JPS626197A - Floating type nuclear power plant in which gamma-ray shielding body is separated - Google Patents

Floating type nuclear power plant in which gamma-ray shielding body is separated

Info

Publication number
JPS626197A
JPS626197A JP60146265A JP14626585A JPS626197A JP S626197 A JPS626197 A JP S626197A JP 60146265 A JP60146265 A JP 60146265A JP 14626585 A JP14626585 A JP 14626585A JP S626197 A JPS626197 A JP S626197A
Authority
JP
Japan
Prior art keywords
floating
building
power plant
dock
nuclear power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60146265A
Other languages
Japanese (ja)
Inventor
内山 洋司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP60146265A priority Critical patent/JPS626197A/en
Publication of JPS626197A publication Critical patent/JPS626197A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は沸騰水型および加圧木型のいずれの軽水炉原子
力発電プラントにも適する海岸立地の浮揚式原子力発電
所の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field to which the Invention Pertains) The present invention relates to the construction of a coastal floating nuclear power plant suitable for both boiling water type and pressurized wooden type light water reactor nuclear power plants.

(従来の技術) 現在のわが国の原子力発電所は立地難からすべて海岸近
くに設けられているが、さらに立地難の解決上標準設計
による工場生産が可能で工期短縮および経済性と品質の
向上が図れる方式の1つとして、浮揚式または浮上式の
原子力発電所がある。
(Conventional technology) All of Japan's current nuclear power plants are located near the coast due to location issues.Furthermore, as a solution to the location issue, factory production based on a standard design is possible, shortening the construction period and improving economic efficiency and quality. One possible approach is a floating or floating nuclear power plant.

しかし従来の浮揚式原子力発電所は発電に必要なすべて
の設備を基台(バージllarge)上に載せるように
設計されている。このためバージを含む設備(以下浮体
という)の重量は後記のように20〜30万トンとなる
ので、まず浮体重量を低減することは浮揚式発電所の成
立性において最大の課題となっているが具体的な手段を
示したものは未だ見当たらない。
However, conventional floating nuclear power plants are designed so that all the equipment necessary for power generation is mounted on a large pedestal (barge). For this reason, the weight of the equipment including the barge (hereinafter referred to as the floating body) is 200,000 to 300,000 tons, as described below, so reducing the floating weight is the biggest challenge for the feasibility of a floating power plant. However, I have not yet found anything that indicates a specific method.

(発明の目的) 本発明の提案する新概念の浮揚式原子力発電所は、発電
所の諸設備のうちγ線遮蔽体や電気設備あるいは発電所
の運用機能が損なわれない範囲の設備を地上に設置する
ことで、浮体の重量を大幅に低減するという効果を狙っ
たもので、その結果得られる効果は発明の効果の項に示
すように実用上著しいものがある。
(Purpose of the Invention) The floating nuclear power plant of the new concept proposed by the present invention is designed to move the gamma ray shielding equipment, electrical equipment, and other equipment on the ground so that the operational functions of the power plant are not impaired. The aim is to significantly reduce the weight of the floating body by installing the floating body, and the resulting effects are significant in practical terms, as shown in the Effects of the Invention section.

(発明の効果) 本発明によって期待できる効果は従来の方式に比べて次
のようである。
(Effects of the Invention) The effects that can be expected from the present invention as compared to conventional systems are as follows.

(1)従来方式の浮体重量は20〜30万トンになるが
、本発明方式によると浮体重量は約6万トン程までに低
減できる。(資料1参照) (2)浮体は船形に類似しているが、現有の造船用ドッ
クで建造することが可能である。
(1) The floating weight of the conventional method is 200,000 to 300,000 tons, but according to the method of the present invention, the floating weight can be reduced to about 60,000 tons. (See Document 1) (2) Floating bodies are similar in shape to ships, but they can be constructed at existing shipbuilding docks.

(3)浮体は従来の方式のものに比べて小形であるから
、陸上の工場における生産によって設備の標準化2合理
化が容易になり、その結果、機器の信頼性と安全性の向
上および製作費の低減が達成できる。
(3) Since floating bodies are smaller than those of conventional methods, production in onshore factories facilitates the standardization and rationalization of equipment, resulting in improved reliability and safety of equipment and reduced manufacturing costs. reduction can be achieved.

(4)堀込弐にしであるため波浪や津波などによる影響
を受けず、それらに対応する設計や対策設備が不要であ
る。
(4) Because it is located on the second side of Horikome, it is not affected by waves or tsunamis, and there is no need for design or countermeasure equipment to deal with them.

(5)高い安全性が確保できるので、海または河川の沿
岸地帯における発電所となり得る。従って需要地近接形
の発電所として立地点の拡大と送電コストの低減に大き
く貢献する可能性がある。
(5) Since high safety can be ensured, it can be used as a power plant in coastal areas of the sea or rivers. Therefore, as a power plant located close to demand areas, it has the potential to greatly contribute to expanding the number of locations and reducing power transmission costs.

