JPS6263833A - Method and instrument for measuring optical transmission loss - Google Patents

Method and instrument for measuring optical transmission loss

Info

Publication number
JPS6263833A
JPS6263833A JP20382085A JP20382085A JPS6263833A JP S6263833 A JPS6263833 A JP S6263833A JP 20382085 A JP20382085 A JP 20382085A JP 20382085 A JP20382085 A JP 20382085A JP S6263833 A JPS6263833 A JP S6263833A
Authority
JP
Japan
Prior art keywords
mode
light
optical fiber
measured
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20382085A
Other languages
Japanese (ja)
Other versions
JPH0658291B2 (en
Inventor
Makoto Tsubokawa
坪川 信
Noburu Shibata
宣 柴田
Masaharu Ohashi
正治 大橋
Yoshiyuki Aomi
青海 恵之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20382085A priority Critical patent/JPH0658291B2/en
Publication of JPS6263833A publication Critical patent/JPS6263833A/en
Publication of JPH0658291B2 publication Critical patent/JPH0658291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/337Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring polarization dependent loss [PDL]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/331Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by using interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/333Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using modulated input signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths

Abstract

PURPOSE:To measure an optical transmission loss in each separate mode by observing independently the intensity of an interference caused in each mode due to a group delay difference between plural modes. CONSTITUTION:A luminous flux which has been emitted from a light source 1 passes through a polarizer 2, and separated into two luminous fluxes by an acousto-optical modulator 3. The first luminous flux is made incident on an optical fiber to be measured 8. The second luminous flux is made incident on a reference use optical fiber 9. An emitted light of the fiber 9 passes through a semi-transparent mirror 10, reflected by a movable mirror 11, multiplexed with the first luminous flux by the semi-transparent mirror 10, and made incident on a photodetector 12. The photodetector 12 detects the interference intensity of the luminous flux of an LP01 mode and an LP11 mode, which has been emitted from the fiber 8, and a reference light of an LP01 mode, which has been emitted from the fiber 9, as a beat signal of ad riving frequency (f) of the modulator 3. In this way, the transmission losses of the LP01 mode and the LP11 mode are measured independently, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバによる光伝送損失の測定に利用する
。特に、光ファイバの曲がりや長さによる伝送損失を、
この光ファイバの伝搬モード毎に独立に測定する方法お
よび装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is utilized for measuring optical transmission loss through an optical fiber. In particular, transmission loss due to bending and length of optical fiber is
The present invention relates to a method and apparatus for independently measuring each propagation mode of an optical fiber.

〔概要〕〔overview〕

本発明は、光ファイバの光伝送損失を測定する方法およ
び装置において、 被測定光ファイバを伝搬した複数モードと参照用光ファ
イバを伝搬した単一モードとを干渉させることにより、 上記複数モードの間の群遅延差を利用して各モードの伝
送損失を独立に測定するものである。
The present invention provides a method and apparatus for measuring optical transmission loss of an optical fiber, in which a plurality of modes propagated through an optical fiber to be measured and a single mode propagated through a reference optical fiber are caused to interfere with each other. The transmission loss of each mode is measured independently using the group delay difference.

〔従来の技術〕[Conventional technology]

光ファイバの曲げや長さによる伝送損失を測定するには
、従来は、複数のモード、特に最低次のLP01モード
とその次の低次モードであるLP11モードとを含む伝
搬光の強度変化を測定して求めていた。
Conventionally, to measure transmission loss due to bending or length of an optical fiber, the intensity change of propagating light including multiple modes, especially the lowest order LP01 mode and the next lower order mode LP11 mode, has been measured. That's what I was looking for.

〔発明が解決しようとする問題点] しかし、LP01モードとLP、、モードとでは、曲げ
や長さに対して受ける損失が本質的に異なる。
[Problems to be Solved by the Invention] However, the losses caused by bending and length are essentially different between the LP01 mode and the LP mode.

