JPS6262037B2 - - Google Patents

Info

Publication number
JPS6262037B2
JPS6262037B2 JP53100832A JP10083278A JPS6262037B2 JP S6262037 B2 JPS6262037 B2 JP S6262037B2 JP 53100832 A JP53100832 A JP 53100832A JP 10083278 A JP10083278 A JP 10083278A JP S6262037 B2 JPS6262037 B2 JP S6262037B2
Authority
JP
Japan
Prior art keywords
circuit
potential
coupled
load
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53100832A
Other languages
Japanese (ja)
Other versions
JPS5442872A (en
Inventor
Arubaato Gooperu Chaaruzu
Shii Nooru Uiriamu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram Sylvania Inc
Original Assignee
GTE Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/826,541 external-priority patent/US4127893A/en
Priority claimed from US05/826,051 external-priority patent/US4127795A/en
Application filed by GTE Products Corp filed Critical GTE Products Corp
Publication of JPS5442872A publication Critical patent/JPS5442872A/en
Publication of JPS6262037B2 publication Critical patent/JPS6262037B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5383Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement
    • H02M7/53832Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement in a push-pull arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

よび選択的隔絶および供給手段17 とを具備することを特徴とする同調発振形安定器
回路。
and selective isolation and supply means 17.

2 前記直流電位供給手段7と前記エネルギ蓄積
および選択的隔絶および供給手段17とに過渡電
流を補償する手段121が結合されている特許請
求の範囲第1項記載の同調発振形安定器回路。
2. A tunable oscillator ballast circuit according to claim 1, wherein means 121 for compensating for transient currents are coupled to said DC potential supply means 7 and said energy storage and selective isolation and supply means 17.

3 前記過渡電流補償手段121がツエナーダイ
オードの形式である特許請求の範囲第2項記載の
同調発振形安定器回路。
3. A tuned oscillation type ballast circuit according to claim 2, wherein said transient current compensating means 121 is in the form of a Zener diode.

4 前記高周波出力電位供給手段9が発振器を含
み、該発振器が前記直流電位供給手段を分路する
一対の直列接続されたトランジスタとこれらトラ
ンジスタに結合され、出力電位を供給する直列接
続のコンデンサおよびインダクタを含む共振回路
とを有する特許請求の範囲第1項記載の同調発振
形安定器回路。
4. The high-frequency output potential supply means 9 includes an oscillator, and the oscillator includes a pair of series-connected transistors that shunt the DC potential supply means, and a series-connected capacitor and inductor that are coupled to these transistors and supply the output potential. A tuned oscillation type ballast circuit according to claim 1, comprising a resonant circuit comprising:

5 前記負荷付勢手段11が前記高周波出力電位
供給手段に結合された1次巻線および前記負荷回
路に結合された2次巻線を有する第1のトランス
を含み、前記負荷回路がフイラメントを有するラ
ンプを含み、前記2次巻線が直列接続された駆動
巻線およびフイラメント巻線を含む特許請求の範
囲第1項記載の同調発振形安定器回路。
5. The load energizing means 11 includes a first transformer having a primary winding coupled to the high frequency output potential supply means and a secondary winding coupled to the load circuit, the load circuit having a filament. 2. A tuned oscillation type ballast circuit according to claim 1, which includes a lamp and includes a drive winding and a filament winding in which said secondary winding is connected in series.

6 前記負荷付勢手段11が前記高周波出力電位
供給手段に結合された1次巻線と前記負荷回路に
結合された2次巻線とを有する第1のトランスの
形式にあり、前記駆動手段19が前記第1のトラ
ンスの2次巻線に直列に接続された1次巻線と前
記高周波出力電位供給手段に結合された2次巻線
とを含み、前記負荷回路に流れる断続電流が前記
駆動手段に断続電流を生じさせるようにしてなる
特許請求の範囲第1項記載の同調発振形安定器回
路。
6 said load energizing means 11 is in the form of a first transformer having a primary winding coupled to said high frequency output potential supply means and a secondary winding coupled to said load circuit; includes a primary winding connected in series to the secondary winding of the first transformer and a secondary winding coupled to the high frequency output potential supply means, and the intermittent current flowing through the load circuit is connected to the drive circuit. 2. A tuned oscillation type ballast circuit according to claim 1, wherein the means generates an intermittent current.

7 前記負荷回路13が一対のけい光ランプの形
式にあり、前記負荷付勢手段が前記高周波出力電
位供給手段に結合された1次巻線とそれぞれが前
記一対のけい光ランプに結合された直列接続のフ
イラメント巻線および駆動巻線を含む3つの2次
巻線とを有する第1のトランスを含み、前記駆動
手段19が前記負荷付勢手段の前記直列接続され
たフイラメントおよび駆動巻線の少なくとも1つ
と直列接続された少なくとも1つの1次巻線と前
記高周波出力電位供給手段に結合された少なくと
も1つの2次巻線とを有する第2のトランスを含
む特許請求の範囲第1項記載の同調発振形安定器
回路。
7. said load circuit 13 is in the form of a pair of fluorescent lamps, said load energizing means having a primary winding coupled to said high frequency output potential supply means, and a series circuit each coupled to said pair of fluorescent lamps; a first transformer having three secondary windings comprising a connected filament winding and a drive winding, said drive means 19 comprising at least one of said series connected filament and drive windings of said load energizing means; Tuning according to claim 1, comprising a second transformer having at least one primary winding connected in series with the second transformer and at least one secondary winding coupled to the high frequency output potential supply means. Oscillation type ballast circuit.

8 前記負荷回路が一対のランプの形式にあり、
前記負荷付勢手段が前記高周波出力電位供給手段
に結合された1次巻線とそれぞれが前記一対のラ
ンプに結合された直列接続されたフイラメントお
よび駆動巻線を含む3つの2次巻線とを有する第
1のトランスを含み、前記駆動手段が前記負荷付
勢手段の前記第1のトランスの前記3つの2次巻
線のそれぞれ1つと直列の1次巻線と前記高周波
出力電位供給手段の一対のトランジスタのそれぞ
れ1つに結合された2次巻線とを有する第2のト
ランスを含む特許請求の範囲第1項記載の同調発
振形安定器回路。
8. said load circuit is in the form of a pair of lamps;
The load energizing means comprises a primary winding coupled to the high frequency output potential supply means and three secondary windings each including a series connected filament and a drive winding coupled to the pair of lamps. a first transformer having a primary winding in series with each one of the three secondary windings of the first transformer of the load energizing means; and a pair of the high frequency output potential supply means. A tunable oscillator ballast circuit as claimed in claim 1, including a second transformer having a secondary winding coupled to a respective one of the transistors.

