JPS626183A - Faulty point locating system - Google Patents

Faulty point locating system

Info

Publication number
JPS626183A
JPS626183A JP14540685A JP14540685A JPS626183A JP S626183 A JPS626183 A JP S626183A JP 14540685 A JP14540685 A JP 14540685A JP 14540685 A JP14540685 A JP 14540685A JP S626183 A JPS626183 A JP S626183A
Authority
JP
Japan
Prior art keywords
fault
phase
point
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14540685A
Other languages
Japanese (ja)
Inventor
Koichi Sugiyama
耕一 杉山
Kimiharu Kanamaru
金丸 公春
Junichi Minafuji
皆藤 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP14540685A priority Critical patent/JPS626183A/en
Publication of JPS626183A publication Critical patent/JPS626183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To locate a fault point with high accuracy by deciding a fault phase from each phase of three phases, and locating a fault direction, and a distance between a located point and the fault point, by a phase difference of a current and a voltage of the fault phase, and a ratio of an absolute value, respectively. CONSTITUTION:A current and a voltage of each phase of a transmission line are measured by a current detector 51 and a voltage detector 52, and its result is inputted to a phase difference detector 53. The phase difference detector 53 derives a phase difference of both of them, and a fault direction locating device 56 locates a fault direction, based on a value of the phase difference and inputs it to a recorder 60. On the other hand, an impedance meter 54 derives an impedance extending from a measuring point to a fault by an output ratio of the current detector 51 and the voltage detector 52, and also a fault range finder derives a fault distance from the impedance per unit length which has been given in advance, and inputs it to the recorder 60. In this regard, only when an output of the current detector 51 has exceeded a prescribed value, the fault point is located by a trigger generator 58.

Description

【発明の詳細な説明】 [発明の対象] 本発明は電力系統の故障点を標定する方式に関する。[Detailed description of the invention] [Subject of invention] The present invention relates to a method for locating fault points in a power system.

[従来技術] 近年の電力系統では需要の拡大、広域化に伴い、長尺化
、ケーブル化及び多端子化が進み複雑な系統となってき
ており、これらの系統に適用可能な精度の高い故障点標
定方式の開発が望まれている。
[Prior art] In recent years, electric power systems have become more complex as demand has expanded and the area has become wider, with longer cables, more cables, and more terminals. The development of a point location method is desired.

現在用いられている故障点標定方式としては、故障時に
インパルスを印加してその反射波が戻ってくるまでの時
間を計測し、故障点を標定するパルスレーダ方式、ある
いは故障点で発生するパルスを両端の電気所で計測し、
その時間差より故障点を標定するナージ受信方式等があ
り、いずれも進行波現象を利用したものである。
Currently used fault point locating methods include the pulse radar method, which applies an impulse at the time of a fault and measures the time it takes for the reflected wave to return to locate the fault point; Measured at electric stations at both ends,
There is a nerge reception method that locates the failure point based on the time difference, and all of these methods make use of the traveling wave phenomenon.

しかしながら、印加パルスあるいは故障サージは、その
伝播速度が速いこと、進行するに従って、    ・′
減衰、変歪を受けること、ねん架部や分岐点で反射を受
けることまたは雷の混同を受けること等により性能向上
の面で明らかに限界がある。
However, the applied pulse or fault surge has a fast propagation speed, and as it progresses, ・′
There is clearly a limit to performance improvement due to attenuation, distortion, reflection at suspension points and branch points, and confusion with lightning.

これを改善する案として、架空送電線路の架空地線に流
れる電ぬを複数の位置で検出し、それらの位相情報から
故障区間を標定する方式が提案されているが、この方式
では位相情報を伝送するための長尺の情報伝送路と多数
の装置を必要とするため設備費が高くなる欠点があった
As a way to improve this problem, a method has been proposed in which the electric current flowing through the overhead ground wire of an overhead power transmission line is detected at multiple locations and the fault section is located from the phase information. This method has the drawback of high equipment costs because it requires a long information transmission path and a large number of devices.

[発明の目的] 本発明は前述の従来技術の欠点を改善したものであり、
系統分岐が多数存在しかつ複数の電源を有する電力系統
において、地絡事故、短絡事故のいずれに対しても精度
良く故障点を標定できる新規な方式を提供することを目
的とする。
[Object of the invention] The present invention improves the drawbacks of the prior art described above, and
The purpose of this invention is to provide a new method that can accurately locate failure points for both ground faults and short circuits in power systems with many system branches and multiple power sources.

[発明の概要] 即ち、三相各相より故障相を判定し、故障相の電流及び
電圧を計測して両者の位相差より故障方向を標定すると
同時に、前記電流及び電圧のそれぞれの絶対値の比より
標定点から故障点迄の距離を標定する構成となっている
[Summary of the invention] That is, the faulty phase is determined from each of the three phases, the current and voltage of the faulty phase are measured, and the direction of the fault is determined from the phase difference between the two, and at the same time, the absolute values of each of the current and voltage are determined. The configuration is such that the distance from the control point to the failure point is determined based on the ratio.