しかし、LPOIモードとLP、、モードとを独立に測
定することは不可能であった。また、短尺の被測定光フ
ァイバについて測定する場合には、モードによる損失差
が少ないため測定のダイナミックレンジが小さくなり、
定量的な評価が困難である欠点があった。これに関して
は、マサハル・オーハシ等により、[光ファイバの2モ
ード伝搬領域におけるLP、、モード)員失測定(LP
z  modeloss 01easurement 
in the two−+mode−propagat
ionregior+ of optical fib
ers) J 、オプティクス・レターズ(Opt、L
ett、)第9巻(1984年)、第303〜305頁
に詳しく説明されている。
However, it has been impossible to measure the LPOI mode and the LP mode independently. In addition, when measuring a short optical fiber under test, the dynamic range of the measurement becomes small because there is little difference in loss depending on the mode.
The drawback was that quantitative evaluation was difficult. Regarding this, Masaharu Ohashi et al.
z modelloss 01easement
in the two-+mode-propagate
ionregior+ of optical fib
ers) J, Optics Letters (Opt, L
ett, Volume 9 (1984), pages 303-305.

本発明は、光ファイバ中を伝搬する複数のモード、特に
LP、、モードおよびLP、、モードの伝送損失を、そ
れぞれ独立に測定する方法および装置を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for independently measuring the transmission loss of a plurality of modes propagating in an optical fiber, particularly LP mode and LP mode.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光伝送損失測定方法は、光源から出射された光
を二つの光束に分岐し、この二つの光束の一方を被測定
光ファイバに入射して複数のモードで伝搬させ、この二
つの光束の他方を参照用光ファイバに入射して一つのモ
ードで伝搬させ、上記被測定光ファイバを伝搬した光束
と上記参照用光ファイバを伝搬した光束とを干渉させ、
上記複数のモードの間の群遅延差により各モードに起因
する干渉の強度を独立に観測することにより各モード別
に光伝送損失を測定することを特徴とする。
The optical transmission loss measurement method of the present invention splits light emitted from a light source into two beams, enters one of the two beams into an optical fiber to be measured, and propagates in multiple modes, and then splits the light emitted from a light source into two beams. enter the reference optical fiber and propagate in one mode, causing the light beam propagated through the measured optical fiber and the light beam propagated through the reference optical fiber to interfere;
The present invention is characterized in that the optical transmission loss is measured for each mode by independently observing the intensity of interference caused by each mode based on the group delay difference between the plurality of modes.

実際的には、被測定光ファイバ中を伝搬する複数のモー
ドはLP01モードおよびLP、、モードであり、参照
用光ファイバ中を伝搬する一つのモードはL P o 
Iモードである。
In practice, the multiple modes propagating in the optical fiber under test are LP01 mode and LP, mode, and one mode propagating in the reference optical fiber is L P o
This is I mode.

本発明の光伝送損失測定装置は、可干渉性の光を出射す
る光源と、この光源が出射した光束を二つの光束に分岐
する光分岐手段と、この光分岐手段が分岐した光束の一
方を被測定光ファイバに入射する手段と、この光分岐手
段が分岐した光束の他方を単一のモードで伝搬する参照
用光ファイバと、上記被測定光ファイバから出射された
光束と上記参照用光ファイバの出射された光束とを同一
の観測面に導く光学手段と、上記二つの光束の少なくと
も一方の光路長を変化させる手段と、上記二つの光束に
より観測面に生じた干渉信号の振幅を測定する手段とを
備えたことを特徴とする。
The optical transmission loss measuring device of the present invention includes a light source that emits coherent light, a light branching means for branching the light flux emitted by the light source into two light fluxes, and a light branching means for branching one of the branched light fluxes. means for inputting the light into the optical fiber to be measured; a reference optical fiber for propagating the other of the light beams branched by the light branching means in a single mode; and a light beam emitted from the optical fiber to be measured and the reference optical fiber. optical means for guiding the emitted light beams to the same observation surface; means for changing the optical path length of at least one of the two light beams; and measuring the amplitude of an interference signal generated on the observation surface by the two light beams. It is characterized by comprising means.