9 前記整流手段が倍電圧整流回路の形式にあ
り、該倍電圧整流回路が前記負荷付勢手段を電位
基準レベルに結合するインダクタと、該インダク
タを分路する直列接続のダイオードおよびコンデ
ンサと、該直列接続のコンデンサおよびダイオー
ドの接続点を前記エネルギ蓄積および選択的隔絶
および供給手段に結合するダイオードとを有する
特許請求の範囲第1項記載の同調発振形安定器回
路。
9 said rectifier means is in the form of a voltage doubler rectifier circuit, said voltage doubler rectifier circuit comprising an inductor coupling said load energizing means to a potential reference level, a series connected diode and a capacitor shunting said inductor; A tunable oscillator ballast circuit as claimed in claim 1, comprising a series connected capacitor and a diode coupling the junction of the diode to said energy storage and selective isolation and supply means.

10 前記整流手段が前記負荷付勢手段を電位基
準レベルに結合する選択可能な値のインダクタを
含み、該インダクタの値によつて前記負荷回路に
供給される電力を制御するようにした特許請求の
範囲第1項記載の同調発振形安定器回路。
10. The rectifier means includes an inductor of selectable value coupling the load energizing means to a potential reference level, the value of the inductor controlling the power supplied to the load circuit. A tuned oscillation type ballast circuit as described in range 1.

11 前記高周波出力電位供給手段がベースおよ
びエミツタ電極をそれぞれ有する一対の直列接続
されたトランジスタとこれらトランジスタのそれ
ぞれの前記ベースおよびエミツタ電極間に結合さ
れたスイツチング補助回路とを含む特許請求の範
囲第1項記載の同調発振形安定器回路。
11. Claim 1, wherein the high-frequency output potential supply means includes a pair of series-connected transistors each having a base and an emitter electrode, and a switching auxiliary circuit coupled between the base and emitter electrodes of each of these transistors. Tuned oscillation type ballast circuit described in .

12 前記スイツチング補助回路が直列接続され
たダイオードおよび抵抗の形式にある特許請求の
範囲第11項記載の同調発振形安定器回路。
12. A tuned oscillator ballast circuit according to claim 11, wherein said switching auxiliary circuit is in the form of a series connected diode and resistor.

13 交流電位源3と、該交流電位源に結合さ
れ、脈動直流電位を同調発振器9に供給する直流
電位供給回路7と、発振器駆動回路19と、整流
回路15と、電荷蓄積および選択的隔絶および供
給回路17とを有し、前記同調発振器が高周波出
力電位を負荷付勢回路11の第1のトランス67
の1次巻線69に供給し、前記第1のトランスが
3つの2次巻線75,81,87を有し、各2次
巻線がそれぞれ負荷回路13に対する直列接続の
フイラメントおよび駆動巻線79,77;85,
83;91,89を含み、前記発振器駆動回路が
第2のトランス99を有し、該第2のトランスが
前記第1のトランスの前記2次巻線の前記直列接
続されたフイラメントおよび駆動巻線の少なくと
も1つと直列接続の少なくとも1つの1次巻線と
前記同調発振器に結合された2次巻線とを有し、
前記電荷蓄積および選択的隔絶および供給回路が
前記負荷付勢回路を前記直流電位供給回路に結合
する同調発振形安定器回路において、 前記負荷付勢回路および前記電荷蓄積および選
択的隔絶および供給回路に結合され、前記整流回
路を分路する過渡電流補償手段121,153を
含み、初期サージエネルギを前記電荷蓄積および
選択的隔絶および供給回路に供給して初期充電を
行なわせることを特徴とする同調発振形安定器回
路。
13 an alternating current potential source 3, a direct current potential supply circuit 7 coupled to the alternating current potential source and supplying a pulsating direct current potential to the tuned oscillator 9, an oscillator drive circuit 19, a rectifier circuit 15, charge storage and selective isolation and the tuned oscillator supplies the high frequency output potential to the first transformer 67 of the load energizing circuit 11;
The first transformer has three secondary windings 75, 81, 87, each secondary winding having a filament connected in series to the load circuit 13 and a drive winding. 79,77;85,
83; 91, 89, said oscillator drive circuit having a second transformer 99, said second transformer connecting said series connected filaments of said secondary winding of said first transformer and a drive winding; at least one primary winding in series with at least one of the following: and a secondary winding coupled to the tuned oscillator;
A tuned oscillator ballast circuit in which the charge storage and selective isolation and supply circuit couples the load energization circuit to the DC potential supply circuit, wherein the load energization circuit and the charge storage and selective isolation and supply circuit Tuned oscillation characterized in that it includes transient current compensation means 121, 153 coupled and shunting said rectifier circuit to supply initial surge energy to said charge storage and selective isolation and supply circuit for initial charging. Shape ballast circuit.

14 前記過渡電流補償手段が前記整流回路を分
路しかつ前記負荷付勢回路を前記電荷蓄積および
選択的隔絶および供給回路に結合するダイオード
の形式にある特許請求の範囲第13項記載の同調
発振形安定器回路。
14. Tuned oscillation according to claim 13, wherein said transient current compensation means is in the form of a diode shunting said rectifier circuit and coupling said load energizing circuit to said charge storage and selective isolation and supply circuit. Shape ballast circuit.

15 前記過渡電流補償手段が前記負荷付勢回路
の前記第1のトランスの前記1次巻線におよび前
記電荷蓄積および選択的隔絶および供給回路に接
続されたダイオードの形式にあり、該ダイオード
は前記整流回路を分路する特許請求の範囲第13
項記載の同調発振形安定器回路。
15 said transient current compensation means is in the form of a diode connected to said primary winding of said first transformer of said load energizing circuit and to said charge storage and selective isolation and supply circuit; Claim 13 shunting the rectifier circuit
Tuned oscillation type ballast circuit described in .

16 前記電荷蓄積および選択的隔絶および供給
回路が直列に結合されかつ前記直流電位供給回路
を分路するダイオードおよびコンデンサの形式に
あり、前記過渡電流補償手段が前記直列接続され
たダイオードおよびコンデンサの接続点を前記負
荷付勢回路に結合する特許請求の範囲第13項記
載の同調発振形安定器回路。
16 said charge storage and selective isolation and supply circuit is in the form of a diode and capacitor coupled in series and shunting said DC potential supply circuit, and said transient current compensation means is in the form of a diode and capacitor coupled in series and shunting said DC potential supply circuit; 14. The tunable oscillator ballast circuit of claim 13, wherein the oscillating ballast circuit is coupled to the load energizing circuit.

【発明の詳細な説明】[Detailed description of the invention]

この発明はけい光ランプ負荷に好適の高効率安
定器回路、特に発振器の駆動に負荷回路からの帰
還を用いる同調発振形安定器回路に関する。
The present invention relates to a high efficiency ballast circuit suitable for a fluorescent lamp load, and more particularly to a tuned oscillation type ballast circuit that uses feedback from a load circuit to drive an oscillator.