浮体を浮揚させておくドックは浮体と切離されているか
ら耐震設計は楽になり、必ずしも岩盤に固定して設置す
る必要はなく、第4紀層地盤などの砂礫地盤上での立地
も可能である。
Since the dock that keeps the floating body afloat is separate from the floating body, earthquake-resistant design is easier, and it does not necessarily need to be fixed to bedrock; it can also be located on gravel ground such as Quaternary layer ground. be.

(6)原子炉(原子プラント)の耐用午後の廃炉処理対
策が容易となる。また老朽プラントを特定な場所まで曳
航させて解体処分することで、原子力発電所の再利用が
可能となる。廃炉対策は将来原子力発電の設備容量が増
え定常的に原子力発電所が建設されるようになると発電
所の立地対策を含めて深刻な問題になるであろう。本発
明方式によると在来のものに比べて廃炉作業がかなり容
易となり、また発電所の再利用によって立地対策にも大
きく貢献できるので実用上の効果は顕著なものがある。
(6) It becomes easier to take measures for decommissioning a nuclear reactor (nuclear plant) during its service life. Additionally, nuclear power plants can be reused by towing aging plants to specific locations and dismantling them. Decommissioning measures, including the location of power plants, will become a serious issue in the future as nuclear power generation capacity increases and nuclear power plants are constructed on a regular basis. According to the method of the present invention, decommissioning work is much easier than with conventional methods, and the reuse of the power plant can greatly contribute to site planning, so it has significant practical effects.

(発明の構成と動作) 〔1〕対象となるプラント 本発明は沸騰水型および加圧木型のいずれの軽水炉発電
プラントにも適用可能である。また将来の新型原子炉(
新型転換炉や高速増殖炉)に対して・も本発明の概念は
適用可能である。プラントの発電出力は必ずしも現在の
100万kW級のものだけでなく、電気事業の要求に合
わせた小容量プラントも本発明の対象に含まれる。
(Structure and operation of the invention) [1] Target plant The present invention is applicable to both boiling water type and pressurized wood type light water reactor power plants. Also, future new nuclear reactors (
The concept of the present invention is also applicable to new type converter reactors and fast breeder reactors. The power generation output of the plant is not necessarily limited to the current 1 million kW class, but the present invention also includes small-capacity plants that meet the demands of the electric utility industry.

〔2〕全体の配置 本発明による発電プラントの立地点は従来の原子力発電
所と同様で、多量の冷却水が必要であるため海岸(場所
によっては河川)に面した場所が選定される。従って防
波堤および物揚げ場などの港湾施設は従来の地上式原子
力発電所と基本的には同じであるが、建設時に原子炉圧
力容器などの大物機器の搬入を考慮する必要がないため
、物揚げ場の設計は簡易化される。
[2] Overall layout The location of the power plant according to the present invention is similar to that of conventional nuclear power plants, and because a large amount of cooling water is required, a location facing the coast (or river depending on the location) is selected. Therefore, port facilities such as breakwaters and unloading areas are basically the same as those of conventional land-based nuclear power plants, but there is no need to consider bringing in large equipment such as reactor pressure vessels during construction, so unloading facilities are The field design is simplified.

第1図は本発明を実施した堀込浮揚式原子力発電所の配
置例を示す平面概要図で、発電プラント2基の場合であ
る。本発明による発電所は浮体部。
FIG. 1 is a schematic plan view showing an example of the layout of a floating nuclear power plant embodying the present invention, in the case of two power plants. The power plant according to the invention is a floating part.

ドック部および地上設備の3つに分けられる。第1図中
1は海、2は浮体部で主体が鋼製のバージ上に搭載され
る。この浮体部には原子炉建屋Aとタービン発電機、復
給水設備等を含むタービン建屋Bが含まれ、Aには原子
炉線(格納容器)AIと付属棟(遮蔽体の一部と原子炉
補助系である補機類を含む)A2がある。3(第2図参
照)はドック部で、これには堀込(または堀引込み式)
ドックCと生体遮蔽壁りが含まれる。4は地上設備で、
これには稀ガスホールドアツプ装置建屋E、サービス建
屋F、超高圧開閉所G、水処理建屋および濾過水タンク
H1廃棄物処理建屋■等が含まれ、5は出入口である。
It is divided into three parts: dock section and ground equipment. In Figure 1, 1 is the sea, and 2 is the floating body, which is mainly mounted on a steel barge. This floating body part includes a reactor building A and a turbine building B containing a turbine generator, condensing water supply equipment, etc. A contains a reactor line (containment vessel) AI and an annex building (a part of the shield and a reactor There is A2 (including auxiliary equipment that is an auxiliary system). 3 (see Figure 2) is the dock part, which has a moat (or moat retractable type)
Includes dock C and biological shielding wall. 4 is ground equipment;
This includes a rare gas hold-up equipment building E, a service building F, an ultra-high pressure switchyard G, a water treatment building and a filtered water tank H1, a waste treatment building ■, etc., and 5 is an entrance/exit.