〔作用〕[Effect]

本発明は、光ファイバ中を伝搬した複数のモード、特に
LP01モードおよびLP、、モードと、参照光ファイ
バを伝搬したLP01モードどの干渉を利用し、被測定
光ファイバを伝搬した複数のモードを群遅延差により時
間的に分離する。干渉強度はそれぞれのモードの光強度
の平方根に比例する。
The present invention utilizes interference between a plurality of modes propagated in an optical fiber, particularly LP01 mode and LP mode, and an LP01 mode propagated in a reference optical fiber, to group a plurality of modes propagated in an optical fiber under test. Separate in time by delay difference. The interference intensity is proportional to the square root of the light intensity of each mode.

したがって、この干渉強度を測定することにより光ファ
イバの曲げや長さに依存するそれぞれのモードの損失、
特にLP11モードの損失を測定することができる。さ
らに、干渉強度が光強度の平方根に比例するため、高次
モードの光強度の感度は二乗倍に向上する。
Therefore, by measuring this interference intensity, we can determine the loss of each mode, which depends on the bending and length of the optical fiber.
In particular, the loss in the LP11 mode can be measured. Furthermore, since the interference intensity is proportional to the square root of the optical intensity, the sensitivity of the optical intensity of higher-order modes is improved by a factor of two.

〔実施例〕〔Example〕

第1図は本発明実施例光伝送損失測定装置の構成図であ
る。
FIG. 1 is a block diagram of an optical transmission loss measuring device according to an embodiment of the present invention.

光源1の出射した光束は、偏光子2を通過し、音響光学
変調器3により二つの光束に分離される。
The light beam emitted from the light source 1 passes through a polarizer 2 and is separated into two light beams by an acousto-optic modulator 3.

第一の光束は被測定光ファイバ8に入射する。この被測
定光ファイバ8の出射光は受光器12に入射する。この
出射光を受光器12に導くために、反射鏡7および半透
鏡10が用いられる。第二の光束は参照用光ファイバ9
に入射する。第二の光束を参照用光ファイバ9に導くた
めに、反射鏡5.6が用いられる。参照用光ファイバ9
の出射光は、半透鏡10を通過し、可動鏡11で反射さ
れ、半透鏡10で第一の光束と合波され、受光器12に
入射する。
The first light beam enters the optical fiber 8 to be measured. The light emitted from the optical fiber 8 to be measured is incident on the light receiver 12 . In order to guide this emitted light to the light receiver 12, a reflecting mirror 7 and a semi-transparent mirror 10 are used. The second beam is a reference optical fiber 9
incident on . A reflector 5.6 is used to guide the second beam into the reference optical fiber 9. Reference optical fiber 9
The emitted light passes through the semi-transparent mirror 10, is reflected by the movable mirror 11, is combined with the first light beam by the semi-transparent mirror 10, and enters the light receiver 12.

音響光学変調器3には駆動用発振器4が接続される。受
光器12は増幅器13およびフィルタ14を介して波形
記憶装置15に接続される。波形記憶装置15は可動鏡
11およびレコーダ16に接続される。
A driving oscillator 4 is connected to the acousto-optic modulator 3 . Photoreceiver 12 is connected to waveform storage 15 via amplifier 13 and filter 14 . Waveform storage device 15 is connected to movable mirror 11 and recorder 16.

光源1は可干渉性の光束を出射する。音響光学変調器3
は、光源lからの光束を、駆動用発振器4からの駆動周
波数だけ周波数が偏移した二つの光束に空間的に分離す
る。
A light source 1 emits a coherent light beam. Acousto-optic modulator 3
spatially separates the light beam from the light source 1 into two light beams whose frequency is shifted by the driving frequency from the driving oscillator 4.

被測定光ファイバ8は、光源1の発光波長におけるLP
zモードを伝搬するように、オフセント波長が光源Iの
波長以上になるように設定されている。参照用光ファイ
バ9は、参照光としてLP01モードを伝搬するように
、カットオフ周波数が光源1の波長以下のものを用いる
The optical fiber 8 to be measured has an LP at the emission wavelength of the light source 1.
The offset wavelength is set to be equal to or greater than the wavelength of the light source I so that the z mode is propagated. The reference optical fiber 9 has a cutoff frequency equal to or lower than the wavelength of the light source 1 so as to propagate the LP01 mode as the reference light.

