JPS626281Y2 - - Google Patents

Info

Publication number
JPS626281Y2
JPS626281Y2 JP1981158811U JP15881181U JPS626281Y2 JP S626281 Y2 JPS626281 Y2 JP S626281Y2 JP 1981158811 U JP1981158811 U JP 1981158811U JP 15881181 U JP15881181 U JP 15881181U JP S626281 Y2 JPS626281 Y2 JP S626281Y2
Authority
JP
Japan
Prior art keywords
negative pressure
exhaust gas
chamber
gas recirculation
suction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981158811U
Other languages
Japanese (ja)
Other versions
JPS5863345U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15881181U priority Critical patent/JPS5863345U/en
Publication of JPS5863345U publication Critical patent/JPS5863345U/en
Application granted granted Critical
Publication of JPS626281Y2 publication Critical patent/JPS626281Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、車両用内燃機関の排気ガス還流装置
に関し、特に高負荷領域での排気ガス還流性能の
向上を図るものに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an exhaust gas recirculation device for a vehicle internal combustion engine, and particularly to one that aims to improve exhaust gas recirculation performance in a high load region.

〔従来の技術〕[Conventional technology]

従来かかる排気ガス還流装置として多数の提案
がなされてきており、高負荷領域を含んで排気ガ
ス還流を有効に行う方法の1つとして例えば実開
昭49−30724号公報のように、スロツトル弁の全
閉直上流側の負圧とベンチユリー負圧を用いるも
のがある。
In the past, many proposals have been made for such exhaust gas recirculation devices, and one method for effectively recirculating exhaust gas including in a high load region is the use of a throttle valve as in Japanese Utility Model Application Publication No. 49-30724. Some use negative pressure immediately upstream of a fully closed valve and ventilator negative pressure.

ところで近年は上記公報のように気化器で取出
した負圧を用いて直接EGRバルブを動作する方
式と異なり、マイコンを用いて機関運転状態を検
出しEGR量を最適に制御するようになつてきて
いる。その1つとして吸入管負圧を調整して常に
一定の負圧を確保しておき、この負圧をマイコン
による機関運転状態に応じて制御しながらEGR
バルブに作用するものがある。
By the way, in recent years, unlike the method described in the above publication that directly operates the EGR valve using the negative pressure extracted from the carburetor, a microcomputer has been used to detect the engine operating status and optimally control the EGR amount. There is. One way to do this is to adjust the suction pipe negative pressure to always maintain a constant negative pressure, and then control this negative pressure using a microcomputer according to the engine operating status.
There are things that act on valves.

しかし、この従来例は吸入管負圧のみを用いた
ものであるので、スロツトル全開付近の高負荷領
域ではEGRバルブ制御用の負圧が吸入管負圧と
同じになつてEGRバルブを充分開けることがで
きない。そのため、EGR量を多くする必要があ
る高負荷時のEGR量が不足して、多量に排出さ
れるMOxを充分低減することができないという
欠点がある。
However, since this conventional example uses only suction pipe negative pressure, in the high load region near full throttle opening, the negative pressure for controlling the EGR valve becomes the same as the suction pipe negative pressure, making it difficult to open the EGR valve sufficiently. I can't. Therefore, there is a drawback that the amount of EGR is insufficient during high loads when the amount of EGR needs to be increased, and it is not possible to sufficiently reduce the amount of MOx that is emitted in large amounts.

もつとも、この欠点の解消に役立つ先行技術例
として特開昭54−98423号公報、特公昭52−13263
号公報に記載されているものがあるが、これらの
排気ガス還流路中には、それぞれ、吸入管負圧と
該負圧をリークするための大気、ベンチユリ負
圧、オリフイスを介しての排気ガスの負圧が各別
に導入される3つの室、ベンチユリ負圧、大気、
吸入管負圧が各別に導入される3つの室が、それ
ぞれダイヤフラムによつて区画されている。調圧
装置が設けられている。
However, examples of prior art useful for solving this drawback include Japanese Patent Application Laid-Open No. 54-98423 and Japanese Patent Publication No. 52-13263.
These exhaust gas recirculation paths include negative pressure in the suction pipe, the atmosphere for leaking the negative pressure, negative pressure in the bench lily, and exhaust gas through the orifice. There are three chambers into which negative pressure is introduced separately: bench lily negative pressure, atmospheric pressure,
Three chambers into which suction pipe negative pressure is introduced are each separated by a diaphragm. A pressure regulating device is provided.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