現在、一般に使用されているけい光ランプ点灯
装置はオートトランス形の安定器であるが、この
種装置は電子形安定器に比べて重くて取扱い難い
欠点が知られている。また、この種装置は比較的
効率が悪く、所望しない発熱があつてエネルギー
を浪費すると共に可聴範囲の周波数(60Hz)で動
作することが知られている。
Currently, the fluorescent lamp lighting device commonly used is an autotransformer type ballast, but this type of device is known to have the disadvantage that it is heavier and difficult to handle than an electronic type ballast. Additionally, devices of this type are known to be relatively inefficient, generate unwanted heat and waste energy, and operate at frequencies within the audio range (60 Hz).

他の安定器回路の一般的なものとしてフリツプ
フロツプ発振器と飽和するコアトランスを用いた
ものがあるが、コアの飽和特性は電流制限に利用
されておりその電流は正確に予測し制御すること
が難しい。従つて、この種装置は信頼性に欠けて
いる。
Other common ballast circuits use flip-flop oscillators and saturated core transformers, but the saturation characteristics of the core are used to limit the current, which is difficult to predict and control accurately. . Therefore, this type of device lacks reliability.

安定器回路の他の形式として発振回路のトラン
ジスタの「蓄積時間(storage time)」を補償す
る回路を具えた正弦波発振回路がある。この回路
は従来より知られた装置と比較して能力が改善さ
れているけれど、効率の改善は不相応なコストの
上昇なしにはできないという欠点があつた。
Another type of ballast circuit is a sine wave oscillator circuit which includes circuitry to compensate for the "storage time" of the transistors of the oscillator circuit. Although this circuit has improved capabilities compared to previously known devices, it suffers from the disadvantage that improved efficiency cannot be achieved without a disproportionate increase in cost.

他の形式の安定器回路として同調発振器に供給
される脈動直流電位(電圧)が実質的に一定の直
流電位をランプ負荷に供給するように変換される
蓄積能力を有するものがある。しかし、この回路
は負荷の急変に対する欠点が見い出されており、
これを解消する保護手段が強く要望されていた。
Other types of ballast circuits have storage capabilities in which the pulsating DC potential (voltage) supplied to the tuned oscillator is converted to provide a substantially constant DC potential to the lamp load. However, this circuit has been found to have a drawback in response to sudden changes in load.
There has been a strong demand for protective measures to eliminate this problem.

従つて、本発明の目的は前述の欠点を除去する
が少なくとも大巾に減らすことであり、自己保護
能力の優れた安定器回路を提供することにある。
本発明の別の目的はランプ負荷に対して安定器回
路の信頼性を改善することにあり、更には負荷除
去時および初期始動時の補償保護能力を有する安
定器回路を提供することにある。
It is therefore an object of the present invention to eliminate, or at least significantly reduce, the aforementioned disadvantages and to provide a ballast circuit with improved self-protection capabilities.
Another object of the present invention is to improve the reliability of the ballast circuit against lamp loads and to provide a ballast circuit with compensatory protection during load removal and initial start-up.

以下本発明に係る実施例を図面を参照しつつ詳
述する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図の高効率同調発振形安定器回路は電源調
整回路5を介して脈動直流電位源(以下直流電圧
源と呼ぶ)7に結合した交流電位源(以下交流電
源と呼ぶ)3を含む。高周波インバータとして機
能する同調発振器9は直流電圧源7と負荷付勢回
路11に結合され、更に負荷付勢回路11は負荷
13に結合される。整流回路15は負荷付勢回路
11と結合され、且つ直流電圧源7を分路する電
荷蓄積および蓄積電荷を選択的に隔絶し、供給す
る回路(以下、電荷蓄積および選択的隔絶および
供給回路と呼ぶ)17に結合している。駆動回路
19は負荷付勢回路11と同調発振器9に結合さ
れ、同調発振器9に駆動電圧を印加する。
The high efficiency tuned oscillator ballast circuit of FIG. 1 includes an alternating current potential source (hereinafter referred to as an alternating current power supply) 3 coupled to a pulsating direct current potential source (hereinafter referred to as a direct current voltage source) 7 through a power supply conditioning circuit 5. A tuned oscillator 9 functioning as a high frequency inverter is coupled to a DC voltage source 7 and a load energizing circuit 11 , which in turn is coupled to a load 13 . The rectifier circuit 15 is coupled to the load energizing circuit 11 and is a circuit for selectively isolating and supplying charge storage and accumulated charge that shunts the DC voltage source 7 (hereinafter referred to as a charge storage and selective isolation and supply circuit). (call) is connected to 17. A drive circuit 19 is coupled to the load energizing circuit 11 and the tuned oscillator 9 and applies a drive voltage to the tuned oscillator 9.

詳述すると、電源調整回路5は、交流電源3間
を分路する過渡状態抑制器20と交流電源3の一
側を直流電圧源7に結合する直列接続されたスイ
ツチ21、ヒユーズ23及び第1のインダクタ2
5を含む。交流電源3の他方は第2のインダクタ
27を介して直流電圧源7に結合される。第1の
コンデンサ29は第1のインダクタ25と接地間
に介挿され、第2のコンデンサ31は第2のイン
ダクタ27と接地間に介挿される。また、コンデ
ンサ33は直流電圧源7を分路しており、電源調
整回路5と関連して力率改善に役立てられてい
る。
Specifically, the power supply regulating circuit 5 includes a transient state suppressor 20 that shunts the AC power supply 3, a switch 21 that couples one side of the AC power supply 3 to the DC voltage source 7, a fuse 23, and a first inductor 2
Contains 5. The other side of the AC power supply 3 is coupled to the DC voltage source 7 via a second inductor 27 . The first capacitor 29 is interposed between the first inductor 25 and ground, and the second capacitor 31 is interposed between the second inductor 27 and ground. Further, the capacitor 33 shunts the DC voltage source 7, and is used to improve the power factor in conjunction with the power supply adjustment circuit 5.