受光器12は、被測定光ファイバ8から出射されたLP
01モードおよびLP、、モードの光束と、参照用光フ
ァイバ9から出射されたLP01モードの参照光との干
渉強度を、音響光学変調器3の駆動周波数fのビート信
号として検出する。受光器142の検出したビート信号
は、増幅および検波の後に波形記憶装置15に記憶され
る。
The light receiver 12 receives the LP emitted from the optical fiber 8 to be measured.
The interference intensity between the light beams in the 01 mode and the LP01 mode and the LP01 mode reference light emitted from the reference optical fiber 9 is detected as a beat signal of the driving frequency f of the acousto-optic modulator 3. The beat signal detected by the light receiver 142 is stored in the waveform storage device 15 after being amplified and detected.

ここで、一方の光路長を可動鏡11で掃引することによ
り、ビート信号の振幅を光路長の関数として測定する。
Here, by sweeping one optical path length with the movable mirror 11, the amplitude of the beat signal is measured as a function of the optical path length.

ビート信号の振幅は二つの光束間の光路長差が零のとき
に最大となり、LP01モードとLpHモードとでは、
その群遅延差が異なるため、異なる位置でビート信号の
振幅が最大となる。
The amplitude of the beat signal is maximum when the optical path length difference between the two beams is zero, and in LP01 mode and LpH mode,
Since the group delay difference is different, the amplitude of the beat signal becomes maximum at different positions.

受光器12における被測定光ファイバ8を伝搬したL 
P 01lモード強度を■。、LP、、モードの強度を
11、参照光の強度をIRとすると、受光器12の出力
電流i (t)は、 1(t)oci。+1.+(、l +2Eコーlr(τ。1)10゜3φ。。
L propagated through the optical fiber 8 to be measured in the optical receiver 12
P 01l mode intensity is ■. , LP, , where the intensity of the mode is 11 and the intensity of the reference light is IR, the output current i (t) of the photoreceiver 12 is 1(t)oci. +1. +(,l +2E call lr(τ.1)10°3φ.

+2ζπI7(τ。すl cos(2πft+φox)
+2 J]マI r (τ11I) l Co5(’2
ffft+φ18)−・・−(1) と表される。ここで、τIl+、τORおよびτ、Rは
、それぞれ被測定光ファイバを伝搬したLPG、モード
とL P + lモードとの群遅延差、LP、lモード
と参照光との群遅延差およびLP、、モードと参照光と
の群遅延差であり、1γ(τ。1)1.1γ(τ。いお
よびlr(τ+*)lは、それぞれ群遅延差τ。8、τ
oRおよびτ、に対するコヒーレンス度であり、φoI
、φORおよびφ、は、それぞれの位相差である。(1
)弐の周波数f成分tr(t)は、i 、(t)oc 
 ’l (VAT”;; l r (τ11J1) 1
+2花−−IT(τ18)l     ・−・・−・(
2)となる。可動鏡11を掃引すると、群遅延差τON
、τ、が零となる位置において、それぞれLP01モー
ドと参照光とのビート信号の振幅、L P + をモー
ドと参照光のビート信号の振幅が最大となる。これらの
最大値の間の可動鏡11の移動距離dから、二つのモー
ド間の群遅延差τ(τ−2d/c、ただしCは自由空間
における光速)を求めることができる。これについては
、エヌ・シバタ他、[光へテロダイン検波による偏光モ
ード分散の測定(Measurement of Po
1arizatton mode dispersio
nby optical heterodyne de
tection)  J 、エレクトロニクス・レター
ズ(11!1ectron、Lett、)第20巻(1
984年)第1055〜1057頁に詳しく説明されて
いる。
+2ζπI7(τ.su l cos(2πft+φox)
+2 J] MaI r (τ11I) l Co5('2
It is expressed as ffft+φ18)-...-(1). Here, τIl+, τOR, and τ, R are the group delay difference between the LPG mode and the L P + l mode propagated in the optical fiber under test, LP, the group delay difference between the l mode and the reference light, and LP, , are the group delay differences between the mode and the reference light, and 1γ(τ.1) 1.1γ(τ.i and lr(τ+*)l are the group delay differences τ.8, τ, respectively.
is the degree of coherence for oR and τ, and φoI
, φOR and φ are their respective phase differences. (1
)2 frequency f component tr(t) is i,(t)oc
'l (VAT'';; l r (τ11J1) 1
+2 flower--IT(τ18)l ・-・・-・(
2). When the movable mirror 11 is swept, the group delay difference τON
, τ, are zero, the amplitudes of the beat signals of the LP01 mode and the reference light, and the amplitudes of the beat signals of the LP+ mode and the reference light, respectively, become maximum. From the moving distance d of the movable mirror 11 between these maximum values, the group delay difference τ (τ-2d/c, where C is the speed of light in free space) between the two modes can be determined. Regarding this, N. Shibata et al. [Measurement of polarization mode dispersion by optical heterodyne detection]
1arizatton mode dispersio
nby optical heterodyne
tection) J, Electronics Letters (11!1ectron, Lett,) Volume 20 (1
984), pages 1055-1057.