従つて、上記先行技術例のものによれば調圧装
置は、2つのダイヤフラムによりそれぞれ区画さ
れている3つの室を有するため、構造が複雑にな
るという問題がある。
Therefore, according to the above-mentioned prior art example, the pressure regulating device has three chambers each partitioned by two diaphragms, resulting in a problem that the structure is complicated.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、このような問題を解消することを目
的とするものであつて、次のような技術手段を有
するものである。すなわち 機関本体の排気系から吸気系へEGRバルブを
有する排気ガス還流路を連通する排気ガス還流装
置において、吸入管負圧を導く負圧通路とベンチ
ユリー負圧を導く負圧通路とを、ダイヤフラムに
より大気室と負圧室とに区画された調圧装置の負
圧室に、連通すると共にこれらの室にはそれぞれ
バネを、負圧室側のものが大気室側のものよりバ
ネ力を大きくして配設し、かつ上記吸入管負圧を
導く負圧通路の負圧入口ポートを上記ダイヤフラ
ムに近接対向して設け、該調圧装置からの負圧通
路を、機関運転状態に応じて負圧をリークさせる
ソレノイドバルブおよび上記EGRバルブの制御
用負圧室に連通するようにしたものである。
The present invention aims to solve such problems and has the following technical means. In other words, in an exhaust gas recirculation system that communicates an exhaust gas recirculation path with an EGR valve from the exhaust system of the engine body to the intake system, a diaphragm is used to connect the negative pressure passage that leads to the suction pipe negative pressure and the negative pressure passage that leads to the ventilator negative pressure. It communicates with the negative pressure chamber of the pressure regulating device, which is divided into an atmospheric chamber and a negative pressure chamber, and each of these chambers is equipped with a spring, with the spring force on the negative pressure chamber side being larger than that on the atmospheric chamber side. The negative pressure inlet port of the negative pressure passage for introducing the negative pressure in the suction pipe is provided close to and opposite to the diaphragm, and the negative pressure passage from the pressure regulator is connected to the negative pressure according to the engine operating state. The valve is connected to a solenoid valve that leaks water and a negative pressure chamber for controlling the EGR valve.

〔実施例〕〔Example〕

以下、図面を参照して本考案の一実施例を具体
的に説明すると、第1図において符号1は機関本
体、2は吸入管、3は気化器、4は排気管であ
り、排気管4から吸入管2に周知のようにEGR
バルブ5を有する排気ガスの還流通路6が連通構
成してある。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. In FIG. From the suction pipe 2 as well known as EGR
An exhaust gas recirculation passage 6 having a valve 5 is configured to communicate with the exhaust gas.

そして上記EGRバルブ5の負圧室7の負圧制
御を行うために、まず低負荷から高負荷の全負荷
領域において充分なEGRバルブ制御負圧を確保
する調圧装置8を有する。この調圧装置8はダイ
ヤフラム9で区画された大気室10と負圧室11
とを有し、これらの各室10,11でダイヤフラ
ム9にバネ12,13がそれぞれ付勢してあり、
負圧室11に2つの負圧入口ポート14,15及
び1つの出口ポート16がある。ポート14は負
圧通路17により吸入管2に連通して吸入管負圧
を導入し、ポート15は負圧通路18により気化
器3のスロツトル弁19上流側のベンチユリー2
0の部分に連通してベンチユリー負圧を導入する
ようになつており、このうちのポート14はダイ
ヤフラム9に近接対向して設けられ、吸入管負圧
またはベンチユリー負圧が大きい場合はダイヤフ
ラム9の撓みにより直接ポート14を閉じる。一
方、ポート16は負圧通路21により負圧制御部
22とEGRバルブ5の負圧室7とに連通し、こ
れらの各負圧通路17,18,21の調圧装置8
の側にそれぞれオリフイス23が設けてある。
In order to control the negative pressure in the negative pressure chamber 7 of the EGR valve 5, first, a pressure regulator 8 is provided to ensure sufficient EGR valve control negative pressure in the entire load range from low load to high load. This pressure regulator 8 includes an atmospheric chamber 10 and a negative pressure chamber 11 divided by a diaphragm 9.
The diaphragm 9 is biased by springs 12 and 13 in each of these chambers 10 and 11, respectively.
There are two negative pressure inlet ports 14 , 15 and one outlet port 16 in the negative pressure chamber 11 . The port 14 communicates with the suction pipe 2 through a negative pressure passage 17 to introduce suction pipe negative pressure, and the port 15 communicates with the intake pipe 2 through a negative pressure passage 18 on the upstream side of the throttle valve 19 of the carburetor 3.
Port 14 of these ports is provided close to and facing the diaphragm 9, and when the suction pipe negative pressure or the ventilate negative pressure is large, the diaphragm 9 is The deflection directly closes the port 14. On the other hand, the port 16 communicates with the negative pressure control unit 22 and the negative pressure chamber 7 of the EGR valve 5 through a negative pressure passage 21, and the pressure regulator 8 of each of these negative pressure passages 17, 18, 21
An orifice 23 is provided on each side.

負圧制御部22は通路21にその負圧を大気に
リークすべく設けられるソレノイドバルブ24
と、水温やスロツトル弁開度を感知して機関運転
状態を検出することにより、ソレノイドバルブ2
4の開口時間比率(以下デユーテイ比と称する)
を変化させる制御ユニツト25から成り、このよ
うな制御ユニツト25によるソレノイドバルブ2
4の負圧リーク動作によりEGRバルブ5の負圧
室7の負圧が制御される。
The negative pressure control unit 22 includes a solenoid valve 24 provided in the passage 21 to leak the negative pressure to the atmosphere.
Solenoid valve 2 is activated by sensing water temperature and throttle valve opening to detect engine operating status.
4 opening time ratio (hereinafter referred to as duty ratio)
It consists of a control unit 25 that changes the solenoid valve 2 by such a control unit 25.
The negative pressure in the negative pressure chamber 7 of the EGR valve 5 is controlled by the negative pressure leak operation 4.

このように構成された本考案の排気ガス還流装
置の作用について説明すると、アイドリング、低
負荷、中負荷時には、ベンチユリ負圧は小さい。
更に、調圧装置8に設けられているバネ13のバ
ネ力が、バネ12のバネ力より強く設定されてい
るので、吸入管負圧は調圧されて、負圧通路21
に略一定の負圧が得られる。そこでこのとき機関
冷態時であれば、負圧制御部22における制御ユ
ニツト25からのデユーテイ比の大きい信号でソ
レノイドバルブ24により負圧が多くリークされ
てEGRバルブ5の開度が0か或いは小さく設定
され、排気ガス還流量が0又は少量になる。これ
に対して中負荷時又は機関暖機時であれば、ソレ
ノイドバルブ24により負圧のリーク量が制御さ
れてEGRバルブ5の負圧室7の負圧が増大し、
EGRバルブ5の開度も増して多量の排気ガス還
流が行われる。
To explain the operation of the exhaust gas recirculation device of the present invention configured as described above, the vent lily negative pressure is small during idling, low load, and medium load.
Furthermore, since the spring force of the spring 13 provided in the pressure regulating device 8 is set to be stronger than the spring force of the spring 12, the suction pipe negative pressure is regulated and the negative pressure passage 21
A substantially constant negative pressure can be obtained. Therefore, if the engine is cold at this time, a large amount of negative pressure will be leaked by the solenoid valve 24 due to a signal with a large duty ratio from the control unit 25 in the negative pressure control section 22, and the opening degree of the EGR valve 5 will be 0 or small. The exhaust gas recirculation amount is set to 0 or a small amount. On the other hand, when the load is medium or the engine is warmed up, the amount of negative pressure leaked is controlled by the solenoid valve 24, and the negative pressure in the negative pressure chamber 7 of the EGR valve 5 increases.
The opening degree of the EGR valve 5 is also increased to recirculate a large amount of exhaust gas.

高負荷時スロツトル弁19が略全開すると、吸
入管負圧自体が低下することでそれのみでは調圧
装置8の負圧室11に充分な負圧を確保すること
ができなくなる。ところでこのような運転領域で
は気化器3のベンチユリー20を空気が高速で通
過することによりそこに大きいベンチユリー負圧
を生じており、このベンチユリー負圧が調圧装置
8の負圧室11に導入される。そのため、ダイヤ
フラム9によりポート14が閉じられるため負圧
室11の下流の負圧通路や負圧室7などには、第
2図の破線のように実線の吸入管負圧より大きい
EGRバルブ制御負圧が確保されることになる。
そこでこのとき負圧制御部22で排気ガス還流量
を多くするように制御されると、EGRバルブ5
は迅速且つ確実に開口動作して多量の排気ガス還
流が行われるのである。
When the throttle valve 19 is substantially fully opened during high load, the suction pipe negative pressure itself decreases, making it impossible to secure sufficient negative pressure in the negative pressure chamber 11 of the pressure regulating device 8 by itself. By the way, in such an operating range, air passes through the ventilator 20 of the carburetor 3 at high speed, creating a large ventilator negative pressure there, and this ventilator negative pressure is introduced into the negative pressure chamber 11 of the pressure regulator 8. Ru. Therefore, since the port 14 is closed by the diaphragm 9, the negative pressure in the negative pressure passage downstream of the negative pressure chamber 11, the negative pressure chamber 7, etc. is higher than the suction pipe negative pressure shown by the solid line, as shown by the broken line in FIG.
EGR valve control negative pressure will be ensured.
Therefore, if the negative pressure control section 22 is controlled to increase the amount of exhaust gas recirculation at this time, the EGR valve 5
The opening operation is quick and reliable, and a large amount of exhaust gas is recirculated.

〔考案の効果〕[Effect of idea]

以上の説明から明らかなように本考案による
と、スロツトル弁全開付近の高負荷時に多量の排
気ガスの還流が行われるので、このとき多く排出
するNOxを有効に低減することができる。高負
荷時に高い負圧を生じるベンチユリー負圧を利用
し、そのベンチユリー負圧の系路が付加されるだ
けで他の運転領域と同様に制御されるうえ、調圧
装置は上記先行技術例と異り1個のダイヤフラム
で区画される2室で足りるので、構造も簡単でか
つ小型にもなる。更に高負荷時充分な負圧が確保
されてそれによりEGRバルブ5を全開すべく動
作するので、そのEGRバルブ5は制御負圧に対
する開口面積の特性がなめらかなものになつて、
EGR流量の制御を精度よく行うことができる。
As is clear from the above description, according to the present invention, a large amount of exhaust gas is recirculated during high load near the fully open throttle valve, so that it is possible to effectively reduce the amount of NOx that is emitted in large amounts at this time. The ventilator negative pressure that generates high negative pressure at high loads is used, and by simply adding a ventilator negative pressure line, it can be controlled in the same way as other operating areas, and the pressure regulating device is different from the prior art example described above. Since two chambers separated by one diaphragm are sufficient, the structure is simple and compact. Furthermore, at high loads, sufficient negative pressure is secured and the EGR valve 5 is operated to fully open, so the EGR valve 5 has a smooth opening area characteristic with respect to the control negative pressure.
EGR flow rate can be controlled with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による装置の一実施例を示す構
成図、第2図は本考案の場合の負圧とスロツトル
開度の関係を示す線図である。 1……機関本体、2……吸入管、3……気化
器、4……排気管、5……EGRバルブ、6……
排気ガス還流路、7……負圧室、8……調圧装
置、12,13……バネ、17,18,21……
負圧通路、24……ソレノイドバルブ。
FIG. 1 is a block diagram showing an embodiment of the device according to the present invention, and FIG. 2 is a diagram showing the relationship between negative pressure and throttle opening in the case of the present invention. 1... Engine body, 2... Intake pipe, 3... Carburetor, 4... Exhaust pipe, 5... EGR valve, 6...
Exhaust gas recirculation path, 7... Negative pressure chamber, 8... Pressure regulator, 12, 13... Spring, 17, 18, 21...
Negative pressure passage, 24...Solenoid valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 機関本体の排気系から吸気系へEGRバルブを
有する排気ガス還流路を連通する排気ガス還流装
置において、吸入管負圧を導く負圧通路とベンチ
ユリー負圧を導く負圧通路とを、ダイヤフラムに
より大気室と負圧室とに区画された調圧装置の負
圧室に、連通すると共にこれらの室にはそれぞれ
バネを、負圧室側のものが大気室側のものよりバ
ネ力を大きくして配設し、かつ上記吸入管負圧を
導く負圧通路の負圧入口ポートを上記ダイヤフラ
ムに近接対向して設け、該調圧装置からの負圧通
路を、機関運転状態に応じて負圧をリークさせる
ソレノイドバルブおよび上記EGRバルブの制御
用負圧室に連通するようにしたことを特徴とする
排気ガス還流装置。
In an exhaust gas recirculation system that communicates an exhaust gas recirculation path with an EGR valve from the exhaust system of the engine body to the intake system, a diaphragm connects the negative pressure path that leads to the suction pipe negative pressure and the negative pressure path that leads to the ventilator negative pressure to the atmosphere. It communicates with the negative pressure chamber of the pressure regulating device, which is divided into a chamber and a negative pressure chamber, and each of these chambers is equipped with a spring, with the spring force on the negative pressure chamber side being larger than that on the atmospheric chamber side. The negative pressure inlet port of the negative pressure passage for introducing the suction pipe negative pressure is provided in close proximity to the diaphragm, and the negative pressure passage from the pressure regulating device is configured to introduce negative pressure according to the engine operating state. An exhaust gas recirculation device, characterized in that it communicates with a solenoid valve to be leaked and a negative pressure chamber for controlling the EGR valve.
JP15881181U 1981-10-23 1981-10-23 Exhaust gas recirculation device Granted JPS5863345U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15881181U JPS5863345U (en) 1981-10-23 1981-10-23 Exhaust gas recirculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15881181U JPS5863345U (en) 1981-10-23 1981-10-23 Exhaust gas recirculation device

Publications (2)

Publication Number Publication Date
JPS5863345U JPS5863345U (en) 1983-04-28
JPS626281Y2 true JPS626281Y2 (en) 1987-02-13

Family

ID=29951294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15881181U Granted JPS5863345U (en) 1981-10-23 1981-10-23 Exhaust gas recirculation device

Country Status (1)

Country Link
JP (1) JPS5863345U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213263A (en) * 1975-07-22 1977-02-01 Toshiba Corp Feeding method of paper sheets
JPS5498423A (en) * 1978-01-19 1979-08-03 Nissan Motor Co Ltd Control apparatus for recycling of exhaust

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213263A (en) * 1975-07-22 1977-02-01 Toshiba Corp Feeding method of paper sheets
JPS5498423A (en) * 1978-01-19 1979-08-03 Nissan Motor Co Ltd Control apparatus for recycling of exhaust

Also Published As

Publication number Publication date
JPS5863345U (en) 1983-04-28

Similar Documents

Publication Publication Date Title
US3884200A (en) Exhaust gas recirculation control system for internal combustion engines
USRE27993E (en) Exhaust recirculation control for an engine
US4041913A (en) Exhaust gas recirculating system
US4186698A (en) Engine exhaust gas recirculation control system
US3885538A (en) Engine air pump pressure/manifold vacuum controlled exhaust gas recirculating control system
US4335699A (en) Exhaust gas recirculation system
US4411228A (en) Split type internal combustion engine
CA1119064A (en) Exhaust gas recirculation for engine
JPS626281Y2 (en)
JPS5813744B2 (en) Internal combustion engine exhaust gas recirculation device
US4114575A (en) Exhaust pressure regulating system
GB1485208A (en) Exhaust gas recirculation system
US4231336A (en) Exhaust gas recirculation system for an internal combustion engine
JPS6335180Y2 (en)
JPS636463Y2 (en)
JPS5930904B2 (en) Internal combustion engine exhaust gas recirculation device
JPH0332770Y2 (en)
JPH0329569Y2 (en)
JPS5827085Y2 (en) Exhaust recirculation control device
JPS5917264B2 (en) Internal combustion engine exhaust gas recirculation device
JPH0326298Y2 (en)
JPS635580B2 (en)
JPS6233098Y2 (en)
JPS6113734Y2 (en)
JPS6231656Y2 (en)