JPS6263847A - Effective magnetic field variable type nuclear magnetic resonance image pickup equipment - Google Patents

Effective magnetic field variable type nuclear magnetic resonance image pickup equipment

Info

Publication number
JPS6263847A
JPS6263847A JP60179825A JP17982585A JPS6263847A JP S6263847 A JPS6263847 A JP S6263847A JP 60179825 A JP60179825 A JP 60179825A JP 17982585 A JP17982585 A JP 17982585A JP S6263847 A JPS6263847 A JP S6263847A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetization
effective
effective magnetic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60179825A
Other languages
Japanese (ja)
Other versions
JPH0252496B2 (en
Inventor
Jiro Namikawa
並河 次郎
Yuji Inoue
井上 勇二
Hiroyuki Matsuura
裕之 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Medical Systems Ltd filed Critical Yokogawa Electric Corp
Priority to JP60179825A priority Critical patent/JPS6263847A/en
Publication of JPS6263847A publication Critical patent/JPS6263847A/en
Publication of JPH0252496B2 publication Critical patent/JPH0252496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To shorten the recovery time to a thermal equilibrium state of magnetization by making the magnetization in a relaxation process follow up an effective magnetic field by the effective magnetic field which is converted from the direction to which the magnetization is oriented, to the Z direction, after a nuclear magnetic resonance signal is observed. CONSTITUTION:A gradient magnetic field use coil is driven through a gradient magnetic field controlling circuit 8 from a controller 17, and a z gradient magnetic field is applied. At the same time, an exciting coil 4 is driven. In such a state, an observation is executed. After a nuclear magnetic resonance observation period is ended, it is stopped to apply all gradient magnetic fields Gz, Gx and Gy, and a resonance signal from a resonance frequency variable oscillator 9 is applied from the direction (y). In such a case, its frequency is lowered gradually from a resonance frequency of an object atomic nucleus, or form an appropriate frequency of a degree a little higher than its resonance frequency. As a result, an effective magnetic field converts its direction slowly in the direction Z, and the magnetization follows up this effective magnetic field and converts its direction in the direction Z.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、核磁気共鳴(nuclear magnet
ic  resonance )  (以下これf「N
MRJと略称する。)現象を利用して、被検体内におt
ノる特定原子゛核分布等を被検体外部より知るようにし
た核磁気共鳴による検査装置(以下N M R@像装置
という)に関し、特に有効磁場の印加方式に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to nuclear magnetic resonance (nuclear magnetic resonance).
ic resonance) (hereinafter referred to as f"N
It is abbreviated as MRJ. ) using the phenomenon to inject t into the subject.
The present invention relates to a nuclear magnetic resonance examination apparatus (hereinafter referred to as an NMR imaging apparatus) in which the nuclear distribution of a specific atom can be determined from outside a subject, and particularly relates to a method of applying an effective magnetic field.

(従来の技術) スピン系にRF磁場を印加して共鳴させる方式としては
、従来よりパルス方式とCW方式とがある。通常、NM
Rljtlffiでは、パルス(9o°バルスや180
°パルスが使用される)方式を用い、パルス磁場により
励起されたスピン集団に一連の位置情報を与えてNMR
信号を観測することにより被検体の断層像を得るように
している。 パルス磁場を印加しスピン系を励起しては
NMR信号を観測するという一連の動作を複数ビューに
わたり繰返す場合、一度励起されたスピン系による磁化
(磁気モーメント)Mが静磁場方向に向き平衡状態にな
るのを持ってから次の励起が1テわれるようになってい
る。励起パルスの間隔は通常下τと定義される。
(Prior Art) As methods for applying an RF magnetic field to a spin system to make it resonate, there are conventionally a pulse method and a CW method. Usually, N.M.
Rljtlffi uses pulses (9o° pulses and 180° pulses).
NMR is performed by imparting a series of positional information to a population of spins excited by a pulsed magnetic field.
A tomographic image of the subject is obtained by observing the signals. When a series of operations in which a pulsed magnetic field is applied to excite a spin system and an NMR signal is observed is repeated over multiple views, the magnetization (magnetic moment) M of the once excited spin system is oriented in the direction of the static magnetic field and reaches an equilibrium state. The next excitation is performed one time after the current is reached. The interval between excitation pulses is usually defined as τ.