これに対して、(2)弐の右辺の第2項は、LP++モ
ードと参照光とのビート信号の振幅を表す。この値は被
測定光ファイバ8の曲げ(曲げ直径2R)に依存して変
化するため、LP、、モードの伝送損失の曲げ依存性を
求めることができるφ第2図ないし第4図は光路長差に
対するビート信号の振幅を示す図である。それぞれ、曲
げ直径2Rが200.70.50m5+の各場合につい
て示す。光源10波長λは1.29μm、被測定光ファ
イバ8の長さしは2.8mである。
On the other hand, the second term on the right side of (2) 2 represents the amplitude of the beat signal of the LP++ mode and the reference light. Since this value changes depending on the bending of the optical fiber 8 to be measured (bending diameter 2R), the bending dependence of the transmission loss of the LP mode can be determined. FIG. 3 is a diagram showing the amplitude of a beat signal versus the difference. In each case, the bending diameter 2R is 200.70.50 m5+. The wavelength λ of the light source 10 is 1.29 μm, and the length of the optical fiber 8 to be measured is 2.8 m.

群遅延差τ。えが零でコヒーレンス度1r(τ。lI)
が1のとき、LP01モードによるビート信号の振幅が
最大となる。また、群遅延差τlが零でコヒーレンス度
1γ(τIK)1が1のとき、LP11モードによるビ
ート信号の振幅が最大となる。これらをそれぞれ矢印で
示す。この最大値により、直径2Rに対する2君下葭の
値の曲げ依存性が得られる。ここで参照光の強度Ill
は一定であり、LP、。
Group delay difference τ. The coherence degree is 1r (τ.lI) when the image is zero.
When is 1, the amplitude of the beat signal in LP01 mode is maximum. Further, when the group delay difference τl is zero and the degree of coherence 1γ (τIK)1 is 1, the amplitude of the beat signal in the LP11 mode becomes maximum. These are each indicated by an arrow. This maximum value provides the bending dependence of the value of the second lower shingle on the diameter 2R. Here, the intensity of the reference light Ill
is constant and LP, .

モードの強度I、の曲げ直径2Rに対する依存性は二乗
倍の高感度で得られる。
The dependence of the mode intensity I on the bending diameter 2R can be obtained with a square-fold high sensitivity.

また、被測定光ファイバ8の長さしが2.8mのときの
ニモード間の群遅延差は、ピーク間の光路差2d、すな
わち可動鏡11の移動距離の2倍を実測することにより
得られる。本実施例では、2dの値は5.84mmであ
り、群遅延差は19.5ピコ秒であった。
Furthermore, the group delay difference between two modes when the length of the optical fiber 8 to be measured is 2.8 m can be obtained by actually measuring the optical path difference 2d between the peaks, that is, twice the moving distance of the movable mirror 11. . In this example, the value of 2d was 5.84 mm, and the group delay difference was 19.5 picoseconds.

