JPS6263066A - Grinding wheel - Google Patents

Grinding wheel

Info

Publication number
JPS6263066A
JPS6263066A JP20337885A JP20337885A JPS6263066A JP S6263066 A JPS6263066 A JP S6263066A JP 20337885 A JP20337885 A JP 20337885A JP 20337885 A JP20337885 A JP 20337885A JP S6263066 A JPS6263066 A JP S6263066A
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
vibration
sample
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20337885A
Other languages
Japanese (ja)
Inventor
Hiroshi Eda
弘 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20337885A priority Critical patent/JPS6263066A/en
Publication of JPS6263066A publication Critical patent/JPS6263066A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obviate grinding vibration generated in grinding with a simple construction by compounding a vibration attenuating material having creep-like physical property and a grinding wheel base plate so that a grinding wheel itself is provided with self-vibration absorbing property. CONSTITUTION:This grinding wheel 1 is formed by bonding or applying a vibration attenuating material 3 to the end face of a grinding wheel 2 used for surface grinding, cylinder grinding, internal grinding, centerless grinding and cutting grinding. When the surface grinding is carried out by the thus formed grinding wheel 1, the grinding wheel 2 and the vibration attenuating material 3 are sandwiched by the head 4 of grinding wheel spindle and a flange 5, fastened and mounted by tightening a fastening nut 6 to grind a work piece 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は砥粒加工時に発生ずる研削振動を除振すること
のできる研削砥石に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a grinding wheel capable of isolating grinding vibrations generated during abrasive processing.

〔従来技術〕[Prior art]

一般に、砥粒加工の一種である研削加工■、1にJ3い
ては、研削砥石が被研削物との厳しい直接接触により、
切削加工時の10〜20倍の3000〜700(lyf
/−の比研削抵抗を微小面積に不規則に受けるため、非
常に大きな研削振動が発生する。
Generally speaking, in grinding process ■, 1, J3, which is a type of abrasive processing, the grinding wheel comes into severe direct contact with the object to be ground.
3000-700 (lyf
Since the specific grinding resistance of /- is irregularly applied to a minute area, extremely large grinding vibrations occur.

研削加工精度を良くするためには、この研削振動を除振
する必要がある。
In order to improve grinding precision, it is necessary to eliminate this grinding vibration.

そのため従来は、被研削物の研削幅や切込み深さを変え
たり、研削油剤に潤滑性を与える等の研削条件を変える
方法によって除湿していた。また、従来は他の方法とし
て、研削砥石の主軸剛性および高減衰性の流体浮上式テ
ーブル等の機械サイドの改善を図る方法すなわち構成要
素や駆動方式等を変える機械技術的な方法によって除湿
していた。
Conventionally, therefore, dehumidification has been carried out by changing the grinding conditions, such as changing the grinding width or cutting depth of the object to be ground, or adding lubricity to the grinding oil. In addition, conventionally, other methods have been used to dehumidify, such as mechanical engineering methods that improve the main shaft rigidity of the grinding wheel and the machine side, such as using a high-damping fluid floating table. Ta.

〔発明が解決しようとする一同問題点〕しかしながら、
このような従来方法によっては、振動を十分に除去する
ことは困難であり、しかも、今迄の研究の経緯から判断
すると、このような研削条件や機械自体を調整対象とす
る除湿技術はほぼ限界に来ている。
[The problem that the invention attempts to solve] However,
It is difficult to sufficiently eliminate vibrations using such conventional methods, and judging from the history of research to date, dehumidification technology that adjusts the grinding conditions and the machine itself has almost reached its limit. I'm coming to

そこで、本発明者は従来の除振技術とは全く異なり、砥
石自体で研削ffi!11を除振することのできる研削
砥石の開発の必要性が有ると考えた。
Therefore, the inventor of the present invention used a grindstone itself to grind ffi!, which is completely different from the conventional vibration isolation technology. We believe that there is a need to develop a grinding wheel that can isolate vibrations.