直流電圧源7は電源調整回路5の第1のインダ
クタ25とコンデンサ29の接続点に第1及び第
2のダイオード35,37を結合し、また、第2
のインダクタ27とコンデンサ31の接続点に第
3及び第4のダイオード39,41を結合したダ
イオードブリツジで構成される。従つて、直流電
圧源7は電源調整回路5を介して交流電源3に結
合される。同調発振器9は直流電圧源7を分路す
る直列接続の第1及び第2のトランジスタ43,
45を具備する。ダイオード47とコンデンサ4
9の並列接続で形成するバイアス回路は、第1の
トランジスタ43のベースと抵抗51を介してコ
レクタに接続される。この第1のトランジスタ4
3のスイツチング補助回路は、エミツタとベース
に接続される抵抗53とダイオード55を含む。
第2のバイアス回路は、第2のトランジスタ45
のベースと抵抗61を介してコレクタに接続され
るダイオード57とコンデンサ59の並列接続を
有する。第2のトランジスタ45のスイツチング
補助回路は、エミツタとベースに接続される抵抗
63とダイオード65を含む。
The DC voltage source 7 has first and second diodes 35 and 37 coupled to the connection point between the first inductor 25 and the capacitor 29 of the power adjustment circuit 5, and also has a second
It is composed of a diode bridge in which third and fourth diodes 39 and 41 are coupled to the connection point between the inductor 27 and the capacitor 31. Therefore, the DC voltage source 7 is coupled to the AC power supply 3 via the power supply regulating circuit 5 . The tuned oscillator 9 includes first and second transistors 43 connected in series, which shunt the DC voltage source 7;
45. Diode 47 and capacitor 4
A bias circuit formed by 9 parallel connections is connected to the base of the first transistor 43 and the collector via the resistor 51. This first transistor 4
The switching auxiliary circuit No. 3 includes a resistor 53 and a diode 55 connected to the emitter and base.
The second bias circuit includes a second transistor 45
A diode 57 and a capacitor 59 are connected in parallel to the base and collector of the capacitor 57 via a resistor 61. The switching auxiliary circuit of the second transistor 45 includes a resistor 63 and a diode 65 connected to the emitter and base.

負荷付勢回路11は一次巻線69を有するトラ
ンス67を含み、その一次巻線69は、インダク
タ71とコンデンサ73の直列接続回路を介して
同調発振器9の第1のトランジスタ43のエミツ
タと第2のトランジスタ45のコレクタとの結合
点に一方が結合され、更に他方は整流回路15に
結合される。トランス67は次の三つの二次巻線
75,81及び87を有する。その第1の二次巻
線75は、駆動用巻線77とフイラメント用巻線
79の直列接続で、第2の二次巻線81は駆動用
巻線83とフイラメント用巻線85の直列接続、
及び第3の二次巻線87は駆動用巻線89とフイ
ラメント用巻線91の直列接続である。第1、第
2及び第3の二次巻線75,81,87は、それ
ぞれ駆動回路19のトランス99の第1、第2及
び第3の一次巻線93,95および97に接続さ
れ、且つ負荷回路13にも結合される。負荷回路
13と始動補助の電圧の接地帰路は、抵抗96と
コンデンサ98の並列接続により形成される。
The load energizing circuit 11 includes a transformer 67 having a primary winding 69, which is connected to the emitter of the first transistor 43 of the tuned oscillator 9 through a series connection circuit of an inductor 71 and a capacitor 73. One side is connected to the connection point with the collector of the transistor 45, and the other side is connected to the rectifier circuit 15. The transformer 67 has the following three secondary windings 75, 81 and 87. The first secondary winding 75 is a series connection of a drive winding 77 and a filament winding 79, and the second secondary winding 81 is a series connection of a drive winding 83 and a filament winding 85. ,
The third secondary winding 87 is a series connection of a drive winding 89 and a filament winding 91. The first, second and third secondary windings 75, 81 and 87 are respectively connected to the first, second and third primary windings 93, 95 and 97 of the transformer 99 of the drive circuit 19, and It is also coupled to load circuit 13 . A ground return path for the voltage of the load circuit 13 and the starting aid is formed by a resistor 96 and a capacitor 98 connected in parallel.

駆動回路19のトランス99の第1、第2及び
第3の一次巻線93,95,97は第1及び第2
の二次巻線101及び103と結合していて、こ
れら二つの二次巻線は同調発振器9の第1及び第
2のトランジスタ43と45にそれぞれ結合して
その駆動電圧を与える。更に、負荷回路13はト
ランス67の三つの二次巻線75,81,87に
それぞれ結合される二つのけい光ランプ105及
び107を含んで構成される。
The first, second and third primary windings 93, 95, 97 of the transformer 99 of the drive circuit 19 are
are coupled to secondary windings 101 and 103 of the tuned oscillator 9, which are coupled to the first and second transistors 43 and 45, respectively, of the tuned oscillator 9 to provide its drive voltage. Furthermore, the load circuit 13 is comprised of two fluorescent lamps 105 and 107 coupled to the three secondary windings 75, 81, 87 of the transformer 67, respectively.

整流回路15も付勢回路11のトランス67の
一次巻線69に結合される。この整流回路15
は、一次巻線69を電位基準レベルに直列接続す
る可変し得る誘導巻線109とこの巻線109を
第1及び第2のダイオード113,115の直列
接続の接続点に結合するコンデンサ111を具え
る。
Rectifier circuit 15 is also coupled to primary winding 69 of transformer 67 of energizing circuit 11 . This rectifier circuit 15
comprises a variable inductive winding 109 connecting the primary winding 69 in series to a potential reference level and a capacitor 111 coupling this winding 109 to the connection point of the series connection of first and second diodes 113, 115. I can do it.

整流回路15のダイオード115は、直流電圧
源7を分路する電荷蓄積および選択的隔絶および
供給回路17のコンデンサ117とダイオード1
19の接続点に結合される。更に、ツエナーダイ
オード121で形成の過渡状態(電流)保護器は
電荷蓄積および選択的隔絶および供給回路17の
コンデンサ117とダイオード119の接続点及
び整流回路15のダイオード115及び直流電圧
源7に供給される。
Diode 115 of rectifier circuit 15 is connected to capacitor 117 and diode 1 of charge storage and selective isolation and supply circuit 17 which shunts DC voltage source 7.
It is coupled to 19 connection points. Furthermore, a transient (current) protector formed by a Zener diode 121 is provided to the junction of the capacitor 117 and the diode 119 of the charge storage and selective isolation and supply circuit 17 and to the diode 115 of the rectifier circuit 15 and to the DC voltage source 7. Ru.

第1図の同調発振形安定器回路の他の具体例は
第2図に示されており、ここでは第1図の負荷回
路13の付勢回路11、駆動回路19及び過渡状
態保護器のツエナーダイオード121を除いて略
同じ部分には同一番号が示してある。この第2図
の他の実施例では付勢回路11は、インダクタ7
1とコンデンサ73の直列接続を介して同調発振
器9のトランジスタ43と45の接続点に結合さ
れる一次巻線125をもつトランス123が含ま
れる。一次巻線125は、整流回路15の調整可
能なインダクタ109を介して回路のアースに接
続される。
Another specific example of the tuned oscillation type ballast circuit of FIG. 1 is shown in FIG. Substantially the same parts except for the diode 121 are designated by the same numbers. In this other embodiment of FIG.
A transformer 123 is included having a primary winding 125 coupled to the junction of transistors 43 and 45 of tuned oscillator 9 via a series connection of 1 and capacitor 73. The primary winding 125 is connected to circuit ground via the adjustable inductor 109 of the rectifier circuit 15.