第5図は曲げ直径に対するi= P + +モードの損
失の測定結果と計算値とを示す。計算値を直線、−・点
鎖線および破線で示し、測定値を○印、Δ印、X印で示
し、それぞれ光源lの波長λが1.2μm、1.29a
mおよび1.3br+mのときの値を示す。この図から
300dB/m程度のダイナミックレンジでの測定が可
能であることがわかる。
FIG. 5 shows the measured and calculated loss of the i=P + + mode with respect to the bending diameter. Calculated values are shown by straight lines, dot-dashed lines, and broken lines, and measured values are shown by ○, Δ, and
The values are shown when m and 1.3br+m. It can be seen from this figure that measurements can be made in a dynamic range of about 300 dB/m.

以上の実施例では、通常の光ファイバを使用するうえで
問題となるLP、、モー4′とLPzモートとの伝送損
失を例に説明した。しかし、本発明は原理的に、群遅延
時間の異なるモードの伝送損失を独立に測定することが
可能である。
In the above embodiments, the transmission loss between the LP moat 4' and the LPz moat, which is a problem when using a normal optical fiber, was explained as an example. However, the present invention can, in principle, independently measure the transmission loss of modes with different group delay times.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光伝送損失測定方法およ
び装置は、被測定光ファイバを伝搬する光束のモードを
、サブピコ秒の分解能で時間的に分離することができる
。このため、例えば数m程度の短尺の被測定光ファイバ
でも、LpHモードの曲げ損失をL 13゜オモードと
独立に高感度で測定することができる。
As described above, the optical transmission loss measuring method and apparatus of the present invention can temporally separate the modes of the light flux propagating through the optical fiber to be measured with sub-picosecond resolution. Therefore, even with a short optical fiber to be measured of, for example, several meters, the bending loss in the LpH mode can be measured with high sensitivity independently from the L13° mode.

LP、、モード損失をLP、、モードと独立に測定でき
ることから、被測定光ファイバの長さを変えることによ
り、LP、、モード損失の光ファイバ長依存性を評価す
ることもできる。したがって、光ファイバの特性パラメ
ータである実効カットオフ波長を評価することができる
Since the LP mode loss can be measured independently of the LP mode, it is also possible to evaluate the optical fiber length dependence of the LP mode loss by changing the length of the optical fiber to be measured. Therefore, the effective cutoff wavelength, which is a characteristic parameter of the optical fiber, can be evaluated.

さらに、LP、、モード損失の測定と同時に、伝搬モー
ドが分離される光路長差から、モード間の群遅延差をサ
ブピコ秒の精度で求めることができる。
Furthermore, at the same time as measuring the LP mode loss, the group delay difference between modes can be determined with sub-picosecond accuracy from the optical path length difference between the propagation modes.

したがって、本発明は光ファイバの性能評価に利用して
大きな効果がある。
Therefore, the present invention is highly effective when used for evaluating the performance of optical fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例光伝送損失測定装置の構成図。 第2図は光路長差に対するビート信号の振幅を示す図。 第3図は光路長差に対するビート信号の振幅を示す図。 第4図は光路長差に対するビート信号の振幅を示す図。 第5図は曲げ直径に対するI−P++モード1員失の測
定結果と計算値とを示す図。 1・・・光源、2・・・偏光子、3・・・音響光学変調
器、4・・・駆動用発振器、5.6.7・・・反射鏡、
8・・・被測定光ファイバ、9・・・参照用光ファイバ
、10・・・半透鏡、11・・・可動鏡、12・・・受
光器、13・・・増幅器、14・・・フィルタ、15・
・・波形記憶装置、16・・・レコーダ。 特許出願人 日本電信電話株式会社 、−1、代理人 
弁理士 井 出 直 孝  、゛1実施例装置 第1図 光W&負! LmlTIJ
FIG. 1 is a configuration diagram of an optical transmission loss measuring device according to an embodiment of the present invention. FIG. 2 is a diagram showing the amplitude of the beat signal with respect to the optical path length difference. FIG. 3 is a diagram showing the amplitude of the beat signal with respect to the optical path length difference. FIG. 4 is a diagram showing the amplitude of the beat signal with respect to the optical path length difference. FIG. 5 is a diagram showing measurement results and calculated values for I-P++ mode one member loss with respect to bending diameter. DESCRIPTION OF SYMBOLS 1... Light source, 2... Polarizer, 3... Acousto-optic modulator, 4... Drive oscillator, 5.6.7... Reflector,
8... Optical fiber to be measured, 9... Optical fiber for reference, 10... Semi-transparent mirror, 11... Movable mirror, 12... Light receiver, 13... Amplifier, 14... Filter , 15・
...Waveform storage device, 16...Recorder. Patent applicant: Nippon Telegraph and Telephone Corporation, -1, Agent
Patent attorney Naotaka Ide, ゛1 Example device Figure 1 Light W & Negative! LmlTIJ