また下方の発電プラントのAIは破線で示した遮蔽壁り
を取り除いた場合である。
Furthermore, the AI of the power plant below is the case where the shielding wall indicated by the broken line is removed.

なお発電プラントが100万kW級の場合第1図に示し
た浮体部2の寸法は幅Wが約40m、ドックCの長さは
約210 mで、幅は約45m程度になる。
If the power generation plant is in the 1,000,000 kW class, the dimensions of the floating body part 2 shown in FIG. 1 are approximately 40 m in width W, approximately 210 m in length of dock C, and approximately 45 m in width.

浮体プラントは工場で製作1組立後発電所サイトまで曳
航されてドック内に設置される。浮体建屋の平面形状は
極力対称性を持つ単純な形になるように設計し、地震な
どによって浮体が揺動しないようにする。第2図は第1
図に対する側面図で、6は海水1の取入口、7は放水口
、8は土でドックCはコンクリート製である。また原子
炉棟Alの高さは約35m、タービン建屋Bの高さは約
40m。
The floating plant is manufactured at a factory, assembled, and then towed to the power plant site and installed inside the dock. The planar shape of the floating building will be designed to be as simple and symmetrical as possible to prevent the floating structure from shaking due to earthquakes. Figure 2 is the first
In the side view of the figure, 6 is an intake port for seawater 1, 7 is a water outlet, 8 is earth, and dock C is made of concrete. Additionally, the height of reactor building Al is approximately 35m, and the height of turbine building B is approximately 40m.

浮体の吃水の深さは約7.5m程度である。、(資料■
参照) ドック部3 (C+ D)と地上設備4は発電所サイト
で浮体プラントとは別に建設される設備である。
The depth of the floating body's water intake is approximately 7.5 m. , (Material■
(See) Dock section 3 (C+D) and ground equipment 4 are facilities that will be constructed separately from the floating plant at the power plant site.

次に各部について説明する。Next, each part will be explained.

〔3〕浮体設備 浮体部となっている発電プラントは基本的には原子炉本
体、蒸気・復水系設備および現在従来の原子カプラント
に対して厳しくなっている耐震基準を満たすような設備
によって構成され、大きく分けると前記のように原子炉
建屋とタービン建屋から成立っている。これらはすべて
工場(実際は造船ドック)において建造される。原子炉
建屋とタービン建屋の配置はペニンジュラ型(半島型、
I型)と呼ばれるもので、タービン・ミサイルの1次系
プラントへの飛来が低い確率の配置法である。
[3] Floating facility A floating power plant basically consists of a reactor body, steam/condensate system equipment, and equipment that meets seismic standards that are currently stricter for conventional nuclear power plants. Broadly speaking, as mentioned above, it consists of the reactor building and the turbine building. All of these are built in factories (actually shipbuilding docks). The layout of the reactor building and turbine building is peninsula type.
This is called Type I), and is a placement method that has a low probability of a turbine missile hitting the primary plant.

浮体形状はこれに伴って第1図、第2図のように船型に
なる。原子炉建屋は原子炉棟と付属棟とから成っている
。原子炉棟とは主に格納容器部分を言い、その内部には
在来の原子カプラントの格納容器内にある設備が収めら
れている。格納容器を中心とする生体遮蔽壁りの下に収
める挿入部分は横方向に長い横形とし、できる限り補機
類を付属棟A2に配置することで挿入部分の容量を減ら
し、生体遮蔽壁の構造強度が十分に保てるような設計と
する。場合によっては浮体とドックの形状を第3図に示
すような生体遮蔽体の構造強度を重視した形状にするこ
とが必要である。格納容器は鋼製多重構造とし、2枚の
鋼板の間には中性子遮蔽用に淡水あるいはホウ素元素を
含む水溶液を充満させる。この方法は事故時における格
納容器の冷却効果も狙っており、格納容器をコンパクト
にできる効果もある。
Accordingly, the shape of the floating body becomes a ship shape as shown in FIGS. 1 and 2. The reactor building consists of a reactor building and an auxiliary building. The reactor building mainly refers to the containment vessel, and inside it is housed the equipment that would be in the containment vessel of a conventional nuclear couplant. The insertion part that is housed under the biological shielding wall centered on the containment vessel has a horizontally long shape, and auxiliary equipment is placed as much as possible in the attached building A2 to reduce the volume of the inserted part and improve the structure of the biological shielding wall. The design shall be such that sufficient strength can be maintained. In some cases, it may be necessary to change the shape of the floating body and the dock to a shape that emphasizes the structural strength of the biological shield, as shown in FIG. The containment vessel will have a steel multilayer structure, and the space between the two steel plates will be filled with fresh water or an aqueous solution containing boron element for neutron shielding. This method is aimed at cooling the containment vessel in the event of an accident, and also has the effect of making the containment vessel more compact.

原子炉棟はプラント保守や燃料交換時に保守要員の生体
遮蔽として必要になる部分はコンクリ−1・構造とし、
それ以外はできる限り浮体重量を減らすため鋼板を用い
た構造にする。ただし沸騰水型炉の場合には燃料交換は
ドックと一体となっている上部遮蔽壁から行うので、浮
体の原子炉棟At内の生体遮蔽は保守時のみ考慮すれば
よい。
The reactor building will have a concrete structure for the parts needed as biological shields for maintenance personnel during plant maintenance and fuel exchange.
The rest will be constructed using steel plates to reduce floating weight as much as possible. However, in the case of a boiling water reactor, fuel exchange is performed through the upper shielding wall that is integrated with the dock, so biological shielding within the floating reactor building At only needs to be considered during maintenance.

付属棟は原子炉棟とタービン建屋の間にあり、在来プラ
ントの格納容器周辺に設置されている安全工学系、熱交
換器、−過装置、換気空調系および燃料交換系(加圧木
型のみに必要)などの補機類から構成されている。付属
棟の原子炉棟側は原子炉から発生する強いT線を遮蔽す
る生体遮蔽コンクリートで覆われており、その遮蔽壁は
タービン建屋側に行くほど浮体重量をできるだけ低減す
るため薄くなる。コントロール室は機能上、原子炉やタ
ービン機器等の近くに設置することが要求されるから、
付属棟あるいはタービン建屋に近接した位置であるが、
事故時にも作業員への放射線被爆が最小となり、しかも
連絡や通路性の良い場所に設置する。
The annex building is located between the reactor building and the turbine building, and contains safety engineering systems, heat exchangers, air conditioning systems, ventilation air conditioning systems, and fuel exchange systems (pressurized wooden molds) installed around the containment vessel of conventional plants. It consists of auxiliary equipment such as (necessary only for The reactor building side of the attached building is covered with biological shielding concrete that shields the strong T-rays generated by the reactor, and the shielding wall becomes thinner towards the turbine building side in order to reduce the floating weight as much as possible. Because the control room is functionally required to be installed near the nuclear reactor, turbine equipment, etc.
Although it is located close to the attached building or turbine building,
It should be installed in a location that minimizes radiation exposure to workers in the event of an accident and has good communication and passage.

タービン建屋は復水器の冷却用海水を多量に必要とする
ため海側に面しており、その設備は基本的には在来の地
上式プラントと同じで、主蒸気系。
The turbine building faces the sea because it requires a large amount of seawater to cool the condenser, and its equipment is basically the same as a conventional land-based plant, with a main steam system.

給復水系、循環水系などから成立っている。取水管6は
第2図のようにドックと海との間にある隔壁を通して海
水を吸い上げるためベローズやフレキシブル形のパイプ
が採用される。
It consists of water supply and condensation systems, circulating water systems, etc. As shown in Fig. 2, the water intake pipe 6 employs a bellows or flexible pipe to suck up seawater through the bulkhead between the dock and the sea.

浮体部と地上設備との間のその他の接続配管やケーブル
はその接続に耐高温耐高圧を要するものはないから、既
存のベローズやフレキシブル形の綱または有機材使用の
接続方法で、地震などの外力に十分耐えるものが得られ
る。浮体構造物は生体遮蔽部を除いた部分はできるだけ
鋼構造として重量低減を図る。
Other connecting pipes and cables between the floating body and ground equipment do not require high temperature and high pressure resistance, so existing connection methods using bellows, flexible ropes, or organic materials can be used to prevent earthquakes and other problems. You can obtain something that can withstand external forces. The floating structure will be made of steel as much as possible, except for the biological shielding part, in an effort to reduce weight.

〔4〕 ドック部(設備) ドック部は浮体を浮かばせるコンクリート製ドックCと
、原子炉容器から発生するT線を遮蔽するための生体遮
蔽壁りから成立っている。ドック部は他の設備と同じく
発電プラントが工場から曳航されて発電所サイトに到達
する前に建造しておかねばならない。ドックの形状は浮
体設備の形状寸法に合わせて設計されていて、その側面
には浮体との衝突による浮体の損傷および振動を避ける
ための緩衝設備(ゴム製など)を設ける。浮体をドック
内に配置した後は海と遮断するためドックの入口を塞ぐ
。またドック内の水12による浮体の腐食を防ぎ原子力
発電プラントの補修を減らしたり、寿命を長くしたい場
合には必要に応じてドック内の水12を淡水に変更する
[4] Dock section (equipment) The dock section consists of a concrete dock C for floating the floating body, and a biological shielding wall for shielding T-rays generated from the reactor vessel. The dock section, like all other equipment, must be constructed before the power plant is towed from the factory to the power plant site. The shape of the dock is designed to match the shape and dimensions of the floating equipment, and shock absorbing equipment (made of rubber, etc.) is installed on the side of the dock to avoid damage and vibration to the floating equipment due to collisions with the floating equipment. After the floating body is placed inside the dock, the entrance to the dock is blocked off to isolate it from the sea. Furthermore, if it is desired to prevent the floating body from being corroded by the water 12 in the dock, reduce the need for repair of the nuclear power plant, or extend its life, the water 12 in the dock is changed to fresh water as necessary.

ドック内の水位を一定に保つためドック側壁には水位が
弗る高さになるとドックの水が外部に流れ出る溢水口を
設けておく、また第4図はドック内への浸水防止方法を
示す図あるが、大雨や洪水あるいは津波などによって外
部から水が大量にドック内に入ることを防ぐため、この
図に示すように浮体2の下部周辺に少なくともドックC
の内壁との間隙水面を覆う大きさの鋼製ひだ9をっけ、
さらにひだ9とドックCの表面の間には浸水防止を兼ね
た緩衝材10を設ける。また11は第2図のDと浮体表
面との隙間からの浸水を防止するための有機物等を用い
たフレキシブルカバーである。なおドックを掘るときに
発生する残土は生体遮蔽壁の土盛り用に利用する。ドッ
クCと生体遮蔽壁りは発電プラント本体と切り離されて
いて、その構造も耐震設計が容易であり、必ずしも岩盤
立地にする必要はなく、第4紀層地盤である砂礫地盤上
での立地も可能である。
In order to keep the water level inside the dock constant, an overflow port is installed on the side wall of the dock so that water from the dock flows out when the water level rises to the outside. Figure 4 shows a method to prevent water from flooding into the dock. However, in order to prevent large amounts of water from entering the dock from outside due to heavy rain, floods, or tsunamis, at least dock C is installed around the bottom of floating structure 2 as shown in this figure.
A steel fold 9 of a size that covers the water surface between the inner wall and the inner wall of the
Further, a cushioning material 10 is provided between the pleats 9 and the surface of the dock C to prevent water from entering. Reference numeral 11 is a flexible cover made of organic material or the like to prevent water from seeping through the gap between D in FIG. 2 and the surface of the floating body. The remaining soil generated when digging the dock will be used for the earthen mound for the bio-shielding wall. Dock C and the biological shielding wall are separated from the main body of the power plant, and its structure is easy to design for earthquake resistance, and it does not necessarily have to be located on bedrock; it can also be located on gravel ground, which is the Quaternary layer ground. It is possible.

〔5〕地上設備 地上設備は厳しい耐震性や安全性が要求されない設備で
、強固な岩盤上に設置することは必ずしも要求さないも
のである。これには特高圧開閉所。
[5] Ground equipment Ground equipment is equipment that does not require strict earthquake resistance or safety, and does not necessarily require installation on solid rock. This includes an extra-high voltage switching station.

サービス建屋、廃棄物貯蔵室、物揚岸壁、補給水設備お
よびその他発電所の管理に必要な諸設備が含まれる。こ
れらの設備の配置は従来の発電所と同様敷地の制約条件
の範囲で最適の位置に設置される。
It includes a service building, waste storage room, unloading wharf, make-up water equipment, and other equipment necessary for power plant management. As with conventional power plants, these facilities will be installed at optimal locations within the constraints of the site.

以上の説明は加圧木型(PWR型)の軽水炉発電プラン
トにはそのまま通用できるが、沸騰水型(BWR)に対
しては次のような変更が必要である。
The above explanation can be applied as is to a pressurized wood type (PWR type) light water reactor power plant, but the following changes are required for a boiling water type (BWR) type.

〔6〕沸騰水型軽水炉(BWR)の場合BWRでは燃料
を格納容器上方部から取出すためプラント構造が若干違
ってくる。第5図の(A)は本発明を実施したBWR原
子力発電所の概要を示す側面一部断面図、(B)は(A
)中のx−x’矢視図、第6図はその原子炉線の正面一
部断面図とその一部詳細図である。図中りやJで示した
点の集合部分はγ線遮蔽体を中心とする構造、12’は
淡水、13は使用済燃料プール、14は蒸気乾燥器。
[6] In the case of a boiling water reactor (BWR), the plant structure is slightly different in a BWR because the fuel is extracted from the upper part of the containment vessel. Figure 5 (A) is a side partial sectional view showing an outline of the BWR nuclear power plant in which the present invention is implemented, and (B) is (A).
), and FIG. 6 is a partially sectional front view of the reactor line and a partially detailed view thereof. In the figure, the cluster of points indicated by J indicates a structure centered on the γ-ray shield, 12' is fresh water, 13 is a spent fuel pool, and 14 is a steam dryer.