トランス123は次の三つの二次巻線を具備し
ており、その第1の二次巻線127は駆動用巻線
129とフイラメント用巻線131の直列接続
で、第2の二次巻線133は駆動用巻線135と
フイラメント用巻線137の直列接続で第3の二
次巻線139は駆動用巻線141とフイラメント
用巻線143の直列接続である。しかし、発振器
駆動回路19は、トランス123の第2の二次巻
線と直列接続されている単一の一次巻線147を
有するトランスを具備する。更に、その一次巻線
147は同調発振器9の一対のトランジスタ43
と45にそれぞれつながれる第1と第2の二次巻
線149と151と結合されている。
The transformer 123 includes the following three secondary windings, the first secondary winding 127 is a series connection of a drive winding 129 and a filament winding 131, and the second secondary winding is a series connection of a drive winding 129 and a filament winding 131. 133 is a series connection of a drive winding 135 and a filament winding 137, and a third secondary winding 139 is a series connection of a drive winding 141 and a filament winding 143. However, oscillator drive circuit 19 comprises a transformer having a single primary winding 147 connected in series with the second secondary winding of transformer 123. Furthermore, its primary winding 147 is connected to a pair of transistors 43 of the tuned oscillator 9.
and 45, respectively.

また、第2図の回路の過渡状態保護器はダイオ
ード153で形成され、この過渡状態保護用ダイ
オード153は整流回路15に分路接続され、か
つ付勢回路11と電荷蓄積および選択的隔絶およ
び供給回路17に結合される。
The transient protection in the circuit of FIG. coupled to circuit 17;

第1図の実施例における動作に関し、電源調整
回路5は過渡現象フイルタとラジオ障害(RFI)
フイルターの両方に役立つ。過渡現象のサプレツ
サである過渡状態抑制器20は、要約すれば、望
ましくない過渡時の信号をクリツプするもので、
また、クリツプされたけれど不所望の信号のフイ
ルタとしても働く。更に、これら信号は第1又は
第2のインダクタ25,27の一方によつてフイ
ルタされる。また、第1と第2のインダクタ2
5,27はコンデンサ29,31と共働して交流
電源3に現われるRFI信号を抑制するフイルター
としても役立つ。
Regarding the operation in the embodiment of FIG.
Both filters are useful. Transient suppressor 20, which is a suppressor of transient phenomena, clips signals during undesired transients.
It also acts as a filter for clipped but unwanted signals. Furthermore, these signals are filtered by one of the first or second inductors 25,27. In addition, the first and second inductors 2
5 and 27 work together with capacitors 29 and 31 to serve as a filter for suppressing the RFI signal appearing in the AC power supply 3.

次に、上記構成の本発明による同調発振形安定
器回路の動作について説明する。
Next, the operation of the tuned oscillation type ballast circuit according to the present invention having the above configuration will be explained.

スイツチ21をオンにすると、交流電源3から
の交流電位(電圧)が電源調整回路5に印加さ
れ、不所望の過渡現象およびRFI信号が除去さ
れ、比較的純粋な交流電位(電圧)になり、直流
電圧源7に供給される。この直流電圧源7におい
て交流電位は倍電圧整流され、例えば交流入力が
60Hzであれば120Hzの脈動直流電位(電圧)に変
換される。この脈動直流電圧はコンデンサ33に
より平滑化された後、高周波インバータの機能を
行なう同調発振器9に供給される。同調発振器9
に直流電圧が印加されると、抵抗51→トランジ
スタ43のベース・エミツタ接合→抵抗61→ト
ランジスタ45のベース・エミツタ接合と電流が
流れ、いずれか一方のトランジスタがまずターン
オンする。この一方のトランジスタの初期ターン
オンによりコンデンサ73、インダクタ71およ
びトランス67の一次巻線69(第1図)または
トランス127の一次巻線125(第2図)を含
む直列共振回路がトランジスタに結合され、その
結果発振が生じる。本実施例ではこの直列共振回
路は約20KHzの共振周波数を有する。この直列共
振回路は流れる電流に対して低インピーダンス路
を提供するから、一次巻線69に流れる電流は増
大し、二次巻線75,81および87、フイラメ
ント用巻線79,85および91、ならびに負荷
駆動用巻線77,83および89に流れる電流が
増大する。
When the switch 21 is turned on, the alternating current potential (voltage) from the alternating current power supply 3 is applied to the power supply regulating circuit 5, and undesired transient phenomena and RFI signals are removed, resulting in a relatively pure alternating current potential (voltage). It is supplied to a DC voltage source 7. In this DC voltage source 7, the AC potential is voltage doubled and rectified, for example, when an AC input is
If it is 60Hz, it will be converted to a pulsating DC potential (voltage) of 120Hz. This pulsating DC voltage is smoothed by a capacitor 33 and then supplied to a tuned oscillator 9 which functions as a high frequency inverter. Tuned oscillator 9
When a DC voltage is applied to the resistor 51, a current flows through the base-emitter junction of the transistor 43, the resistor 61, and the base-emitter junction of the transistor 45, and one of the transistors turns on first. This initial turn-on of one transistor couples the series resonant circuit including capacitor 73, inductor 71, and primary winding 69 of transformer 67 (FIG. 1) or primary winding 125 of transformer 127 (FIG. 2) to the transistor; As a result, oscillation occurs. In this embodiment, this series resonant circuit has a resonant frequency of approximately 20 KHz. Since this series resonant circuit provides a low impedance path for the flowing current, the current flowing in the primary winding 69 increases and the current flowing in the secondary windings 75, 81 and 87, the filament windings 79, 85 and 91, and The current flowing through the load driving windings 77, 83 and 89 increases.