Claims (3)

【特許請求の範囲】[Claims] (1)光源から出射された光を二つの光束に分岐し、こ
の二つの光束の一方を被測定光ファイバに入射して複数
のモードで伝搬させ、 この二つの光束の他方を参照用光ファイバに入射して一
つのモードで伝搬させ、 上記被測定光ファイバを伝搬した光束と上記参照用光フ
ァイバを伝搬した光束とを干渉させ、上記複数のモード
の間の群遅延差により各モードに起因する干渉の強度を
独立に観測することにより各モード別に光伝送損失を測
定する ことを特徴とする光伝送損失測定方法。
(1) The light emitted from the light source is split into two beams, one of these two beams enters the optical fiber to be measured and propagates in multiple modes, and the other of these two beams is sent to the reference optical fiber. The light beam propagating through the optical fiber under test and the light beam propagating through the reference optical fiber are caused to interfere with each other, and the difference in group delay between the plurality of modes is caused by each mode. An optical transmission loss measuring method characterized by measuring optical transmission loss for each mode by independently observing the intensity of interference caused by interference.
(2)被測定光ファイバ中を伝搬する複数のモードはL
P_0_1モードとLP_1_1モードとを含み、参照
用光ファイバ中を伝搬する一つのモードはLP_0_1
モードである 特許請求の範囲第(1)項に記載の光伝送損失測定方法
(2) The multiple modes propagating in the optical fiber under test are L
One mode propagating in the reference optical fiber is LP_0_1, which includes P_0_1 mode and LP_1_1 mode.
The optical transmission loss measuring method according to claim (1), which is a mode.
(3)可干渉性の光を出射する光源と、 この光源が出射した光束を二つの光束に分岐する光分岐
手段と、 この光分岐手段が分岐した光束の一方を被測定光ファイ
バに入射する手段と、 この光分岐手段が分岐した光束の他方を単一のモードで
伝搬する参照用光ファイバと、 上記被測定光ファイバから出射された光束と上記参照用
光ファイバの出射された光束とを同一の観測面に導く光
学手段と、 上記二つの光束の少なくとも一方の光路長を変化させる
手段と、 上記二つの光束により観測面に生じた干渉信号の振幅を
測定する手段と を備えた光伝送損失測定装置。
(3) a light source that emits coherent light; a light branching means that branches the light beam emitted by the light source into two light beams; and one of the light beams branched by the light branching means is input into the optical fiber to be measured. means, a reference optical fiber that propagates the other of the light beams branched by the light branching means in a single mode, and a light beam emitted from the optical fiber to be measured and a light beam emitted from the reference optical fiber. Optical transmission comprising optical means for guiding to the same observation surface, means for changing the optical path length of at least one of the two light beams, and means for measuring the amplitude of an interference signal generated on the observation surface by the two light beams. Loss measurement device.
JP20382085A 1985-09-13 1985-09-13 Optical transmission loss measuring method and apparatus Expired - Fee Related JPH0658291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20382085A JPH0658291B2 (en) 1985-09-13 1985-09-13 Optical transmission loss measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20382085A JPH0658291B2 (en) 1985-09-13 1985-09-13 Optical transmission loss measuring method and apparatus