気水分離器ピット、17は鋼製円筒、20は中性子遮蔽
体である。また第6図において(A)は正面図、CB)
は(A)中のに部詳細図で、席料交換時に挿入する容器
(斜線部)の平面図と正面図を示し、(C)は8部の詳
細で中性子遮蔽を示している。また(A)図中の2点鎖
線15はタービン建屋(手前)、Dはコンクリート製生
体遮蔽室、(B)図中の16は圧力容器、17は鋼製円
筒、21は燃料棒出口、(C)図中の斜線部分12°は
中性子遮蔽部で、水またはホウ素を含んだ水溶液、18
は鋼板をそれぞれ表している。これらの図に示すように
使用済燃料プールと蒸気乾燥器、気水分離器ピットは上
部生体遮蔽壁土に設置されることになる。燃料交換はま
ず最初に燃料交換時に使用される鋼製円筒19が挿入で
きるように使用済燃料プールと気水分離器ピットに取付
けられた移動可能な取出口容器17の正確な位置決めを
行い、次に格納容器上部のMPと圧力容器上部の鏡板1
6をはずした後、第6図の(B)に示すような容器19
を格納容器上部に据えつけることによって可能となる。
A steam/water separator pit, 17 is a steel cylinder, and 20 is a neutron shield. Also, in Figure 6, (A) is a front view, CB)
(A) is a detailed view of the middle part, showing a plan view and a front view of the container (hatched area) to be inserted when replacing the seat charge, and (C) is a detailed view of part 8, showing neutron shielding. In addition, (A) double-dashed line 15 is the turbine building (front), D is the concrete biological shielding chamber, (B) 16 is the pressure vessel, 17 is the steel cylinder, 21 is the fuel rod outlet, ( C) The shaded area 12° in the figure is the neutron shielding part, where water or an aqueous solution containing boron, 18
each represents a steel plate. As shown in these figures, the spent fuel pool, steam dryer, and steam separator pit will be installed on the upper bioshield wall soil. In refueling, first, the movable outlet container 17 attached to the spent fuel pool and the steam separator pit is accurately positioned so that the steel cylinder 19 used during refueling can be inserted. MP on the top of the containment vessel and head plate 1 on the top of the pressure vessel.
After removing the container 19 as shown in FIG.
This is made possible by installing it on top of the containment vessel.

燃料交換操作は従来の炉と同じでよく知られているので
詳細な説明は省略する。
The refueling operation is the same as in conventional furnaces and is well known, so a detailed explanation will be omitted.

〔資料1)100万kW級浮揚式原子カプラントの重量 1)従来方式の浮体型M(単位 万トン)の例2)本発
明方式による浮体重量(単位 万トン)の例 (*使用済燃料プール、蒸気乾燥器、気水分離器ピット
は地上に設置する。)(地上に設置する設備)1)サー
ビス建屋、2)コントロール建屋、3)開閉所等の電気
設備、4)使用済燃料プール、蒸気乾燥器。
[Document 1) Weight of 1 million kW class floating atomic couplant 1) Example of conventional floating type M (unit: 10,000 tons) 2) Example of floating weight (unit: 10,000 tons) according to the present invention method (*Spent fuel pool (Equipment to be installed above ground) 1) Service building, 2) Control building, 3) Electrical equipment such as switchyard, 4) Spent fuel pool, Steam dryer.

気水分離器ピント(BWR型のみ)。Steam water separator Pinto (BWR type only).

〔資料n)100万kW級浮揚式原子カプラントの容積 l)従来の地上式プラントの例(長さX幅×高さ。[Data n] Volume of 1 million kW class floating atomic couplant l) An example of a conventional above-ground plant (length x width x height).

m) 2)本発明方式による浮体プラントの例(■タービン建
屋は現在の在来式発電所建屋容積を許されるだけコンパ
クトにして求めた)
m) 2) Example of a floating plant according to the present invention (■ The turbine building was determined by making the volume of the current conventional power plant building as compact as possible)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施した浮揚式原子力発電所の配置側
図(発電プラント2基の場合)、第2図は第1図の側面
図、第3図は浮体とドックの形状の別な一例図、第4図
はドック内への浸水防止方法を示す図、第5図は本発明
を実施したBWR型原子力発電所の一例の構造概要図、
第6図はその原子炉線の正面断面図(A)とその一部の
詳細図(13)と(C)である。 1・・・海、2・・・浮体部、3・・・ドック部、4・
・・地上設備、5・・・出入口、6・・・海水取入口、
7・・・放水口、8・・・土、9・・・鋼製ひだ、10
・・・緩衝材、11・・・フレキシブルカバー、12・
・・水、12°・・・淡水またはホウ素元素を含んだ水
溶液、AI・・・原子炉線(格納容器)、A2・・・付
属棟、B・・・タービン建屋、C・・・ドック、D・・
・生体遮蔽壁、E・・・稀ガスホールドアンプ装置建屋
、F・・・サービス111、G・・・超高圧開閉所、H
・・・水処理建屋、ip過水タンク、■・・・廃棄物処
理建屋。 声6閃 つ1 手続補正書(自発) 昭和60年8月 6日 特許庁長官   宇 賀 道 部 殿 1、事件の表示 特願昭60−146265号 2、発明の名称 T線遮蔽体を分離した浮揚式原子力発電所3、補正をす
る者 事件との関係  出願人 財団法人電力中央研究所 4、代理人 東京都新宿区西新宿1−23−1 明細書の「特許請求の範囲」の欄、 「発明の詳細な説明」の欄 6、補正の内容 (1)  特許請求の範囲を別紙の通り補正する。 (2)明細書第12頁第10行〜第11行〔防止を兼ね
た〕を〔防止と長周期地震力の減衰を兼ねた〕と補正す
る。 特許請求の範囲 (1)原子力発電所を構成する設備のうち格納容器より
成る原子炉棟(A1)と、生体遮蔽体の一部と原子炉の
補機類を含む付属棟(A2) 、およびタービン発電機
と復給水設備を含むタービン建屋(B)のみを海岸また
は河川の近くに設けた固定の堀込ドックの水面上に浮揚
させたバージ上に搭載した浮体とし、前記原子炉棟と付
属棟の一部の側面および上方を覆うT線遮蔽体は前記付
属棟内の生体遮蔽体を除き前記ドックと一体となりだそ
の延長として設け、浮体以外の発電所設備は地上に設置
したことを特徴とするTIIA遮蔽体を分離した浮揚式
原子力発電所。 (2)バージ上の浮体の。縁には水面およびドック貫辺
皿を覆う鋼製のひだとその 部に浸2防止と  、量 
 の′−を ねた 街 を取・け太ことを特徴とする特
許請求の範囲第1項記載のT線遮蔽体を分離した浮揚式
原子力発電所。 (3)沸騰水型軽水炉プラントの燃料交換は、交換時に
生体遮蔽壁上部から鋼製円筒を挿入し固定した後燃料を
取り出して生体遮蔽壁上部の使用済燃料プールに貯蔵す
ることを特徴とする特許請求の範囲第1項記載のT線遮
蔽体を分離した浮揚式原子力発電所。
Figure 1 is a side view of the layout of a floating nuclear power plant in which the present invention is implemented (in the case of two power plants), Figure 2 is a side view of Figure 1, and Figure 3 shows different shapes of the floating body and dock. An example diagram, Figure 4 is a diagram showing a method of preventing water intrusion into the dock, Figure 5 is a structural schematic diagram of an example of a BWR type nuclear power plant in which the present invention is implemented,
FIG. 6 is a front sectional view (A) of the reactor line and detailed views (13) and (C) of a part thereof. 1... Sea, 2... Floating body part, 3... Dock part, 4...
...Ground equipment, 5...Entrance/exit, 6...Seawater intake,
7...Water outlet, 8...Soil, 9...Steel folds, 10
... Cushioning material, 11... Flexible cover, 12.
...Water, 12°...Fresh water or aqueous solution containing boron element, AI...Reactor wire (containment vessel), A2...Ancillary building, B...Turbine building, C...Dock, D...
・Biological shielding wall, E... Rare gas hold amplifier equipment building, F... Service 111, G... Ultra-high pressure switchyard, H
...Water treatment building, IP overwater tank, ■...Waste treatment building. Voice 6 Flash 1 Procedural amendment (spontaneous) August 6, 1985 Michibe Uga, Director General of the Patent Office 1, Indication of the case Patent Application No. 146265 1988 2, Name of the invention Separated T-ray shielding body Floating Nuclear Power Plant 3, Relationship with the amended party case Applicant Central Research Institute of Electric Power Industry 4, Agent 1-23-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo The “Claims” column of the specification, "Detailed Description of the Invention" Column 6, Contents of Amendment (1) The scope of claims is amended as shown in the attached sheet. (2) In the specification, page 12, lines 10 to 11, [combined with prevention] is amended to [combined with prevention and attenuation of long-period seismic force]. Scope of Claims (1) A reactor building (A1) consisting of a containment vessel among the equipment constituting a nuclear power plant, and an auxiliary building (A2) including a part of a biological shield and reactor auxiliary equipment, and Only the turbine building (B) containing the turbine generator and condensing water equipment is a floating body mounted on a barge floating on the water surface of a fixed digging dock located near the coast or a river, and the reactor building and annex building are A T-ray shield that covers part of the sides and upper part of the dock is integrated with the dock, except for the biological shield in the attached building, and is installed as an extension of the dock, and the power plant equipment other than the floating structure is installed on the ground. Floating nuclear power plant with separated TIIA shield. (2) Floating objects on barges. The edge has steel folds that cover the water surface and the dock side plate, and there is a 2-proof immersion area in that area.
A floating nuclear power plant with a separated T-ray shield according to claim 1, characterized in that the T-ray shield is separated from the T-ray shield. (3) Fuel exchange in a boiling water light water reactor plant is characterized by inserting and fixing a steel cylinder from the top of the bioshield wall during fuel replacement, and then removing the fuel and storing it in the spent fuel pool at the top of the bioshield wall. A floating nuclear power plant with a separate T-ray shield according to claim 1.

Claims (3)

【特許請求の範囲】[Claims] (1)原子力発電所を構成する設備のうち格納容器より
成る原子炉棟(A1)と、生体遮蔽体の一部と原子炉の
補機類を含む付属棟(A2)、およびタービン発電機と
復給水設備を含むタービン建屋(B)のみを海岸または
河川の近くに設けた固定の堀込ドックの水面上に浮揚さ
せたバージ上に搭載した浮体とし、前記原子炉棟と付属
棟の一部の側面および上方を覆うγ線遮蔽体は前記付属
棟内の生体遮蔽体を除き前記ドックと一体となったその
延長として設け、浮体以外の発電所設備は地上に設置し
たことを特徴とするγ線遮蔽体を分離した浮揚式原子力
発電所。
(1) Among the facilities that make up the nuclear power plant, there is a reactor building (A1) consisting of the containment vessel, an annex building (A2) containing part of the biological shield and reactor auxiliary equipment, and a turbine generator. Only the turbine building (B) containing the condensate water supply equipment is a floating body mounted on a barge floating on the water surface of a fixed digging dock located near the coast or a river, and part of the reactor building and annex building is The gamma ray shielding body covering the sides and upper part is provided as an integral extension of the dock, except for the biological shielding body in the attached building, and the power plant equipment other than the floating structure is installed on the ground. Floating nuclear power plant with separated shield.
(2)バージ上の浮体の下部周縁にはドックの内壁との
間の水面を覆う鋼製のひだと浸水防止用の緩衝材を重ね
て取付けたことを特徴とする特許請求の範囲第1項記載
のγ線遮蔽体を分離した浮揚式原子力発電所。
(2) Claim 1, characterized in that a steel fold to cover the water surface between the floating body on the barge and the inner wall of the dock and a cushioning material for preventing water intrusion are attached to the lower peripheral edge of the floating body on the barge. Floating nuclear power plant with separated gamma ray shield as described.
(3)沸騰水型軽水炉プラントの燃料交換は、交換時に
生体遮蔽壁上部から鋼製円筒を挿入し固定した後燃料を
取り出して生体遮蔽壁上部の使用済燃料プールに貯蔵す
ることを特徴とする特許請求の範囲第1項記載のγ線遮
蔽体を分離した浮揚式原子力発電所。
(3) Fuel exchange in a boiling water light water reactor plant is characterized by inserting and fixing a steel cylinder from the top of the bioshield wall during fuel replacement, and then removing the fuel and storing it in the spent fuel pool at the top of the bioshield wall. A floating nuclear power plant in which the gamma ray shielding body according to claim 1 is separated.
JP60146265A 1985-07-03 1985-07-03 Floating type nuclear power plant in which gamma-ray shielding body is separated Pending JPS626197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60146265A JPS626197A (en) 1985-07-03 1985-07-03 Floating type nuclear power plant in which gamma-ray shielding body is separated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60146265A JPS626197A (en) 1985-07-03 1985-07-03 Floating type nuclear power plant in which gamma-ray shielding body is separated

Publications (1)

Publication Number Publication Date
JPS626197A true JPS626197A (en) 1987-01-13

Family

ID=15403827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60146265A Pending JPS626197A (en) 1985-07-03 1985-07-03 Floating type nuclear power plant in which gamma-ray shielding body is separated

Country Status (1)

Country Link
JP (1) JPS626197A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233726A (en) * 2011-04-28 2012-11-29 Hitachi-Ge Nuclear Energy Ltd External power source and plain water receiving facility, power source and plain water supply ship, and power source and plain water supply system comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233726A (en) * 2011-04-28 2012-11-29 Hitachi-Ge Nuclear Energy Ltd External power source and plain water receiving facility, power source and plain water supply ship, and power source and plain water supply system comprising the same

Similar Documents

Publication Publication Date Title
Lee et al. A new design concept for offshore nuclear power plants with enhanced safety features
US4080256A (en) Nuclear reactor apparatus
JP4370075B2 (en) Submerged power plant and method
Kusunoki et al. Design of advanced integral-type marine reactor, MRX
US4277309A (en) Nuclear reactor installation
US3752738A (en) Nuclear reactor plant and multiple purpose shielding system therefor
EP0139079A1 (en) Modular nuclear steam supply system and method of constructing a nuclear reactor using a modular nuclear steam supply system
Jensen et al. Description of the Magnox Type of Gas Cooled Reactor (MAGNOX)
EP0495103A1 (en) Atomic power generation system and its construction method
KR101692777B1 (en) Modularized floating type nuclear plant system
WO2019183575A1 (en) Systems and methods for rapid establishment of offshore nuclear power platforms
Kuznetsov Small modular reactors (SMRs): the case of Russia
Kwant et al. PRISM—liquid metal cooled reactor plant design and performance
JPS626197A (en) Floating type nuclear power plant in which gamma-ray shielding body is separated
JPH10115692A (en) Nuclear power plant
CN110588907A (en) Bottom-sitting type nuclear power generation platform
RU2188466C2 (en) Floating nuclear power plant
RU2813400C1 (en) Multicomponent power plant (versions)
Ashworth Atlantic generating station
US20240194362A1 (en) Refuelling a nuclear reactor
US20220281568A1 (en) Marine power structure and coastal nuclear power station therefor
Takahashi et al. Construction of the Monju prototype fast breeder reactor
WO2024073065A1 (en) Multipart transportable nuclear power plant
Ishida et al. Advanced marine reactor MRX and its application for electricity and heat co-generation
Busey Floating plants for seismic protection