重要なことは、発振器駆動回路19はそのトラ
ンス99の一次巻線93,95,97が負荷付勢
回路11のトランス二次巻線75,81,87と
直列に接続されており、従つてトランス99の一
次巻線93,95,97に流れる電流も増大する
ということである。発振器の駆動電流はトランス
99の二次巻線101,103の電流が増大する
ので増大し、対応的に第1および第2のトランジ
スタ43,45の駆動電流が増大する。これによ
つて負荷付勢回路11のトランス一次巻線69に
流れる電流がさらに増大し、以下同様にして電流
が急激に増大し、その結果ランプ負荷105,1
07の両端の電圧は急激に高くなる。かくしてラ
ンプ負荷105,107は点灯し、負荷両端の電
圧は点灯状態を維持するのに十分な電圧にとどま
る。
Importantly, the oscillator drive circuit 19 has its transformer 99 primary windings 93, 95, 97 connected in series with the transformer secondary windings 75, 81, 87 of the load energizing circuit 11; This means that the current flowing through the primary windings 93, 95, and 97 of 99 also increases. The drive current of the oscillator increases because the current in the secondary windings 101, 103 of the transformer 99 increases, and the drive currents of the first and second transistors 43, 45 correspondingly increase. As a result, the current flowing through the transformer primary winding 69 of the load energizing circuit 11 further increases, and the current increases rapidly in the same manner, resulting in lamp loads 105, 1
The voltage across 07 increases rapidly. The lamp loads 105, 107 are thus lit, and the voltage across the loads remains at a voltage sufficient to maintain the lamps lit.

一方、電流の急激な増大により脈動直流電圧が
所定の基準レベル以下に降下すると、整流回路1
5によつて整流された脈動直流電圧の方が電位が
高くなるのでこの電圧が直流電圧源7に供給さ
れ、従つて発振器9に供給される直流電圧は所定
の基準レベル以下には降下せず、ほぼ一定の直流
電圧になる。詳しく説明すると、可変の誘導巻線
109、すなわちインダクタは負荷付勢回路11
のトランス一次巻線69と直列に接続されてお
り、一次巻線69に流れる電流が増大すると対応
的にその電流が増大する。このインダクタを流れ
る電流は整流、本実施例では倍電圧整流さ、電荷
蓄積および選択的隔絶および供給回路17のコン
デンサ117に供給され、蓄積される。直流電圧
源7の電圧がコンデンサ117の蓄積電荷より降
下すると、隔絶用ダイオード119は導通するか
ら、コンデンサ117の蓄積電荷が直流電圧源7
に供給され、その電圧の降下を防止する。直流電
圧源7の電圧が降下するのは負荷付勢回路11に
流れる電流が増大したときであり、このときには
インダクタ109に流れる電流も増大するので整
流回路15の整流電圧は高くなり、直流電圧源7
に供給されることになる。かくして、同調発振器
9および付勢回路に供給され、使用される直流電
圧は実質的に一定電位となり、負荷回路の望まし
くないストローブ(変動)効果は除去される。そ
の上、隔絶用ダイオード119は整流回路15や
直流電圧源7で見られるような力率に有害な影響
を及ぼすエネルギを阻止する。
On the other hand, if the pulsating DC voltage drops below a predetermined reference level due to a sudden increase in current, the rectifier circuit 1
Since the pulsating DC voltage rectified by 5 has a higher potential, this voltage is supplied to the DC voltage source 7, and therefore the DC voltage supplied to the oscillator 9 does not fall below a predetermined reference level. , resulting in a nearly constant DC voltage. Specifically, the variable inductive winding 109, or inductor, is connected to the load energizing circuit 11.
The transformer is connected in series with the primary winding 69 of the transformer, and as the current flowing through the primary winding 69 increases, the current increases accordingly. The current flowing through this inductor is rectified, in this embodiment voltage doubled, and fed to a capacitor 117 of charge storage and selective isolation and supply circuit 17 for storage. When the voltage of the DC voltage source 7 drops below the charge accumulated in the capacitor 117, the isolation diode 119 becomes conductive, so that the charge accumulated in the capacitor 117 becomes lower than the charge accumulated in the DC voltage source 7.
This prevents the voltage from dropping. The voltage of the DC voltage source 7 drops when the current flowing through the load energizing circuit 11 increases. At this time, the current flowing through the inductor 109 also increases, so the rectified voltage of the rectifier circuit 15 increases, and the voltage of the DC voltage source 7 decreases. 7
will be supplied to The DC voltage applied and used to the tuned oscillator 9 and the energizing circuit is thus at a substantially constant potential, and undesirable strobe effects in the load circuit are eliminated. In addition, the isolation diode 119 blocks energy that has a deleterious effect on the power factor, such as that found in the rectifier circuit 15 and the DC voltage source 7.

なお、整流回路15を倍電圧整流回路としたの
は電流増大時に所定の基準電圧レベル以上の直流
電圧を得るための回路設計に基づくものであり、
所期の目的を達成する他の整流回路を使用しても
よいことは勿論である。
The reason why the rectifier circuit 15 is a voltage doubler rectifier circuit is based on the circuit design to obtain a DC voltage higher than a predetermined reference voltage level when the current increases.
Of course, other rectifier circuits may be used that achieve the intended purpose.

加えて、回路の励起もしくは初起動時には、同
調発振器9のトランジスタ43と45にとつて有
害なさらには破壊する恐れがある過渡電流を伴な
うことが前から知られている。この不所望な初期
過渡電流はトランジスタ43および45を同時に
ターンオンさせ、電源がトランジスタ43および
45によつて本質的に短絡され、過大な電流がト
ランジスタ43,45に流れるいわゆる「トーテ
ムポール」効果を生じさせる可能性が十分にあ
る。しかしながら、本実施例ではそのような過渡
電流に対する過渡状態保護器としてツエナーダイ
オード121が直流電圧源7の第1と第3のダイ
オード35,37の接続点と回路17の充電用コ
ンデンサ117との間に接続されているので、回
路の励起もしくは初起動時に、ツエナーダイオー
ド121とコンデンサ117の直列回路が直流電
圧源7を、コンデンサ117が所定の電圧値に充
電されるまで、分路し、従つて不所望な初期過渡
電流はツエナーダイオード121を介してコンデ
ンサ117に流れ、「トーテムポール」効果は生
じない。すなわち、充電用コンデンサ117の初
期充電時に不所望な初期過渡電流は吸収され、
「トーテムポール」効果は全く生じない。一度充
電用コンデンサに充電が完了すれば、過渡状態保
護器、例えば、ツエナーダイオード121は実際
の回路動作には何等の必要性もなくなる。
In addition, it has been known for some time that the excitation or initial start-up of the circuit involves transient currents that may be harmful or even destructive to the transistors 43 and 45 of the tuned oscillator 9. This undesired initial current transient turns on transistors 43 and 45 simultaneously, creating a so-called "totem pole" effect in which the power supply is essentially shorted by transistors 43 and 45 and excessive current flows through transistors 43 and 45. There is a good chance that it will. However, in this embodiment, the Zener diode 121 is used as a transient state protector against such a transient current between the connection point of the first and third diodes 35 and 37 of the DC voltage source 7 and the charging capacitor 117 of the circuit 17. During excitation or initial start-up of the circuit, the series circuit of the Zener diode 121 and the capacitor 117 shunts the DC voltage source 7 until the capacitor 117 is charged to a predetermined voltage value, thus The unwanted initial transient current flows through Zener diode 121 to capacitor 117 and no "totem pole" effect occurs. That is, the undesired initial transient current is absorbed during the initial charging of the charging capacitor 117,
No "totem pole" effect occurs. Once the charging capacitor is fully charged, the transient protector, eg, Zener diode 121, is no longer necessary for actual circuit operation.

整流回路15のインダクタ109は、フイルタ
チヨークとしてだけでなく負荷回路13に印加さ
れる出力電圧の制御を可能にするために調整可能
になつており、インダクタ71が好ましくないス
パイク電圧や過渡電圧を平滑するチヨークとして
働らくということは注目すべきである。かくし
て、調整可能なインダクタ109は負荷がランプ
の時は負荷回路13のいわゆる調光制御に利用す
ることもできよう。更に、トランジスタ43と4
5はそれぞれ抵抗とダイオードの直列接続、すな
わち、トランジスタ43では抵抗53とダイオー
ド55、トランジスタ45では抵抗63とダイオ
ード65の、スイツチング補助回路を具備してい
る。また、負荷回路3につながる抵抗96とコン
デンサ98の並列接続という形の接地帰路は、負
荷回路への初頭の電流流入を補助する。
The inductor 109 of the rectifier circuit 15 is adjustable not only as a filter yoke but also to enable control of the output voltage applied to the load circuit 13, and the inductor 71 eliminates undesirable spike voltages and transient voltages. It is noteworthy that it acts as a smoothing surface. Thus, the adjustable inductor 109 could also be used for so-called dimming control of the load circuit 13 when the load is a lamp. Furthermore, transistors 43 and 4
Each of numerals 5 and 5 has a switching auxiliary circuit consisting of a series connection of a resistor and a diode, that is, a resistor 53 and a diode 55 for the transistor 43, and a resistor 63 and a diode 65 for the transistor 45. Also, a ground return path in the form of a parallel connection of a resistor 96 and a capacitor 98 leading to the load circuit 3 assists in the initial current flow into the load circuit.

第2図の実施例では負荷付勢回路のトランス1
2は第1、第2及び第3の二次巻線127,13
3,139を含む。しかし、第2の二次巻線13
3の駆動用巻線135とフイラメント用巻線13
7の直列接続は、発振器駆動回路19のトランス
145の単一の一次巻線147に直列に接続され
る。この単一の一次巻線147は、ベース駆動電
圧を与えるためにトランジスタ43と45のそれ
ぞれに関連した二次巻線149と151に交互に
利用される。
In the embodiment shown in FIG. 2, transformer 1 of the load energizing circuit
2 is the first, second and third secondary winding 127, 13
Contains 3,139. However, the second secondary winding 13
3 drive winding 135 and filament winding 13
The series connection of 7 is connected in series to a single primary winding 147 of the transformer 145 of the oscillator drive circuit 19. This single primary winding 147 is alternately utilized by secondary windings 149 and 151 associated with transistors 43 and 45, respectively, to provide base drive voltages.

さらにその上、過渡状態保護器は、例えば、整
流回路15の両端に接続されるダイオード153
で形成される。そして、第1及び第2のトランジ
スタ43と45に「トーテムポール」電流を生じ
させる初頭の過渡電圧は、蓄電装置であるコンデ
ンサ117を充電するためにコンデンサ73、イ
ンダクタ71、一次巻線125及びダイオード1
53の共振回路を通る低インピーダンス通路を経
由してバイパスされる。そして充電用コンデンサ
117が充電してしまえば、ダイオード153と
インダクタ109の接続点が負電位となり、ダイ
オード153は逆バイアスされる。その結果、一
度充電用コンデンサ117の最初の充電が完了す
れば、ダイオード153もしくは過渡状態保護器
は、実際上全く動作しない部品となる。又、比較
的安価なダイオードが第1図に示された比較的高
価なツエナーダイオードに優先して過渡状態保護
器として利用できることが分つた。
Furthermore, the transient state protector may include, for example, a diode 153 connected across the rectifier circuit 15.
is formed. The initial transient voltage that causes a "totem pole" current in the first and second transistors 43 and 45 is then applied to capacitor 73, inductor 71, primary winding 125, and diode to charge capacitor 117, which is a power storage device. 1
53 is bypassed via a low impedance path through the resonant circuit. Once the charging capacitor 117 is charged, the connection point between the diode 153 and the inductor 109 becomes a negative potential, and the diode 153 is reverse biased. As a result, once the initial charging of charging capacitor 117 is completed, diode 153 or the transient protector becomes a virtually inactive component. It has also been found that relatively inexpensive diodes can be used as transient protectors in preference to the relatively expensive Zener diodes shown in FIG.

以上により同調発振器の駆動電流として負荷の
フイラメント回路を流れる電流を使うという機能
を持つユニークな同調発振形安定器回路が提供さ
れる。この方式において、例えばランプの除去の
ような負荷の除去は同調発振器の駆動電流を大巾
に減少させた。かくして、発振器は負荷の不良化
又は除去による有害な大電流から保護される。
As described above, a unique tuned oscillation type ballast circuit is provided which has the function of using the current flowing through the filament circuit of the load as the drive current of the tuned oscillator. In this scheme, removal of the load, such as removal of the lamp, greatly reduced the drive current of the tuned oscillator. The oscillator is thus protected from harmful high currents due to failure or removal of the load.

また、二本のランプというランプ負荷にかかわ
る発振器を駆動させもしくは発振器のベース駆動
をするため一つの駆動巻線に直列接続の一つのフ
イラメント用巻線を利用する回路が、全てのフイ
ラメント用巻線を利用する回路に対して提示され
る。明らかに単一巻線の使用は、回路の複雑さと
同じく部品コストをも減ずる。
In addition, a circuit that uses one filament winding connected in series with one drive winding to drive the oscillator associated with the lamp load of two lamps or to drive the base of the oscillator is a circuit that uses one filament winding connected in series with one drive winding. is presented for circuits that utilize . Clearly, the use of a single winding reduces component cost as well as circuit complexity.

さらに、過渡状態保護器は初期過渡電流による
トランジスタ部品の損害という重大な問題を実際
に除去する。その上、保護回路の保護能力を高め
る回路が比較的安価な素子(部品)を使用して達
成されたことになる。
Furthermore, the transient protector actually eliminates the serious problem of damage to transistor components due to initial transient currents. Furthermore, a circuit that increases the protection capability of the protection circuit has been achieved using relatively inexpensive components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る安定器回路の一実施例を
示す電気回路図、第2図は本発明の他の実施例を
示す電気回路図である。 3:交流電位源、7:脈動直流電位源、9:同
調発振回路、11:負荷付勢回路、13:負荷回
路、15:整流回路、17:電荷蓄積および蓄積
電荷を選択的に隔絶し、供給する回路、19:駆
動回路。
FIG. 1 is an electric circuit diagram showing one embodiment of a ballast circuit according to the present invention, and FIG. 2 is an electric circuit diagram showing another embodiment of the present invention. 3: AC potential source, 7: Pulsating DC potential source, 9: Tuned oscillation circuit, 11: Load energizing circuit, 13: Load circuit, 15: Rectifier circuit, 17: Charge accumulation and selective isolation of accumulated charges, Supply circuit, 19: Drive circuit.

Claims (1)

【特許請求の範囲】 1 交流電位源3と、 該交流電位源に結合され、脈動直流電位を供給
する直流電位供給手段7と、 該直流電位供給手段に結合され、高周波出力電
位を供給する高周波出力電位供給手段9と、 該高周波出力電位供給手段に結合され、負荷回
路13を付勢する負荷付勢手段11と、 該負荷付勢手段に結合され、前記高周波出力電
位供給手段を前記負荷回路に流れる電流で駆動す
る駆動手段19と、 前記負荷付勢手段に結合され、前記高周波出力
電位を整流する整流手段15と、 前記整流手段に結合され、エネルギを蓄積し、
該蓄積されたエネルギを選択的に隔絶し、かつ前
記直流電位供給手段に選択的に供給し、前記脈動
直流電位が所定の直流電位基準レベルより降下す
るときに蓄積エネルギを供給するエネルギ蓄積お
[Scope of Claims] 1. AC potential source 3; DC potential supply means 7 coupled to the AC potential source and supplying a pulsating DC potential; and a high frequency electrical potential supply means 7 coupled to the DC potential supply means and supplying a high frequency output potential. output potential supply means 9; load energization means 11 coupled to the high frequency output potential supply means for energizing the load circuit 13; a rectifying means 15 coupled to the load energizing means and rectifying the high frequency output potential; a rectifying means 15 coupled to the rectifying means and storing energy;
an energy storage device for selectively isolating the stored energy and selectively supplying the DC potential supply means to supply stored energy when the pulsating DC potential falls below a predetermined DC potential reference level;
JP10083278A 1977-08-17 1978-08-17 Ballast stabilizer circuit Granted JPS5442872A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/826,541 US4127893A (en) 1977-08-17 1977-08-17 Tuned oscillator ballast circuit with transient compensating means
US05/826,051 US4127795A (en) 1977-08-19 1977-08-19 Lamp ballast circuit

Publications (2)

Publication Number Publication Date
JPS5442872A JPS5442872A (en) 1979-04-05
JPS6262037B2 true JPS6262037B2 (en) 1987-12-24

Family

ID=27124978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10083278A Granted JPS5442872A (en) 1977-08-17 1978-08-17 Ballast stabilizer circuit

Country Status (2)

Country Link
JP (1) JPS5442872A (en)
FR (1) FR2400819A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417181A (en) * 1979-07-06 1983-11-22 Sonelt Corporation Electronic ballast
US4259616A (en) * 1979-07-09 1981-03-31 Gte Products Corporation Multiple gaseous lamp electronic ballast circuit
US4477748A (en) * 1980-10-07 1984-10-16 Thomas Industries, Inc. Solid state ballast
JPS57158994A (en) * 1981-03-26 1982-09-30 Toshiba Electric Equip Device for firing discharge lamp
JPH0734398B2 (en) * 1983-04-30 1995-04-12 松下電工株式会社 Discharge lamp lighting device
JPH02276194A (en) * 1987-09-01 1990-11-13 Global Denshi Kenkyusho:Kk Discharge lamp lighting device
JPH01157098A (en) * 1987-12-11 1989-06-20 Fuji S P:Kk Driving circuit of fluorescent lamp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933489A (en) * 1972-07-28 1974-03-27
US4017785A (en) * 1975-09-10 1977-04-12 Iota Engineering Inc. Power source for fluorescent lamps and the like

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754160A (en) * 1971-10-28 1973-08-21 Radiant Ind Inc Four-lamp driver circuit for fluorescent lamps
JPS543582Y2 (en) * 1971-11-15 1979-02-19
US3723848A (en) * 1972-04-17 1973-03-27 Martin Marietta Corp Electrical power inverter with sinusoidal output
JPS537379Y2 (en) * 1972-06-29 1978-02-24
US3889153A (en) * 1973-10-01 1975-06-10 Iota Engineering Inc Power source for fluorescent lamps and the like
JPS5622318Y2 (en) * 1973-12-13 1981-05-26
US4045711A (en) * 1976-03-19 1977-08-30 Gte Sylvania Incorporated Tuned oscillator ballast circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933489A (en) * 1972-07-28 1974-03-27
US4017785A (en) * 1975-09-10 1977-04-12 Iota Engineering Inc. Power source for fluorescent lamps and the like

Also Published As

Publication number Publication date
FR2400819B1 (en) 1984-11-09
FR2400819A1 (en) 1979-03-16
JPS5442872A (en) 1979-04-05

Similar Documents

Publication Publication Date Title
US4127795A (en) Lamp ballast circuit
US4109307A (en) High power factor conversion circuitry
US4560908A (en) High-frequency oscillator-inverter ballast circuit for discharge lamps
US4045711A (en) Tuned oscillator ballast circuit
US5313142A (en) Compact fluorescent lamp with improved power factor
US4291254A (en) Discharge lamp energization circuit, particularly for audio and supersonic frequency operation of high-pressure discharge lamps
EP0325009B1 (en) Self-regulating, no load protection electronic ballast system
JPS62243293A (en) Radio frequency operation circuit device for low voltage discharge lamp
CA1154078A (en) Multiple gaseous lamp electronic ballast circuit
US5977723A (en) Ballast circuit for fluorescent lamp
US4127893A (en) Tuned oscillator ballast circuit with transient compensating means
JP2636239B2 (en) Ballast for fluorescent lamp
US4701671A (en) High-frequency oscillator-inverter ballast circuit for discharge lamps
US5898278A (en) Series resonant lamp circuit having direct electrode connection between rectifier and AC source
GB2204751A (en) Discharge lamp circuits
JPS6262037B2 (en)
US6043606A (en) Discharge lamp device having a preheating electrode circuit
JPS5861597A (en) Electronic stabilizer for discharge lamp and dimming method
JP3248919B2 (en) Lamp lighting circuit layout
KR100396386B1 (en) Trigger circuit of gas discharge lamp
US5032767A (en) High frequency oscillator-inverter with improved regenerative power supply
US5652480A (en) Electronic ballast incorporating a clocked switching controller
US4353116A (en) Direct current to alternating current converter
EP0860097B1 (en) Circuit arrangement
JP2795872B2 (en) Discharge lamp lighting device