Publications (2)

Publication Number Publication Date
JPS6263833A true JPS6263833A (en) 1987-03-20
JPH0658291B2 JPH0658291B2 (en) 1994-08-03

Family

ID=16480254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20382085A Expired - Fee Related JPH0658291B2 (en) 1985-09-13 1985-09-13 Optical transmission loss measuring method and apparatus

Country Status (1)

Country Link
JP (1) JPH0658291B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015149A1 (en) * 2003-08-12 2005-02-17 Bussan Nanotech Research Institute, Inc. Detection device, optical path length measurement device, measurement instrument, optical member evaluation method, and temperature change detection method
KR100719892B1 (en) 2005-03-23 2007-05-18 광주과학기술원 Apparatus for measuring a differential mode delay of a multimode optical fiber
KR100725211B1 (en) 2006-01-25 2007-06-04 광주과학기술원 An apparatus for measuring a differential mode delay of a multimode waveguide and the measuring method thereof
US9835520B2 (en) 2016-03-17 2017-12-05 Sumitomo Electric Industries, Ltd. Spatial-mode optical power measurement method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112665823B (en) * 2020-12-14 2023-09-26 上海大学 Optical fiber mode time domain energy fluctuation curve measuring device and measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015149A1 (en) * 2003-08-12 2005-02-17 Bussan Nanotech Research Institute, Inc. Detection device, optical path length measurement device, measurement instrument, optical member evaluation method, and temperature change detection method
US7426038B2 (en) 2003-08-12 2008-09-16 Fujikura Ltd. Detection device, optical path length measurement device, measurement instrument, optical member evaluation method, and temperature change detection method
KR100719892B1 (en) 2005-03-23 2007-05-18 광주과학기술원 Apparatus for measuring a differential mode delay of a multimode optical fiber
KR100725211B1 (en) 2006-01-25 2007-06-04 광주과학기술원 An apparatus for measuring a differential mode delay of a multimode waveguide and the measuring method thereof
US9835520B2 (en) 2016-03-17 2017-12-05 Sumitomo Electric Industries, Ltd. Spatial-mode optical power measurement method and apparatus

Also Published As

Publication number Publication date
JPH0658291B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
Takada et al. New measurement system for fault location in optical waveguide devices based on an interferometric technique
CN109238355A (en) The device and method of optical fiber distributed type sound state property while sensing measurement
JP2954871B2 (en) Optical fiber sensor
KR0163627B1 (en) Evaluation of sample by measurement of thermo-optical displacement
CN101634571B (en) Optical pulse raster distributed fiber sensing device
CN111678584A (en) Optical fiber vibration measuring device with light source frequency shift calibration auxiliary channel and method
JP3883458B2 (en) Reflective Brillouin spectral distribution measuring method and apparatus
JPH03180704A (en) Laser interference gauge
JPS6263833A (en) Method and instrument for measuring optical transmission loss
EP0501559B1 (en) Process and apparatus for absolute interferometric measurements of physical magnitudes
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
JP3287441B2 (en) Optical component for optical line identification and remote measuring method and device therefor
JP3319306B2 (en) Optical fiber strain distribution sensor
CN212030564U (en) Light source frequency shift calibration auxiliary channel structure and optical fiber vibration measuring device
JPH0658293B2 (en) Method and apparatus for measuring wavelength dispersion of optical fiber
JPH09133585A (en) Optical pulse train measuring method
JP2746488B2 (en) Optical waveguide loss measurement method
JPH01313703A (en) Disturbance elimination type heterodyne interference method optical fiber sensor
JPH0682086B2 (en) Mode coupling evaluation device
JPS63113333A (en) Method and apparatus for measuring core eccentricity
RU2036419C1 (en) Fibre-optical indicator of outside action
JPS63300932A (en) Distribution type optical fiber sensor
JPS5837496B2 (en) Optical fiber length measurement method
JPH03209143A (en) Method and device for diagnosing optical wave guide circuit
JPH06221959A (en) Calculation method for non-linear refractive index of optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees