor 7
Since the X gradient magnetic field JΩ and the yll field are installed at the zero position, the sensor coil 7B has the X gradient magnetic field and the y gradient la
There are no field effects. Due to the excitation of the high frequency pulse, N
An MR signal is generated.

NMR信号は、検出コイル10で検出され、プリアンプ
14で増巾された後、位相検波器15でRF発振器13
からの信号を基準信号として検波されメモリ16に格納
される。
The NMR signal is detected by the detection coil 10, amplified by the preamplifier 14, and then amplified by the RF oscillator 13 by the phase detector 15.
The signal is detected as a reference signal and stored in the memory 16.

一方、静磁場測定・制御部5において、発振間回路23
は、コイル7BのインダクタンスLCと共振回振21の
合成容量Ccで定まる周波数f=1/2π(L  C)
   で発振する(発振周波C 数は、可変容量コンデンサCvの調整により、6゜35
6Ml−1/Tに設定されている)。誤差検出回路25
から上記発振周波数と設定値との差に対応する電圧が出
力され、可変容量ダイオードD2に印加される。これに
より、発振回路23の発振周波数は設定値に一致する。
On the other hand, in the static magnetic field measurement/control section 5, the inter-oscillation circuit 23
is the frequency f = 1/2π (L C) determined by the inductance LC of the coil 7B and the combined capacitance Cc of the resonance resonator 21.
(The oscillation frequency C is adjusted to 6°35 by adjusting the variable capacitor Cv.
6Ml-1/T). Error detection circuit 25
A voltage corresponding to the difference between the oscillation frequency and the set value is outputted from and applied to the variable capacitance diode D2. As a result, the oscillation frequency of the oscillation circuit 23 matches the set value.

ところで、発振回路23の発振周波数はLF発撮器27
の出力信号によって周波数変調され、その発振周波数が
重水素Ijlt了核の吸収周波数に一致すると、重水素
原子核によるmBfl波の吸収が行われる。このため、
発振回路23のtt撮開回路21Qが変化する。従って
、発振回路23のF E T Q、のドレイン側には、
重水素原子核のNMR現や(共振回路21のQの変化)
が現れる。このとき、2勾配補償コイル7Cによって重
水素原子核近傍における2勾配磁場がキャンセルされて
いるため、前記NMR現象に係わる磁場は、静磁場コイ
ル2によってのみ決定される(2勾配磁場の影響をうけ
ない)。
By the way, the oscillation frequency of the oscillation circuit 23 is the same as that of the LF oscillator 27.
When the oscillation frequency matches the absorption frequency of the deuterium nucleus, the mBfl wave is absorbed by the deuterium nucleus. For this reason,
The tt open circuit 21Q of the oscillation circuit 23 changes. Therefore, on the drain side of FETQ of the oscillation circuit 23,
NMR behavior of deuterium nucleus (change in Q of resonant circuit 21)
appears. At this time, since the two-gradient magnetic field near the deuterium nucleus is canceled by the two-gradient compensation coil 7C, the magnetic field related to the NMR phenomenon is determined only by the static magnetic field coil 2 (not affected by the two-gradient magnetic field). ).

位相検波回路30は、l−1発振器27からの信号を基
準信号とし、FET  Qlのドレイン側信号を検波し
て出力する。この出力信号は、第4図に示す特性となる
(第4図の1軸は、位相検波回路30の出力信号、横軸
は静磁場強度を示す)。
The phase detection circuit 30 uses the signal from the l-1 oscillator 27 as a reference signal, detects and outputs the drain side signal of the FET Ql. This output signal has the characteristics shown in FIG. 4 (one axis in FIG. 4 shows the output signal of the phase detection circuit 30, and the horizontal axis shows the static magnetic field strength).

第4図における信号値E。は、静磁場を印加しない状態
で(イメージング動作に入る前の状1))、発振回路2
3の発振周波数を所定の値に一致させたときの位相検波
回路30の出力信号であって、予めメモリ33に格納さ
れ、制御演粋の設定値としてPI演算回路32に与えら
れる。
Signal value E in FIG. The oscillation circuit 2 is in a state where no static magnetic field is applied (state 1 before starting the imaging operation)
This signal is an output signal of the phase detection circuit 30 when the oscillation frequency of 3 is made to match a predetermined value, is stored in the memory 33 in advance, and is given to the PI calculation circuit 32 as a set value of the control equation.

PI演算回路32は、静磁場コイル駆動部1を操作しな
がら、位相検波回路30からの信号を設定値E。に一致
させる。これにより、静li場強度が所定の強度)−(
、(第4図参照)となる。
The PI calculation circuit 32 converts the signal from the phase detection circuit 30 to a set value E while operating the static magnetic field coil drive unit 1. match. As a result, the static li field intensity becomes a predetermined intensity) - (
, (see Figure 4).

上記のように、PI演算回路32は、勾配磁場に関係の
ない磁場からの信号(2勾配磁場をキャンセルして得ら
れる磁場強度信号)を連続的に入力して静磁場強度を制
御する。従って、静磁場のυ制御性を高めることができ
、高品質の画像を連続的に得ることができる。
As described above, the PI calculation circuit 32 controls the static magnetic field strength by continuously inputting a signal from a magnetic field unrelated to the gradient magnetic field (a magnetic field strength signal obtained by canceling two gradient magnetic fields). Therefore, the υ controllability of the static magnetic field can be improved, and high-quality images can be continuously obtained.

尚、本発明は、上記実施例に限定するものではなく、勾
配補償コイルの代りに第5図に示すように、センサコイ
ルを低い抵抗部材、例えば、銅から成る箱に収納設置し
てもよい。
Note that the present invention is not limited to the above-mentioned embodiments, and instead of the gradient compensation coil, the sensor coil may be housed and installed in a box made of a low resistance member, such as copper, as shown in FIG. .

このような構成において、勾配磁場が印加されると、箱
の側壁に生ずる渦電流によって勾配磁場の成分が打消さ
れる。従って、センサコイルの位置の磁場強度を一定に
づることができる。この方式は、2勾配磁場が長時間印
加されないどきに有効である。
In such a configuration, when a gradient magnetic field is applied, the components of the gradient magnetic field are canceled by eddy currents generated on the side walls of the box. Therefore, the magnetic field strength at the position of the sensor coil can be kept constant. This method is effective when two gradient magnetic fields are not applied for a long time.

又、本発明は、磁場検出(?ンリ近傍の勾配磁場を検出
する手段(さぐり]コイルを設け、該手段の出力で勾配
磁場補償コイルを付勢し、磁場検出センサ近傍における
勾配磁場の影響を1−トシセルするようにしてもよい(
x=y=o、Z≠0の位置にさぐりコイルを設置し、こ
のコイルの誘起電圧を積分すれば2勾配磁場?J!4度
に対応づ−る信号を得ることができる)、又、勾配磁場
補償コイルによるキャンセルはy勾配、X勾配又は、こ
れらの組合せであってもよい。
Further, the present invention provides a means (search) coil for detecting a gradient magnetic field near the magnetic field detection sensor, and uses the output of the means to energize a gradient magnetic field compensation coil to eliminate the influence of the gradient magnetic field near the magnetic field detection sensor. 1-Toshicell may be used (
If we install a probe coil at the position where x=y=o and Z≠0 and integrate the induced voltage of this coil, we get two gradient magnetic fields? J! 4 degrees), and the cancellation by the gradient magnetic field compensation coil may be the y-gradient, the x-gradient, or a combination thereof.

更に、上記実施例において、静磁場測定・制御部5が静
磁場コイル駆動部1を操作しているが、これに代えて、
RF発振器13を操作し、イの発振周波数を制御しても
よい。更に、位相検波器15の基準信号を変えるように
してもよい。更に、静磁場測定・制御部5における磁場
検出信号(位相検波回路30の出力信号)を画像表示部
17のコンピュータに入力し、画像再構成処理のとき、
静磁場の変動によるデータの変化、例えば、プロジェク
ションの位置ずれを補正するようにしてもよい。
Furthermore, in the above embodiment, the static magnetic field measurement/control unit 5 operates the static magnetic field coil drive unit 1, but instead of this,
The oscillation frequency of A may be controlled by operating the RF oscillator 13. Furthermore, the reference signal of the phase detector 15 may be changed. Furthermore, the magnetic field detection signal (output signal of the phase detection circuit 30) in the static magnetic field measurement/control unit 5 is input to the computer of the image display unit 17, and during image reconstruction processing,
Changes in data due to fluctuations in the static magnetic field, for example, positional shifts in projection, may be corrected.

(発明の効果) 以上、説明の通り、本発明のNMRイメージング装置に
よれば、静磁場に勾配磁場を印加したとき、該勾配磁場
による影響を補償し前記静磁場による強度のみに対応す
る信号を出力する磁場検出はンザを設け、該磁場検出セ
ンサによる検出信号を用いて前記静磁場の変動を補正す
るようにしたため、高品質の画像を連続的に得ることが
できる。
(Effects of the Invention) As explained above, according to the NMR imaging apparatus of the present invention, when a gradient magnetic field is applied to a static magnetic field, the influence of the gradient magnetic field is compensated for and a signal corresponding only to the intensity of the static magnetic field is generated. A sensor is provided to detect the magnetic field to be output, and fluctuations in the static magnetic field are corrected using the detection signal from the magnetic field detection sensor, so high-quality images can be continuously obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す構成図、第2図は、
磁場検出センサの設置位置の説明図、第3図は、静磁場
測定・制御部の構成図、第4図は、静磁場測定・制御部
の動作説明図、第5図は、本発明の他の実施例を示す構
成図である。 7・・・磁場検出センサ、7A・・・容器、7B・・・
コイル、7C・・・勾配磁場補償コイル、23・・・発
振回路、24・・・周波数カウンタ、24・・・誤差検
出回路、27・・・LF発振器、30・・・位相検波回
路、32・・・P■演算回路。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
An explanatory diagram of the installation position of the magnetic field detection sensor, Fig. 3 is a configuration diagram of the static magnetic field measurement/control unit, Fig. 4 is an explanatory diagram of the operation of the static magnetic field measurement/control unit, and Fig. 5 is an illustration of the configuration of the static magnetic field measurement/control unit. FIG. 7... Magnetic field detection sensor, 7A... Container, 7B...
Coil, 7C... Gradient magnetic field compensation coil, 23... Oscillation circuit, 24... Frequency counter, 24... Error detection circuit, 27... LF oscillator, 30... Phase detection circuit, 32... ...P ■ Arithmetic circuit.

Claims (10)

【特許請求の範囲】[Claims] (1)静磁場内に被検体を設置し、該被検体に予め定め
たシーケンスに従つて勾配磁場及び高周波電磁波を印加
して核磁気共鳴現象に基づく信号を検出し、画像表示す
るNMRイメージング装置において、 前記勾配磁場を印加したとき、該勾配磁場による影響を
補償し前記静磁場による強度のみに対応する信号を出力
する磁場検出センサと、該磁場検出センサによる検出信
号を用いて前記静磁場の変動を補正する制御手段とを備
えることを特徴とするNMRイメージング装置。
(1) An NMR imaging device that installs a subject in a static magnetic field, applies a gradient magnetic field and high-frequency electromagnetic waves to the subject according to a predetermined sequence, detects signals based on nuclear magnetic resonance phenomena, and displays images. When the gradient magnetic field is applied, a magnetic field detection sensor that compensates for the influence of the gradient magnetic field and outputs a signal corresponding only to the intensity of the static magnetic field; and a magnetic field detection sensor that outputs a signal corresponding only to the intensity of the static magnetic field; An NMR imaging apparatus comprising: control means for correcting fluctuations.
(2)前記磁場検出センサが核磁気共鳴現象に基づく信
号を出力することを特徴とする特許請求の範囲第1項の
NMRイメージング装置。
(2) The NMR imaging apparatus according to claim 1, wherein the magnetic field detection sensor outputs a signal based on a nuclear magnetic resonance phenomenon.
(3)前記磁場検出センサが被検体の対象核種とは異な
る核種の核磁気共鳴現象に基づく信号を出力することを
特徴とする特許請求の範囲第2項のNMRイメージング
装置。
(3) The NMR imaging apparatus according to claim 2, wherein the magnetic field detection sensor outputs a signal based on a nuclear magnetic resonance phenomenon of a nuclide different from the target nuclide of the subject.
(4)前記磁場検出センサが前記勾配磁場を形成する電
流と同じ電流波形で付勢されるコイルであつて、該磁場
検出センサ近傍における前記勾配磁場の影響をキャンセ
ルする補償コイルを備えることを特徴とする特許請求の
範囲第1項のNMRイメージング装置。
(4) The magnetic field detection sensor includes a compensation coil that is energized with the same current waveform as the current that forms the gradient magnetic field, and that cancels the influence of the gradient magnetic field in the vicinity of the magnetic field detection sensor. An NMR imaging apparatus according to claim 1.
(5)前記磁場検出センサが該磁場検出センサ近傍の勾
配磁場を検出する手段と、該手段の出力信号によつて付
勢され、該磁場検出センサ近傍における前記勾配磁場の
影響をキャンセルする補償コイルとを備えることを特徴
とする特許請求の範囲第1項のNMRイメージング装置
(5) means for the magnetic field detection sensor to detect a gradient magnetic field in the vicinity of the magnetic field detection sensor; and a compensation coil energized by the output signal of the means to cancel the influence of the gradient magnetic field in the vicinity of the magnetic field detection sensor. An NMR imaging apparatus according to claim 1, comprising:
(6)前記磁場検出センサが低抵抗の部材から成る箱の
中に設置されることを特徴とする特許請求の範囲第1項
のNMRイメージング装置。
(6) The NMR imaging apparatus according to claim 1, wherein the magnetic field detection sensor is installed in a box made of a low-resistance member.
(7)前記制御手段が前記静磁場の強度を制御すること
を特徴とする特許請求の範囲第1項のNMRイメージン
グ装置。
(7) The NMR imaging apparatus according to claim 1, wherein the control means controls the intensity of the static magnetic field.
(8)前記制御手段が前記高周波電磁波の周波数を制御
することを特徴とする特許請求の範囲第1項のNMRイ
メージング装置。
(8) The NMR imaging apparatus according to claim 1, wherein the control means controls the frequency of the high-frequency electromagnetic wave.
(9)前記制御手段が前記核磁気共鳴現象に基づく信号
を検出するときの基準信号の周波数を制御することを特
徴とする特許請求の範囲第1項のNMRイメージング装
置。
(9) The NMR imaging apparatus according to claim 1, wherein the control means controls the frequency of a reference signal when detecting a signal based on the nuclear magnetic resonance phenomenon.
(10)前記制御手段が前記画像表示するときのデータ
の変化を補正することを特徴とする特許請求の範囲第1
項のNMRイメージング装置。
(10) Claim 1, characterized in that the control means corrects changes in data when displaying the image.
NMR imaging device.
JP60191527A 1985-08-30 1985-08-30 Nmr imaging device Granted JPS6263848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60191527A JPS6263848A (en) 1985-08-30 1985-08-30 Nmr imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60191527A JPS6263848A (en) 1985-08-30 1985-08-30 Nmr imaging device

Publications (2)

Publication Number Publication Date
JPS6263848A true JPS6263848A (en) 1987-03-20
JPH049413B2 JPH049413B2 (en) 1992-02-20

Family

ID=16276146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60191527A Granted JPS6263848A (en) 1985-08-30 1985-08-30 Nmr imaging device

Country Status (1)

Country Link
JP (1) JPS6263848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112736A (en) * 1999-08-27 2001-04-24 General Electric Co <Ge> Field frequency locking system for magnetic resonance system
WO2015072301A1 (en) * 2013-11-12 2015-05-21 株式会社 日立メディコ Magnetic resonance imaging apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050441A (en) * 1983-08-30 1985-03-20 Yokogawa Medical Syst Ltd Magnetic-field calibrating device in nuclear-magnetic- resonance imaging apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050441A (en) * 1983-08-30 1985-03-20 Yokogawa Medical Syst Ltd Magnetic-field calibrating device in nuclear-magnetic- resonance imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112736A (en) * 1999-08-27 2001-04-24 General Electric Co <Ge> Field frequency locking system for magnetic resonance system
JP4544443B2 (en) * 1999-08-27 2010-09-15 ゼネラル・エレクトリック・カンパニイ Field frequency lock system for magnetic resonance systems
WO2015072301A1 (en) * 2013-11-12 2015-05-21 株式会社 日立メディコ Magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JPH049413B2 (en) 1992-02-20

Similar Documents

Publication Publication Date Title
US4672320A (en) Imaging apparatus and method using nuclear magnetic resonance
JP2001112736A (en) Field frequency locking system for magnetic resonance system
JP2002159463A (en) Method of measuring fluctuation of magnetic field for mri apparatus, method of compensating fluctuation of magnetic field, and mri apparatus
JP2002143127A (en) Compensation method and apparatus for magnetic resonance imaging
JPH0213435A (en) Correction of phase distortion attributed to eddy current and system thereof
JPS6263848A (en) Nmr imaging device
JP3753505B2 (en) Disturbance magnetic field compensation method and magnetic resonance imaging apparatus
WO2007106360A1 (en) Real-time shimming of respiration induced polarizing magnetic field changes
JPS6267433A (en) Nmr imaging apparatus
JP3337712B2 (en) Magnetic resonance imaging equipment
JP3137366B2 (en) Magnetic resonance imaging equipment
US4760337A (en) Nuclear magnetic resonance methods and apparatus
US5227726A (en) Nuclear magnetic resonance methods and apparatus
US4887035A (en) Magnetic resonance spectroscopy system
JPH11290289A (en) Examination instrument using nuclear magnetic resonance
JPH01303142A (en) Magnetic resonance imaging device
JP2002017706A (en) Magnetic resonance imaging device with function of measuring magnetic field fluctuation with high accuracy
JPH05220126A (en) Magnetic resonance imaging device
JPH09117422A (en) Generating apparatus of driving wave form for oblique magnetic field, eddy current estimating apparatus, mr imaging method and mri apparatus
JPH03151936A (en) Nuclear magnetic resonance diagnostic apparatus
JPS6363441A (en) Nuclear magnetic resonance image pickup apparatus
JPH0250730B2 (en)
JPH02274228A (en) Magnetic resonance imaging device
JP2597098B2 (en) Magnetic resonance imaging equipment
JPS59105550A (en) Inspection method by nuclear magnetic resonance