(発明が解決しようとする問題点) ところで、励起されたスピン系の磁化Mが第5図に示す
ように静磁場方向に向き、平衡状態に自然回復する速さ
を表わす縦緩和時間T1は、生体の場合では約500m
 s〜2sであり、Tτ〜TIとした場合にはイメージ
ングに時間がかかるという問題があった(飽和回復法(
SR法)や反転回復法(IR法)8等のパルスシーケン
スではこの自然回復法を用いている〉。
(Problems to be Solved by the Invention) By the way, as shown in FIG. 5, the longitudinal relaxation time T1, which represents the speed at which the magnetization M of the excited spin system is oriented in the direction of the static magnetic field and spontaneously recovers to an equilibrium state, is: Approximately 500m for living organisms
s ~ 2s, and when Tτ ~ TI, there was a problem that imaging took time (saturation recovery method (
This natural recovery method is used in pulse sequences such as the SR method (SR method) and the inversion recovery method (IR method).

回復時間を短縮づる一つの方法として、第6図に示すよ
うにRFパルス(906パルス)を印加し、xy平面に
ある磁化Mを強制的にl軸方向(静磁場の方向)に向(
)る方法がある。この方法は通常DEFT法と呼ばれて
いる。この方法ではRFIa場強度分布が場所により均
一でないこと、パルス印加のタイミングが難しい等の問
題があった。
One way to shorten the recovery time is to apply an RF pulse (906 pulses) as shown in Figure 6 to force the magnetization M in the xy plane to move in the l-axis direction (direction of the static magnetic field).
) There is a way to do it. This method is usually called the DEFT method. This method has problems such as that the RFIa field intensity distribution is not uniform depending on the location and that the timing of pulse application is difficult.

本発明の目的は、この様な点に鑑み、励起されxy平面
にある磁化を、場所による不均一の彩管が少なく、効率
よく静磁場方向(2軸方向)に強制的に向け、回復時間
を短縮しイメージングの高速化を図り得る有効磁場可変
型核磁気共鳴Ill装置を提供することにある。
In view of these points, an object of the present invention is to force the excited magnetization in the xy plane to efficiently direct the magnetization in the direction of the static magnetic field (two axes) with less unevenness depending on the location, and to shorten the recovery time. An object of the present invention is to provide a variable effective magnetic field type nuclear magnetic resonance Ill apparatus that can shorten the time and speed up imaging.

(問題点を解決するための手段) この様な目的を達成するために本発明では、対象物に高
周波パルス及び磁場を印加して核磁気共鳴信号を発生さ
せ、この信号を用いて対染物の組織に関する画像を得る
ようにした核磁気共鳴撮像装置において、 核磁気共鳴fご号を観測した債、石化が向いている方向
から2方向へと方向転換する有効磁場により、緩和過程
中の磁化をこの有効磁場に追従させて強制的に2方向へ
向けるようにする機能を有した有効磁場発生手段を具備
し、核磁気共鳴信号観測後における磁化の熱平衡状態へ
の回復時間を短縮するようにしたことを特徴とする。
(Means for Solving the Problems) In order to achieve such an object, in the present invention, a high frequency pulse and a magnetic field are applied to the object to generate a nuclear magnetic resonance signal, and this signal is used to detect the counterstain. In a nuclear magnetic resonance imaging device designed to obtain images of tissues, the magnetization during the relaxation process is detected using an effective magnetic field that changes direction from the direction in which the petrification is facing. The device is equipped with an effective magnetic field generating means that has the function of following this effective magnetic field and forcibly directing it in two directions, thereby shortening the time required for magnetization to recover to a thermal equilibrium state after observing a nuclear magnetic resonance signal. It is characterized by