本発明はこれらの点に鑑みてなされたものであり、砥石
自体が吸振橢能を為する自己吸振性の研削砥石を提供す
ることを目的とする。
The present invention has been made in view of these points, and it is an object of the present invention to provide a self-vibration-absorbing grinding wheel in which the grindstone itself has a vibration-absorbing ability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の研削砥石は、砥粒加■に用いる砥石に振動減衰
材料を装着して形成したことを特徴とする。
The grinding wheel of the present invention is characterized in that it is formed by attaching a vibration damping material to the grinding wheel used for adding abrasive grains.

更に説明すると、研削砥石に自己吸振性を具有させて除
振効果を達成させるためには、剛性効果に比べて減衰効
果が極めて大きい過減衰運動を行なうように研削砥石を
構成する必要がある。
To explain further, in order for the grinding wheel to have self-absorptive properties and achieve a vibration isolation effect, it is necessary to configure the grinding wheel so that it performs over-damped motion that has an extremely large damping effect compared to the rigidity effect.

そこで、本発明においては、砥石基板には何も加工を施
さず、極端に過減衰性能を有する、いわば、クリープ的
物性を有する振動減衰材料と前記砥石基板とを複合化さ
せて研削砥石を形成している。
Therefore, in the present invention, the grinding wheel is formed by combining the grinding wheel substrate with a vibration damping material having extremely overdamping performance, so to speak, creep-like physical properties, without performing any processing on the grinding wheel substrate. are doing.

また、前記振動減衰材料として、動的Vフグ率が小さく
、かつ、損失係数が大きい高分子材料を用いることによ
り、優れた除振効果を達成させている。
Further, by using a polymeric material having a small dynamic V-Fugu ratio and a large loss coefficient as the vibration damping material, an excellent vibration damping effect is achieved.

更に具体的には、砥石の不安定な弾性変形による切残し
通を減少させ、研削加工精度を改善するために、砥石円
盤側面やラップ用等のスティック砥石の片面等に前記振
動減衰材料を接着して研削砥石を形成している。
More specifically, in order to reduce uncut holes caused by unstable elastic deformation of the grinding wheel and improve grinding accuracy, the vibration damping material is bonded to the side surface of the grinding wheel disk or one side of a stick grinding wheel for lapping, etc. to form a grinding wheel.

〔発明の作用〕[Action of the invention]

本発明の研削砥石を用いて研削すると、振動減衰材料が
砥石の弾性変形によって生じる研削振動を吸収するため
、研削振動が除振され、これにより研削精度も向上され
る。このように本発明の研削砥石によれば、平面研削、
円筒研削、切断研削、内面研削、心無研削および工具研
削等の現在行なわれている一般精密研削加工を行なうこ
とができる。更に、シリコンウェハや磁気ディスク用ア
ルミニウム合金等の基板の超精密研磨やラッピングをも
行なうことができる。しかも、本発明は従来例と異なり
、研削条件に好ましくない制限例えば研削速度の制限を
加える必要もなく、また高価な機械構造の改造も不要で
あり、筒車な構成により、能率よく、高精度にして経済
的な研削を行なうことができる。
When grinding is performed using the grinding wheel of the present invention, the vibration-damping material absorbs the grinding vibrations generated by the elastic deformation of the grinding wheel, so the grinding vibrations are isolated, thereby improving the grinding accuracy. As described above, according to the grinding wheel of the present invention, surface grinding,
Current general precision grinding processes such as cylindrical grinding, cutting grinding, internal grinding, centerless grinding, and tool grinding can be performed. Furthermore, it is also possible to perform ultra-precision polishing and lapping of substrates such as silicon wafers and aluminum alloys for magnetic disks. Moreover, unlike the conventional example, the present invention does not require adding any unfavorable restrictions to the grinding conditions, such as limiting the grinding speed, nor does it require expensive modification of the mechanical structure. Economical grinding can be carried out using the same method.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図から第13図について説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 13.

第1図および第2図は本発明の一実施例の研削砥石1を
示している。この研削砥石1は、平面研削、円筒研削、
内面研削、心無研削および切断研削等に用いる砥石2の
端面に振動減衰材料3を接着または塗布することによっ
て装着して形成されている。このように形成された研削
砥石1によって平面研削を行なう場合には、第3図に示
すJ:うに、砥石主軸頭4にフランジ5をもって砥石2
および振動減衰材料3を挟持し、緊締用ナツト6を緊締
することによって取付け、被加工物7を研削する。
1 and 2 show a grinding wheel 1 according to an embodiment of the present invention. This grinding wheel 1 is suitable for surface grinding, cylindrical grinding,
It is formed by attaching a vibration damping material 3 to the end face of a grindstone 2 used for internal grinding, centerless grinding, cutting grinding, etc. by adhering or coating it. When surface grinding is performed using the grinding wheel 1 formed in this way, the grinding wheel 2 is held with the flange 5 on the grinding wheel spindle head 4 as shown in FIG.
Then, the vibration damping material 3 is clamped and attached by tightening the tightening nut 6, and the workpiece 7 is ground.

第4図および第5図は本発明の他の実施例の研削砥石8
を示している。この研削砥石8は、カップ型に形成され
ている。ずなわら、カップ型の基板体9の前端面に環状
の振動減衰材料10および砥石11を順に接着して形成
されている。
FIGS. 4 and 5 show a grinding wheel 8 according to another embodiment of the present invention.
It shows. This grinding wheel 8 is formed into a cup shape. It is formed by sequentially bonding an annular vibration damping material 10 and a grindstone 11 to the front end surface of a cup-shaped substrate body 9.

第6図は本発明の更に他の実施例の研削砥石12を示し
ている。この研削砥石12は、半導体用シリコン基板や
磁気ディスクアルミニウム合金基板等のラッピング仕上
げに用いるものであり、スポンジ砥石13の片面に振動
減衰材料14を接着または塗布することによって装着し
て形成されている。このように形成された研削砥石12
によって片面をラッピングする場合には、第7図に示す
ように、ラッピング盤の砥石ホルダ15に複数の研削砥
石12.12をそのスポンジ砥石13が外側に向くよう
にして取付けて行なう。両面をラッピングする場合には
、第8図に示すように、対向する2個の砥石ホルダ15
.15にそれぞれ取付けた対向するlaの研削砥石12
.12のスポンジ砥石13.13によって被加工物7を
上下から挟持するようにしてラッピングを行なう。
FIG. 6 shows a grinding wheel 12 according to yet another embodiment of the present invention. This grinding wheel 12 is used for finishing lapping of semiconductor silicon substrates, magnetic disk aluminum alloy substrates, etc., and is formed by attaching a vibration damping material 14 to one side of a sponge grinding wheel 13 by adhering or coating it. . Grinding wheel 12 formed in this way
In the case of lapping one side with a lapping machine, as shown in FIG. 7, a plurality of grinding wheels 12, 12 are attached to the grinding wheel holder 15 of the lapping machine with the sponge grinding wheels 13 facing outward. When lapping both sides, as shown in FIG.
.. Grinding wheels 12 of facing la attached to 15 respectively
.. Lapping is performed by sandwiching the workpiece 7 from above and below with 12 sponge grindstones 13 and 13.

次に、このようにして形成された研削砥石1゜8.12
により行なった研削実験について説明する。
Next, the grinding wheel 1°8.12 thus formed
We will explain the grinding experiment conducted by.

1)被加工物7について 被加工物7として、機械構造用炭素鋼 (SS41,520C,555C,SK7゜5K3)、
軸受w4(SUJ2〜4)、ダイス鋼(SKD1〜11
)、高速度鋼(SKF−12,4゜9.50,55.5
7)、無炭素鋼、銅合金およびアルミニウム合金を用い
た。
1) About the workpiece 7 The workpiece 7 is carbon steel for mechanical structure (SS41, 520C, 555C, SK7°5K3),
Bearing w4 (SUJ2~4), die steel (SKD1~11
), high speed steel (SKF-12,4゜9.50,55.5
7), carbon-free steel, copper alloy and aluminum alloy were used.

ここでは、組成が/l −(0,003〜6.62>重
量%MgまたはA、Q −(0,005〜6.36)重
量%Zn、J l55086の02T4 、Te処理さ
れたアルミニウム合金からなる被加工物7についての実
験結果を示す。他の材料の場合も同様の結果を示した。
Here, the composition is /l-(0,003-6.62>wt% Mg or A, Q-(0,005-6.36)wt% Zn, Jl55086 02T4, from Te-treated aluminum alloy. The experimental results are shown for workpiece 7. Similar results were obtained for other materials.

2)振動減衰材料3.10.14について振動減衰材料
3,10.14として次の物理的性質を有する試料1お
よび試料2からなる高分子材料を用いた。
2) Vibration Damping Materials 3.10.14 Polymer materials consisting of Samples 1 and 2 having the following physical properties were used as vibration damping materials 3 and 10.14.

試料1 20℃、1000HZの  :  4x102<hf 
/cIi>動的Vレグ率 引   張  強   さ    ゛        
63 (Klf  /ci )伸          
び    ゛      590(%)硬度(JISA
)   ”     60比          重 
   °1.120℃、1000Hzの  ・   1
.2損失係数(tanδ) 試料2 20℃、1000H2の  :  1.5X10  (
K’iif /d>動的ヤング率 引  張  強   さ    °       79
(Ngf/c!i>伸          び    
°       350(%)硬度(JISA)   
 °    93比          重    1
.120℃、1000HZの  ’    0.4損失
係数panδ) 3)研削条件 次の研削条件によって研削した。
Sample 1 20℃, 1000Hz: 4x102<hf
/cIi>Dynamic V-leg ratio tensile strength ゛
63 (Klf/ci) Shin
590 (%) hardness (JISA
) ” 60 specific gravity
°1.120℃, 1000Hz ・1
.. 2 Loss coefficient (tan δ) Sample 2 20℃, 1000H2: 1.5X10 (
K'iif /d>Dynamic Young's modulus tensile strength ° 79
(Ngf/c!i> Growth
° 350 (%) hardness (JISA)
° 93 specific gravity 1
.. 120°C, 1000Hz '0.4 loss coefficient pan δ) 3) Grinding conditions Grinding was carried out under the following grinding conditions.

砥石の周速度:Vs =1800m/win被加工物の
速度: Vw =O〜30m/sin砥石切込み:d=
1〜30μm 研 削 方 式:下向き平面フランジ研削研  削  
液:JISW1種30倍希釈水砥     石: PV
A800.同1000.同1500゜同2000.同3
000.同6000S 。
Peripheral speed of grinding wheel: Vs = 1800 m/win Speed of workpiece: Vw = O ~ 30 m/sin Grinding wheel cutting depth: d =
1~30μm Grinding method: Downward flat flange grinding
Liquid: JISW Class 1 30 times diluted water Stone: PV
A800. Same 1000. Same 1500゜ Same 2000. Same 3
000. Same 6000S.

k^60LmV、 5DC120R100B 。k^60LmV, 5DC120R100B.

GC150PmV、 CBN140117OR100B
4)実験結果 研削砥石1の切込みと仕上面粗さRmaxとの関係を第
9図に示すように、振動減衰材料3を装着していない従
来の砥石の仕上面粗さく同図A線)より、振動減衰材料
2を装着した試料1の仕上面粗さく同図B線)および試
料2の仕上面粗さく@図C線)の方がいずれも細密にな
っている。なお、被加工物7には99.9重量%A!J
が用いられている。このように、本実施例の研削砥石1
は振動減衰材料2を装着しているので仕上面粗さを小さ
く抑えることができる。この場合切込みが小さい方が効
果的であり、全体としては10〜30%も仕上面粗さが
細密に改善されている。特に試料1の方がより効果的に
仕上面粗さを小さくすることができる。
GC150PmV, CBN140117OR100B
4) Experimental results As shown in Figure 9, the relationship between the depth of cut of the grinding wheel 1 and the finished surface roughness Rmax is as follows. , the rough finished surface of sample 1 equipped with vibration damping material 2 (line B in the figure) and the rough finished surface of sample 2 (line C in the figure) are both finer. Note that the workpiece 7 contains 99.9% by weight A! J
is used. In this way, the grinding wheel 1 of this embodiment
Since the vibration damping material 2 is attached, the roughness of the finished surface can be kept small. In this case, a smaller depth of cut is more effective, and overall the finished surface roughness is finely improved by 10 to 30%. In particular, sample 1 can more effectively reduce the finished surface roughness.

また、AJ −Zn合金の0処理材を被加工物7として
、法線研削抵抗Fnと接触研削抵抗Ftについて、従来
のように振動減衰材料を装着しない場合と、試料1また
は試料2からなる振動減衰材料を装着した場合との実験
結果を比較して示すと第10図にようになる。この第1
0図の特性から判るように、法線研削抵抗Fnおよび接
線研削抵抗Ftとも、振動減衰材料を装着しない場合(
同図A t 、 A n線)より、試料1を装着した場
合(同図3 / 、 3 /l線)および試料2を装着
した場合(同図c’ 、c“°線)の方が小さい。特に
、試料1の場合は研削抵抗を約50%も減少させること
ができる。同様の実験をAj −MQ合金からなる被加
工物7について行なったが、AJ −Zn合金の場合と
同じ効果を得ることができた。
In addition, using zero-treated AJ-Zn alloy material as workpiece 7, the normal grinding resistance Fn and the contact grinding resistance Ft are examined for the normal grinding resistance Fn and the contact grinding resistance Ft, in the case where no vibration damping material is installed as in the conventional case, and in the case of sample 1 or sample 2. Fig. 10 shows a comparison of the experimental results with the case where a damping material is attached. This first
As can be seen from the characteristics in Figure 0, both the normal grinding resistance Fn and the tangential grinding resistance Ft are different when no vibration damping material is installed (
It is smaller when sample 1 is attached (lines 3/, 3/l in the same figure) and when sample 2 is attached (lines c' and c"° in the same figure) than when sample 1 is attached (lines c' and c" in the same figure). In particular, in the case of sample 1, the grinding resistance can be reduced by about 50%.A similar experiment was conducted on workpiece 7 made of Aj-MQ alloy, but it was found that the same effect as in the case of AJ-Zn alloy was obtained. I was able to get it.

このような研削抵抗の減少は、研削抵抗の変動成分の減
少が最も大きく影響するものであり、振動減衰材料の装
着による切込み量の減少によるものではない。
This reduction in grinding resistance is most significantly caused by a reduction in the fluctuation component of the grinding resistance, and is not due to a reduction in the depth of cut due to the attachment of the vibration damping material.

例えば、本実施例の研削砥石を用いないで、バイトによ
り超精密加工を行なう時に、超精密加工機械の主軸台と
ベットとの接合部に試料1または試料2からなる振動減
衰材料を介在させた場合と介在させない場合における周
波数特性を示す第11図(a)(b)(c)より研削抵
抗の減少は研削抵抗の変動成分の減少に最も大きく影響
を及ぼすことが判る。すなわち、第11図は主軸頭の垂
直方向の振動波形とその時の周波数解析によるパワーと
を示しており、平均振幅は振動減衰材料を装着しない場
合が約3.6mV (同図(a))、試料1を装着した
場合が約0.6mV (同図(b))、試料2を装着し
た場合が約2.4mV(同図(C))となっている。従
って、試料1の装着により約85%、試料2の装着によ
り約35%も平均振幅が減少しており、これらを装着し
ない場合に比べて極めて大きな除振効果があると認めら
れる。また、試料1は周波数帯域が約3KH2以下の低
周波域になるため、振動減衰材料を装着しない場合や比
較的硬度が大きい試2112の7KHzの周波数域に比
べて、超精密加工において嫌われる高周波数振動の除振
にも大きな効果を発揮することが判る。
For example, when performing ultra-precision machining with a cutting tool without using the grinding wheel of this example, a vibration damping material made of Sample 1 or Sample 2 may be interposed at the joint between the headstock and the bed of the ultra-precision processing machine. It can be seen from FIGS. 11(a), 11(b), and 11(c), which show the frequency characteristics with and without intervening, that the reduction in grinding resistance has the greatest effect on the reduction in the fluctuation component of the grinding resistance. In other words, Fig. 11 shows the vertical vibration waveform of the spindle head and the power obtained by frequency analysis at that time, and the average amplitude is approximately 3.6 mV when no vibration damping material is installed (Fig. 11(a)). When sample 1 is attached, the voltage is about 0.6 mV ((b) in the same figure), and when sample 2 is attached, it is about 2.4 mV ((c) in the same figure). Therefore, the average amplitude was reduced by about 85% when Sample 1 was attached, and by about 35% when Sample 2 was attached, and it is recognized that there is a significantly greater vibration isolation effect than when these are not attached. In addition, sample 1 has a low frequency band of about 3KH2 or less, so compared to the 7KHz frequency range of sample 2112, which has relatively high hardness or when no vibration damping material is installed, it has a high frequency band that is disliked in ultra-precision machining. It can be seen that it is also highly effective in isolating frequency vibrations.

また、第11図の結果によれば、研削時の除去盪はむし
ろ増加傾向を示しており、研削抵抗の変動成分の減少が
そのまま安定した除去率の増大につながっていることが
判る。つまり、砥石の切込み方向の振幅減少が除去率を
増加したとみなし得る。
Moreover, according to the results shown in FIG. 11, the removal rate during grinding shows an increasing tendency, and it can be seen that the reduction in the fluctuation component of the grinding resistance directly leads to a stable increase in the removal rate. In other words, it can be considered that a decrease in the amplitude of the grindstone in the cutting direction increases the removal rate.

そして、特に研削抵抗の減少が著しいのは、研削時のm
振力に影響を与える接線研削抵抗Ftであり、それも第
12図にみられるように、軽研削条件下の精密加工領域
はど大きな接線研削抵抗Ftの減少が認められる。なお
、この第12図のデータは、砥石2をPVA800Sと
し、被加工物7を99.9%Ajとし、湿式で研削した
ものである。
The reduction in grinding resistance is especially remarkable when m during grinding.
The tangential grinding resistance Ft affects the vibration force, and as shown in FIG. 12, a large decrease in the tangential grinding resistance Ft is observed in the precision machining area under light grinding conditions. The data shown in FIG. 12 was obtained by wet grinding using the grindstone 2 of PVA800S and the workpiece 7 of 99.9% Aj.

第13図は第12図の研削試験中砥石2と被加工物はそ
のままにしておき、被加工物の速度をVw = 5 m
/mtn 、切込みをd−15μmとして研削した場合
の研削表面に対する垂直方向の振動波形を、第11図と
同様にして示している。これによれば、平均振幅は振動
減衰材料を装着しない場合が約45mV、試料1を装着
した場合が約16mV、試料2を装着した場合が約25
7FLVである。すなわち、平均振幅は試料1の装芒に
より約65%、試料2の装着により約50%減少する。
Figure 13 shows that during the grinding test in Figure 12, the grindstone 2 and the workpiece were left as they were, and the speed of the workpiece was set to Vw = 5 m.
/mtn, and the vibration waveform in a direction perpendicular to the ground surface when grinding is performed with a depth of cut of d-15 μm is shown in the same manner as in FIG. According to this, the average amplitude is about 45 mV when no vibration damping material is attached, about 16 mV when sample 1 is attached, and about 25 mV when sample 2 is attached.
It is 7FLV. That is, the average amplitude decreases by about 65% when sample 1 is attached, and about 50% when sample 2 is attached.

このように研削抵抗の変動成分が大きく減少されること
が判る。特に、同図(a)の振動減衰材料を装着しない
場合には5.5Kl−IZ近辺(A部分)に大きなパワ
ーの共振周波数が発生するが、同図(b)(c)に示す
ように振動減衰材料である試$311および試料2を装
着した場合にはそのような共振周波数の発生はなく、特
に試料1の場合に顕著である。
It can be seen that the fluctuation component of the grinding resistance is thus greatly reduced. In particular, if the vibration damping material shown in Figure (a) is not installed, a resonance frequency with large power will occur around 5.5Kl-IZ (part A), but as shown in Figures (b) and (c). When sample No. 311 and sample 2, which are vibration damping materials, are attached, no such resonance frequency occurs, and this is particularly noticeable in the case of sample 1.

このようにして、研削抵抗の変動成分が減少するので、
仕上面粗さやうねりを小さくして、研削精度を向上させ
ることができる。
In this way, the fluctuation component of the grinding resistance is reduced, so
Grinding accuracy can be improved by reducing surface roughness and waviness.

なお、本実施例の研削砥石1.8.12を、研削機械の
各構成部分の締結部や接合部にそれぞれ個別又は同時に
振動減衰材料を介在させた研削機械に取付けることによ
り、一層研削抵抗の減衰を図るとよい。
Furthermore, by attaching the grinding wheel 1.8.12 of this example to a grinding machine in which vibration damping material is interposed individually or simultaneously at the fastening parts and joints of each component of the grinding machine, the grinding resistance can be further reduced. It is better to attenuate it.

〔発明の効果〕〔Effect of the invention〕

このように本発明の研削砥石は、砥石自身が吸振機能を
有するものであり、その自己吸振性により研削加工時に
発生する研削振動を除振することができ、従来のように
研削条件を制限したり、高価な機械構造の改造等を行な
う必要がなくなり、しかも構造も簡単でコストも低源で
ある等の効果を奏する。
As described above, the grinding wheel of the present invention has a vibration absorbing function itself, and its self-absorbing property allows it to isolate the grinding vibrations generated during grinding, thereby eliminating the need to limit the grinding conditions as in conventional methods. It also eliminates the need for expensive modifications to the mechanical structure, and has advantages such as a simple structure and low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図は本発明の研削砥石の一実施例を示し
、第1図は斜視図、第2図は縦断側面図、第3図は研削
状態を示す斜視図、第4図および第5図は本発明の他の
実施例を示し、第4図は斜視図、第5図は縦断側面図、
第6図から第8図は本発明の更に他の実施例を示し、第
6図は斜視図、第7図は片面ラッピングを示す斜視図、
第8図は両面ラッピングを示す縦断側面図、第9図は砥
石の切込みと仕上面粗さとのIII係を示す特性線図、
第10図はAll −Zn合金に対する研削抵抗と砥石
との関係を示す特性線図、第11図(a>(b)(C)
はそれぞれ超精密加工機械の主軸台とベットどの締結部
に振動減衰材料を介在させた時と介在させない時の紙幅
およびパワーと周波数との関係を示す特性線図、第12
図は研削条件と砥石の違いによる研削抵抗の比較を示す
線図、第13図(a)(b)(c)はそれぞれ研削表面
に垂直な方向の撮幅およびパワーと周波数との関係を示
す特性線図である。 1.8.12・・・研削砥石、2.11・・・砥石、3
.10.14・・・振動減衰材料、13・・・スポンジ
砥石。 第1図   第2図    第3図 第4図     第5崗
1 to 3 show one embodiment of the grinding wheel of the present invention, FIG. 1 is a perspective view, FIG. 2 is a vertical side view, FIG. 3 is a perspective view showing the grinding state, FIG. Fig. 5 shows another embodiment of the present invention, Fig. 4 is a perspective view, Fig. 5 is a longitudinal side view,
6 to 8 show still other embodiments of the present invention, FIG. 6 is a perspective view, FIG. 7 is a perspective view showing single-sided wrapping,
Fig. 8 is a longitudinal cross-sectional side view showing double-sided lapping, Fig. 9 is a characteristic diagram showing the III relationship between the cutting depth of the grindstone and the finished surface roughness;
Figure 10 is a characteristic diagram showing the relationship between grinding resistance and grinding wheel for All-Zn alloy, and Figure 11 (a>(b)(C)
12 is a characteristic diagram showing the relationship between paper width, power, and frequency when vibration damping material is interposed and not interposed in the fastening parts of the headstock and bed of an ultra-precision processing machine, respectively.
The figure is a diagram showing a comparison of grinding resistance due to differences in grinding conditions and grinding wheels. Figure 13 (a), (b), and (c) show the relationship between the imaging width in the direction perpendicular to the grinding surface and power and frequency, respectively. It is a characteristic line diagram. 1.8.12...Grinding whetstone, 2.11...Whetstone, 3
.. 10.14...Vibration damping material, 13...Sponge grindstone. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1)砥粒加工に用いる砥石に振動減衰材料を装着したこ
とを特徴とする研削砥石。 2)振動減衰材料は、動的ヤング率が10^2〜3×1
0^4kgf/cm^2および損失係数(tanδ)が
0.1以上の高分子材料によって形成されていることを
特徴とする特許請求の範囲第1項記載の研削砥石。
[Scope of Claims] 1) A grinding wheel characterized in that a grinding wheel used for abrasive processing is equipped with a vibration damping material. 2) The vibration damping material has a dynamic Young's modulus of 10^2 to 3×1
2. The grinding wheel according to claim 1, wherein the grinding wheel is made of a polymeric material having a loss coefficient of 0^4 kgf/cm^2 and a loss coefficient (tan δ) of 0.1 or more.
JP20337885A 1985-09-17 1985-09-17 Grinding wheel Pending JPS6263066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20337885A JPS6263066A (en) 1985-09-17 1985-09-17 Grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20337885A JPS6263066A (en) 1985-09-17 1985-09-17 Grinding wheel

Publications (1)

Publication Number Publication Date
JPS6263066A true JPS6263066A (en) 1987-03-19

Family

ID=16473042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20337885A Pending JPS6263066A (en) 1985-09-17 1985-09-17 Grinding wheel

Country Status (1)

Country Link
JP (1) JPS6263066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017525575A (en) * 2014-08-26 2017-09-07 スリーエム イノベイティブ プロパティズ カンパニー Polishing cutter with damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017525575A (en) * 2014-08-26 2017-09-07 スリーエム イノベイティブ プロパティズ カンパニー Polishing cutter with damper

Similar Documents

Publication Publication Date Title
US11781244B2 (en) Seed crystal for single crystal 4H—SiC growth and method for processing the same
JPS6150753B2 (en)
US6475073B2 (en) Inner diameter grinding wheel and grinding apparatus using the wheel for grinding a cylindrical workpiece
WO2003082519B1 (en) Conditioner and conditioning methods for smooth pads
JPS6263066A (en) Grinding wheel
US3287862A (en) Abrasive articles and method of making abrasive articles
CN114523340B (en) Complete grinding and polishing equipment and grinding and polishing method
Ichida et al. Formation mechanism of finished surface in ultrahigh-speed grinding with cubic boron nitride (cBN) wheels
JPH03234474A (en) Grinding wheel
US3287861A (en) Abrasive articles and method of making abrasive articles
CN111599673A (en) Grinding and polishing method of molybdenum wafer
JPH02303744A (en) Vacuum chuck
JPS62271645A (en) Damping machining method
CN117047564A (en) Method and device for inhibiting edge stray current corrosion in electrochemical grinding/electrochemical mechanical polishing of planar workpiece
CN204565897U (en) Polishing wheel and fixed jig thereof
CN215847687U (en) Carbon fiber matrix structure for ultrahigh-speed ceramic CBN grinding wheel for machining camshaft and grinding wheel
Li et al. Experimental study on ultrasonic-assisted grinding of micro-structured surface on silicon carbide using small diameter grinding wheel
JP2001150351A (en) Electrodeposition grinding wheel for dressing
JPH10134316A (en) Method for working magnetic head
JPH1094968A (en) Grinding wheel for polishing high chromium ferrite stainess steel
JP2022136787A (en) Triple structure wheel for double-headed surface grinding
JP4197803B2 (en) Grinding method
Jain et al. Lapping
Liang et al. Experimental investigations of grinding forces in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire
JPH04146081A (en) Electrodeposited grinding wheel