〈実施例) 以下図面を用いて本発明の詳細な説明する。第1図は本
発明に係るNMRI像装置の一実施例を示す要部構成図
である。図において、1は一様静磁場Ho  (この場
合の方向を2方向とする)を発生させるための静磁場用
コイル、7はこの静磁場用コイル1を駆動する静磁場制
御回路で、例えば直流安定化電源を含んでいる。6は一
様静磁場110の均一度を上げるために静磁場用コイル
に取付【シられたシムコイル(図示せず)を駆動するた
めのシムコイル制御回路である。
<Example> The present invention will be described in detail below using the drawings. FIG. 1 is a block diagram of essential parts of an embodiment of an NMRI imaging apparatus according to the present invention. In the figure, 1 is a static magnetic field coil for generating a uniform static magnetic field Ho (two directions in this case), and 7 is a static magnetic field control circuit that drives this static magnetic field coil 1. Contains a regulated power supply. 6 is a shim coil control circuit for driving a shim coil (not shown) attached to the static magnetic field coil in order to increase the uniformity of the uniform static magnetic field 110.

3は勾配磁場用コイルを総括的に示したものである。8
はその勾配磁場用コイルを駆動する勾配磁場制御回路で
ある。
3 generally shows the gradient magnetic field coil. 8
is a gradient magnetic field control circuit that drives the gradient magnetic field coil.

4は被検体(静磁場コイルや勾配li!場」イル等で囲
まれた空間内に載置される)にR「パルスを電磁波とし
て与える励磁コイルである。5は被検体にお(プるNM
R共鳴信号を検出するための検出コイルで、励磁コイル
4の軸に対して90°回転した方向を軸として配置され
ている。
4 is an excitation coil that applies R pulses as electromagnetic waves to the subject (placed in a space surrounded by static magnetic field coils, gradient li! field coils, etc.). N.M.
This is a detection coil for detecting the R resonance signal, and is arranged with an axis in a direction rotated by 90 degrees with respect to the axis of the excitation coil 4.

9は測定しようとする原子核のNMR共鳴条件に対応す
る周波数foの前後の周波数の(ffi号を発生するこ
とのできるRF可変発振器で、その出ツノは、シーケン
ス・コントローラ17が15の信号によって開閉が制御
されるゲート回路10と、パワーアンプ11を介して励
磁コイル4に印加されている。
Reference numeral 9 denotes an RF variable oscillator capable of generating a frequency (ffi) around the frequency fo corresponding to the NMR resonance condition of the atomic nucleus to be measured. is applied to the excitation coil 4 via the gate circuit 10 and the power amplifier 11 that control the current.

12は検出コイル5から得られるNMR共鳴信号を増幅
する増幅器、13は位相検波回路、14は位相検波され
た増幅器12がらの波形信号を記憶するウェーブメモリ
回路である。15はウェーブメモリ回路からの信号を受
けて、所定の信号処理を施して被検体の断層像を得る計
IIである。
12 is an amplifier that amplifies the NMR resonance signal obtained from the detection coil 5, 13 is a phase detection circuit, and 14 is a wave memory circuit that stores the phase-detected waveform signal from the amplifier 12. Reference numeral 15 denotes II which receives the signal from the wave memory circuit and performs predetermined signal processing to obtain a tomographic image of the subject.

16は得られた断層像等を表示するための表示装置であ
る。
16 is a display device for displaying the obtained tomographic image and the like.

シーケンス・コントローラ17は、勾配磁場を制御する
ために必要な信号(アナログ信@)及びRFパルスの印
加ヤNMR信号の受信に必要な制御信号を出力すること
ができるよう(こ構成されている。
The sequence controller 17 is configured to be able to output signals (analog signals) necessary for controlling the gradient magnetic field and control signals necessary for applying the RF pulse and receiving the NMR signal.

このような構成における動作を次に説明する・磁場印加
及びRFパルスの印加によりNMR信号を発生させ、こ
れを観測するシーケンス、並びにこのようにして得られ
たNMR信号から被検体の断層像を再構成するだめの動
作は、従来の装置と同様であるので、以下簡単に説明す
る。なお本発明は、NMR信号観測の後火のシーケンス
に入るまでの、待時間すなわちスピン系の回復時間を短
縮するように工夫した動作に特徴を有するもので。
The operation of such a configuration will be explained below. - A sequence in which an NMR signal is generated by applying a magnetic field and an RF pulse, and this is observed, and a tomographic image of the subject is reconstructed from the NMR signal obtained in this way. The operations of the components are similar to those of conventional devices, and will be briefly described below. The present invention is characterized by an operation devised to shorten the waiting time, that is, the recovery time of the spin system, before entering the afterfire sequence of NMR signal observation.

あり、その動作については後述する。There is, and its operation will be described later.

ここでは投影復元法(PR法)で断層像を得るようにし
たシーケンスの場合について説明する。
Here, a case of a sequence in which a tomographic image is obtained using a projection restoration method (PR method) will be described.

1)静磁場制、I!!1回路7により静磁場用コイル1
を駆動して被検体に静磁場HOを与えた状態において、
シーケンス・コントローラ17より勾配磁場υ制御回路
8を介して勾配漁場用コーイル(ZI[lI勾配磁場用
コイル)を駆動して第2図(ロ)に示ずように2勾配磁
場Gz+を加える。この状態下でJグー8回路10を開
いてRF可変発振器9から出力されるRFI場(このと
きは90°パルス〉を通過させ、パワーアンプ11に入
力し、励磁コイル4を駆動させる。これにより、特定の
スライス而の磁化が回転座標系のy軸方向に平行になる
1) Static magnetic field control, I! ! 1 circuit 7 connects the static magnetic field coil 1
In a state where a static magnetic field HO is applied to the subject by driving the
The sequence controller 17 drives the gradient fishing field coil (ZI[lI gradient magnetic field coil) via the gradient magnetic field υ control circuit 8 to apply two gradient magnetic fields Gz+ as shown in FIG. 2(b). Under this condition, the J-Goo 8 circuit 10 is opened to allow the RFI field (in this case, a 90° pulse) output from the RF variable oscillator 9 to pass through, input it to the power amplifier 11, and drive the excitation coil 4. , the magnetization of a particular slice becomes parallel to the y-axis direction of the rotating coordinate system.

(実験室系の座標をX、Y、Z座標とし、その回転座標
系をx、y、zとする。ただし、Z軸と2軸は一致して
いる。) 2勾配磁場Gz+に続< G z″″″印加被検体の異
なる部分から生ずるN M Rfi号の位相を一致させ
るためのものである。
(Let the coordinates of the laboratory system be the X, Y, Z coordinates, and the rotating coordinate system be x, y, z. However, the Z axis and the two axes are coincident.) 2 Following the gradient magnetic field Gz+ < G This is to match the phases of the NMRfi signals generated from different parts of the subject to which z""" is applied.

次にZ勾配磁場の印加を停止し、所定の大きさのX勾配
磁sGXとy勾配磁場Gyとを印加する。
Next, the application of the Z gradient magnetic field is stopped, and an X gradient magnetic field sGX and a y gradient magnetic field Gy of a predetermined magnitude are applied.

これにより第2図(ホ)に示すようなNMR信号(FI
D信号)が発生する。このNMR信号は検出コイル5に
より検出され、増幅器12を介して位相検波回路13に
導かれ、ここで位相検波された後ウェーブメモリ回路1
4に格納される。格納されたデータは計算機15により
適宜のタイミングで読取られ、ここでフーリエ変換され
1プロジエクシヨンの信号となる。
As a result, the NMR signal (FI
D signal) is generated. This NMR signal is detected by the detection coil 5, guided to the phase detection circuit 13 via the amplifier 12, where the phase is detected, and then the wave memory circuit 1
It is stored in 4. The stored data is read at appropriate timing by the computer 15, where it is Fourier transformed and becomes a signal of one projection.

この場合のプロジェクション方向は、X勾配磁J易Gx
とy勾配磁場Gyとの合成磁場方向に直角な方向である
。したがって、X勾配磁SGXとy勾配磁場Gyとを適
宜に変えて行くことにより、異なるプロジェクションに
J31ブるf−夕を1qることができる。このようにし
て多数のプロジェクション(又はビュー)のデータを用
いてfft 8機15で被検体の断層像を再構成する。
In this case, the projection direction is
This direction is perpendicular to the direction of the composite magnetic field of Gy and the y gradient magnetic field Gy. Therefore, by appropriately changing the X gradient magnetic field SGX and the y gradient magnetic field Gy, it is possible to change the J31 field by 1q to different projections. In this way, a tomographic image of the subject is reconstructed using the fft8 machine 15 using data from a large number of projections (or views).

1qられた再構成像は表示装置16に表示される。The 1q reconstructed image is displayed on the display device 16.

次に、各ビューでNMR信号を観測した後に強制的に磁
化を回復させる場合の動作について説明する。
Next, the operation when forcibly recovering magnetization after observing the NMR signal in each view will be described.

第3図に示すように回転系における有効磁場旧−ff 
 が旧eff=10+q丁十H1で表わされ、次の条件
で変化するとき、 ただし、  γ :磁気回転比 )10:z軸方向静磁場強度 Hl :回転磁場強度 ω :共鳴周波数 磁化の向きは旧effの向きに追従することが知られテ
ィる(例えば、C,P、 5lichter 著” p
 rinciples  of  M agnetic
 Resonance” 。
As shown in Figure 3, the effective magnetic field in the rotating system -ff
is expressed as old eff=10+qd10H1, and when it changes under the following conditions, γ: gyromagnetic ratio) 10: static magnetic field strength in the z-axis direction Hl: rotating magnetic field strength ω: resonance frequency The direction of magnetization is It is known that it follows the direction of the old eff (for example, C, P, 5lichter, p.
rinciples of magnetic
“Resonance”.

p16〜22. )larper 、 NeXv  Y
 ork +’ 1963  又はA、△bragam
、  ” T he  p rineiples of
  N ucIear  Magnetism” 、 
 p  65 66、  ○xford  IJ ni
v  。
p16-22. )larper, NeXv Y
ork +' 1963 or A, △bragam
, ”The prineiples of
"NucIear Magnetism",
p 65 66, ○xford IJ ni
v.

p ress、  London and New  
”y’ork 、  1961) 。
Press, London and New
"y'ork, 1961).

本発明はこの理論を利用する。まず、バースト波状のR
F信号を与えることにより生ずるRF磁場を制御して回
転磁場をスピン方向に与え、I/14eH−を磁化の方
向と平行にしておく。その後RF倍信号周波数を対象原
子核の共鳴周波数から、又はその共鳴周波数より高し1
適切な周波数(適宜に少し高い周波数)からゆっくりと
下げてゆき、旧c++の方向を2軸方向に変化させて行
く。これにより・緩和の過程にある磁化をこの有効磁場
1l−1eff  に追従させてZ軸方向に向けること
ができる。
The present invention utilizes this theory. First, burst wavy R
The RF magnetic field generated by applying the F signal is controlled to apply a rotating magnetic field in the spin direction to keep I/14eH- parallel to the direction of magnetization. The RF multiplied signal frequency is then increased from or higher than the resonant frequency of the target nucleus.
Slowly lower the frequency from an appropriate frequency (slightly higher frequency if appropriate) and change the direction of the old c++ in two axes. This allows the magnetization in the process of relaxation to follow this effective magnetic field 1l-1eff and be directed in the Z-axis direction.

回転磁場をy軸方向から2軸方向に方向転換させる手法
としては、例えばRF磁場のII tallにより行う
手法があるaRFコイルは実験室系では固定されている
が;そのRF磁場の位相を変えることによって回転系の
xy面内でどの方向からでもRF磁場を印加することが
可能である。したがって、X方向に印加する場合のRF
倍信号は90”位相のずれたRF倍信号RFコイルに与
えることにより、X方向に回転磁場を印加することがで
きる。この場合、回転系の実験系に対する回転数ω、を
R「磁場の周波数ωRFと等しくすると、第4図に示す
ように一2方向に等価的な磁場牝−/′γを生ずる。1
1s磁場(有効磁場)は 旧。+18.士臥ル′r となる。共鳴状態ではし旋/γ=−利、となり、静磁場
と相殺され、X方向のmJ!1l=l、 のみとなる。
As a method of changing the direction of the rotating magnetic field from the y-axis direction to the two-axis directions, for example, there is a method of using II tall of the RF magnetic field.aRF coil is fixed in a laboratory system; however, changing the phase of the RF magnetic field It is possible to apply an RF magnetic field from any direction within the xy plane of the rotating system. Therefore, when applying in the X direction, RF
A rotating magnetic field can be applied in the X direction by giving the doubled signal to the RF coil with a 90" phase shift. In this case, the rotational speed ω for the experimental system of the rotating system is set to R", which is the frequency of the magnetic field. When set equal to ωRF, an equivalent magnetic field −/′γ is produced in one of two directions as shown in FIG. 4.
1s magnetic field (effective magnetic field) is old. +18. Shigaru'r becomes. In the resonant state, the helical rotation /γ = - interest, which cancels out the static magnetic field, mJ in the X direction! 1l=l, only.

ここでRF周波数を変化させると、回転系の周波数も変
化(この場合旧11.iあくまでy軸力向に保たれてい
る)し、そのため帖Vγが変化してILA)s/γ〜−
−H。となり、Z方向の磁場を生ずる。したがって、有
効磁場は、この2方向の磁場と、y7−i向の回転磁場
旧、どのベクトル和とイ鵞る。1間7・γ+旧。の2成
分を大きくして行くと、有効磁場はZ方向に方向転換し
てゆく。
If the RF frequency is changed here, the frequency of the rotating system will also change (in this case, it is kept in the y-axis force direction), and therefore the Vγ will change and ILA)s/γ~-
-H. This produces a magnetic field in the Z direction. Therefore, the effective magnetic field is the vector sum of the magnetic fields in these two directions and the rotating magnetic field in the y7-i direction. 1 period 7・γ+old. As the two components of are increased, the effective magnetic field changes direction in the Z direction.

このような原理に基づく動作は次のどJ3っである。N
MR観測期間終了後総べての勾配Ii場Gz。
The operation based on this principle is as follows. N
The total gradient Ii field Gz after the end of the MR observation period.

Gx、Gy印加を停止し、RF可変発振器9からのRF
倍信号X方向より印加Jる(RF倍信号X方向から与え
るかX方向から与えるかは、RF倍信号位相を制御II
″IJ”ればよい)。この場合、その周波数を対象原子
核の共鳴周波数から、又はその共鳴周波数よりも僅かに
高い程度の適切な周波数から徐々に下げてゆ(。有効磁
場がゆっくりとZ方向に方向転換してゆき、磁化はこの
有効磁場に追従して2方向に方向転換−4る。以上のよ
うなRF磁場の位相及び周波数の制御はシーケンスコン
トローラ22が行う。
Gx, Gy application is stopped, and RF from RF variable oscillator 9
Apply the double signal from the X direction (Whether the RF double signal is applied from the X direction or the X direction is determined by controlling the RF double signal phase.
``IJ'' is sufficient). In this case, the frequency is gradually lowered from the resonant frequency of the target nucleus, or from a suitable frequency slightly higher than the resonant frequency. follows this effective magnetic field and changes direction in two directions.The sequence controller 22 controls the phase and frequency of the RF magnetic field as described above.

前記(1)、(2>式により有効磁場の2方向への回転
速度には制限があるものの、上記のような強制的な回復
時間TEは磁化の自然の緩和時間に比較して極めて短い
Although the rotational speed of the effective magnetic field in two directions is limited by the above equations (1) and (2>), the above-mentioned forced recovery time TE is extremely short compared to the natural relaxation time of magnetization.

なお、有効磁場をX方向から2方向に回転させる方式と
して、実施例ではRF磁場の制御によって行う手法を示
したが、これに限定されることなく次のような方式とし
てもよい。
In addition, as a method of rotating the effective magnetic field in two directions from the X direction, a method using control of the RF magnetic field is shown in the embodiment, but the following method may be used without being limited to this.

回転磁場を磁化の方向に印加した後、静m jiJ 1
−IQを変化させる方式。
After applying a rotating magnetic field in the direction of magnetization, static m jiJ 1
- A method to change IQ.

この場合静磁場を変化させる方法として次の方式がある
In this case, there are the following methods for changing the static magnetic field.

■静磁場の駆動電流を変化させる。■Change the driving current of the static magnetic field.

■補助磁場コイルを配設し、その駆動電流を変化させる
■Install an auxiliary magnetic field coil and change its drive current.

■勾配rji場コイルを利用する。■Use a gradient RJI field coil.

また、実施例ではPR法によりNMR信号を観測する例
について述べたが、PR法に限らず、他の方法、例えば
飽和回復法、スピンエコー法等も適用可能である。
Further, in the embodiment, an example was described in which NMR signals are observed using the PR method, but the method is not limited to the PR method, and other methods such as the saturation recovery method and the spin echo method can also be applied.

(発明の効果) 以上説明したように、本発明によれば次のような効果を
そうする。
(Effects of the Invention) As explained above, the present invention provides the following effects.

励起繰返し時間TrをwL緩和時間T+より充分に短く
することができるため、f−夕収集の高速化を実現して
イメージング時間を従来のものよりも一段と短くするこ
とができる。
Since the excitation repetition time Tr can be made sufficiently shorter than the wL relaxation time T+, it is possible to achieve faster f-wave acquisition and to make the imaging time much shorter than in the prior art.

また、RF送信コイルの不均一の影響を受けにくいため
、スピンを均一に2軸方向に向けることができる。
In addition, since it is not easily affected by non-uniformity of the RF transmitting coil, the spin can be directed uniformly in two axial directions.

【図面の簡単な説明】 第1図は本発明に係る右動磁場可変型核磁気共鳴撮像装
置の一実施例を示す構成図、第2図はパルスシーケンス
を示す図、第3図及び第4図は回転系にお(ブる有効磁
場を説明するための図、第5図は磁化の変化を説明する
ための図、第6図は従来の磁化回復法を説明するための
図である。 1・・・静磁場用コイル、3・・・勾配磁場コイル、4
・・・励磁コイル、5・・・検出コイル、6・・・シム
コイル制御回路、7・・・静磁場制御回路、8・・・勾
配磁場制御回路、9・・・RF可変発振器、10・・・
ゲート回路、11・・・パワーアンプ、12・・・増幅
器、13・・・位相検波回路、14・・・ウェーブメモ
リ回路、15・・・計n機、16・・・表示装置、17
・・・シーケンスコントローラ。 第2図 第3図 第4図 等イaふrごqち 第5図 篤6図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a block diagram showing an embodiment of a right-handed variable magnetic field nuclear magnetic resonance imaging apparatus according to the present invention, FIG. 2 is a diagram showing a pulse sequence, and FIGS. The figure is a diagram for explaining the effective magnetic field applied to a rotating system, FIG. 5 is a diagram for explaining changes in magnetization, and FIG. 6 is a diagram for explaining a conventional magnetization recovery method. 1... Static magnetic field coil, 3... Gradient magnetic field coil, 4
... Excitation coil, 5... Detection coil, 6... Shim coil control circuit, 7... Static magnetic field control circuit, 8... Gradient magnetic field control circuit, 9... RF variable oscillator, 10...・
Gate circuit, 11... Power amplifier, 12... Amplifier, 13... Phase detection circuit, 14... Wave memory circuit, 15... Total n devices, 16... Display device, 17
...Sequence controller. Figure 2 Figure 3 Figure 4, etc. Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1)対象物に高周波パルス及び磁場を印加して核磁気共
鳴信号を発生させ、この信号を用いて対象物の組織に関
する画像を得るようにした核磁気共鳴撮像装置において
、 核磁気共鳴信号を観測した後、磁化が向いている方向か
ら静磁場方向へと方向転換する有効磁場により、緩和過
程中の磁化をこの有効磁場に追従させて強制的に静磁場
方向へ向けるようにする機能を有した有効磁場発生手段
を具備し、核磁気共鳴信号観測後における磁化の熱平衡
状態への回復時間を短縮するようにしたことを特徴とす
る有効磁場可変型核磁気共鳴撮像装置。 2)前記有効磁場発生手段は、バースト波状に与えるR
F磁場の位相制御及び周波数制御により前記有効磁場が
発生するように構成されたことを特徴とする特許請求の
範囲第1項記載の有効磁場可変型核磁気共鳴撮像装置。 3)前記有効磁場発生手段は、バースト波状に与えるR
F磁場により磁化の方向に回転磁界を与えると共に、静
磁場を変化させることにより前記有効磁場を発生するよ
うに構成されたことを特徴とする特許請求の範囲第1項
記載の有効磁場可変型核磁気共鳴撮像装置。
[Claims] 1) A nuclear magnetic resonance imaging apparatus that applies high-frequency pulses and a magnetic field to an object to generate a nuclear magnetic resonance signal, and uses this signal to obtain an image of the tissue of the object, After observing the nuclear magnetic resonance signal, an effective magnetic field that changes direction from the direction in which the magnetization is oriented to the direction of the static magnetic field is used to force the magnetization during the relaxation process to follow this effective magnetic field and to be directed in the direction of the static magnetic field. What is claimed is: 1. A variable effective magnetic field type nuclear magnetic resonance imaging apparatus, comprising an effective magnetic field generating means having a function of generating a magnetic field, and shortening the time for recovery of magnetization to a thermal equilibrium state after observing a nuclear magnetic resonance signal. 2) The effective magnetic field generating means applies R in the form of a burst wave.
2. The variable effective magnetic field type nuclear magnetic resonance imaging apparatus according to claim 1, wherein the effective magnetic field is generated by controlling the phase and frequency of the F magnetic field. 3) The effective magnetic field generating means applies R in the form of a burst wave.
The variable effective magnetic field type nucleus according to claim 1, characterized in that the effective magnetic field variable type nucleus is configured to apply a rotating magnetic field in the direction of magnetization by an F magnetic field and generate the effective magnetic field by changing a static magnetic field. Magnetic resonance imaging device.
JP60179825A 1985-08-15 1985-08-15 Effective magnetic field variable type nuclear magnetic resonance image pickup equipment Granted JPS6263847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60179825A JPS6263847A (en) 1985-08-15 1985-08-15 Effective magnetic field variable type nuclear magnetic resonance image pickup equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60179825A JPS6263847A (en) 1985-08-15 1985-08-15 Effective magnetic field variable type nuclear magnetic resonance image pickup equipment

Publications (2)

Publication Number Publication Date
JPS6263847A true JPS6263847A (en) 1987-03-20
JPH0252496B2 JPH0252496B2 (en) 1990-11-13

Family

ID=16072548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60179825A Granted JPS6263847A (en) 1985-08-15 1985-08-15 Effective magnetic field variable type nuclear magnetic resonance image pickup equipment

Country Status (1)

Country Link
JP (1) JPS6263847A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501771A (en) * 1985-11-20 1988-07-21 ベンダル,マツクス ロビン NMR measurement by controlling effective magnetic field
JP2016030017A (en) * 2014-07-28 2016-03-07 株式会社日立メディコ Magnetic resonance imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501771A (en) * 1985-11-20 1988-07-21 ベンダル,マツクス ロビン NMR measurement by controlling effective magnetic field
JP2016030017A (en) * 2014-07-28 2016-03-07 株式会社日立メディコ Magnetic resonance imaging device

Also Published As

Publication number Publication date
JPH0252496B2 (en) 1990-11-13

Similar Documents

Publication Publication Date Title
JPH0221808B2 (en)
JPH0277235A (en) Magnetic resonance imaging method
JPS6263847A (en) Effective magnetic field variable type nuclear magnetic resonance image pickup equipment
JPH0222648B2 (en)
JPH0252497B2 (en)
JP3170359B2 (en) Sequence controller
JP3194606B2 (en) Magnetic resonance imaging equipment
JPS6218863B2 (en)
JPS60146140A (en) Method and apparatus of inspection using nuclear magnetic resonance
JPH0311223B2 (en)
JP2677601B2 (en) Magnetic resonance imaging
JPH0470013B2 (en)
JPS59105550A (en) Inspection method by nuclear magnetic resonance
JPH0414978B2 (en)
JPH03106339A (en) Magnetic resonance imaging device
JPS6151550A (en) Method and device for observing nuclear magnetic resonance image
JPH0333009B2 (en)
JPH0250729B2 (en)
JPH0421488B2 (en)
JPH0421491B2 (en)
JPH08257005A (en) Collecting method for magnetic resonance signal, magnetic resonance imaging method and magnetic resonance imaging device
JPS61213756A (en) Nuclear magnetic resonance examination apparatus
JPS63214248A (en) Magnetic resonance imaging apparatus
JPS6180035A (en) Nmr image apparatus
JPH0315454B2 (en)