[発明の補足説明] 本発明の原理を図を参照しながら説明する。[Supplementary explanation of the invention] The principle of the present invention will be explained with reference to the drawings.

第3図は両端に電源と負荷を有する一回線送電系統のモ
デル図であり、送′iri線路1.電源(Eu。
FIG. 3 is a model diagram of a single-line power transmission system having a power source and a load at both ends. Power supply (Eu.

Ev、Ew)2.電源及び負荷の等価インピーダンス3
及び接地抵抗4より構成される。
Ev, Ew)2. Equivalent impedance of power supply and load 3
and a grounding resistor 4.

例えば送電線路1の任意点F(以下故障点Fと呼ぶ)で
■相に地絡事故が発生したとすると、第4図に示すよう
に■相の故障電圧Vuは両端電源側で最大となり故障点
Fで零となる。一方故障電流Iuは故障点Fを境にして
両端で互いに逆位相となっており、また、その電流値は
故障点Fから電源まで一定である。
For example, if a ground fault occurs in the ■ phase at an arbitrary point F (hereinafter referred to as failure point F) on the power transmission line 1, the fault voltage Vu of the ■ phase will be maximum on the power supply side at both ends, as shown in Figure 4, and the failure will occur. It becomes zero at point F. On the other hand, the fault current Iu has opposite phases at both ends of the fault point F, and the current value is constant from the fault point F to the power source.

故障電圧Vuは、故障電流Iuが両端の電源2から故障
点Fまで送電線路を流れることにより生ずる電圧降下分
と等しいことから、故障電圧Vuは故障点Fからの距離
に比例することがわかる。
Since the fault voltage Vu is equal to the voltage drop caused by the fault current Iu flowing through the power transmission line from the power supply 2 at both ends to the fault point F, it can be seen that the fault voltage Vu is proportional to the distance from the fault point F.

即ち、故障電圧Vu及び故障電流)Uの計測点Pから故
障点Fまでの距離をX、単位長当りの送電線路インピー
ダンスを21とすると、(1)式が成立する。
That is, assuming that the distance from the measurement point P of the fault voltage Vu and fault current U to the fault point F is X, and the power transmission line impedance per unit length is 21, equation (1) holds true.

Vn=Zt −X −1n (A)     ・(1)
(1)式は、計測点Pが第3図中のへ区間に位置する場
合であり、計測点Pが8区間に位置する場合にはluの
位相が逆位相となっているため、(′2J式%式%(2
) 但し、Iu (A>、Iu (8>はそれぞれへ区間、
B区問を流れる故障電流である。
Vn=Zt −X −1n (A) ・(1)
Equation (1) applies when the measurement point P is located in the section 8 in Fig. 3, and when the measurement point P is located in the section 8, the phase of lu is opposite, so (' 2J formula % formula % (2
) However, Iu (A>, Iu (8>) are the intervals to each,
This is the fault current flowing through section B.

ここでへ区間、8区間それぞれの故障電圧■uと故障電
流1uとの位相差をφA、φBとすると(1)式、 (
2)式より(3式である。
Here, let φA and φB be the phase difference between the fault voltage ■u and the fault current 1u in the 8 sections and the 8 sections, respectively, and then the equation (1) is obtained.
From equation 2), equation 3 is obtained.

φA−ara  (Zt−X) φB =−aro  (Zt−X)       ””
  (3)一般には21は抵抗とインダクタンスの直列
接続と近似できるから、(4)式である。
φA-ara (Zt-X) φB =-aro (Zt-X) ””
(3) Generally, since 21 can be approximated as a series connection of a resistance and an inductance, the equation (4) is obtained.

O°≦ar(+(Zt)≦90°    −(4)(3
式で分るように故障電圧Vuと故障電流Inとの位相差
φによって計測点Pがへ区間、B区間のいずれに属する
か判定できる。即ち、 O゛≦φ≦90’:A区間 一180°≦φ≦−90”C:B区間 ・・・ 0次に
故障電圧Vuの絶対値IVulと故障電流■Uの絶対値
IIulの比をIZMとすると、単位長当りの送電線路
インピーダンス21の絶対値IZtlとの間に次の関係
が成立することが容易に判る。
O°≦ar(+(Zt)≦90° −(4)(3
As can be seen from the equation, it can be determined whether the measurement point P belongs to the F section or the B section based on the phase difference φ between the fault voltage Vu and the fault current In. That is, O゛≦φ≦90': A section - 180°≦φ≦-90'' C: B section ... Next, the ratio of the absolute value IVul of the fault voltage Vu and the absolute value IIul of the fault current ■U is IZM, it can be easily seen that the following relationship holds true with the absolute value IZtl of the power transmission line impedance 21 per unit length.

IZF 1−IZt l−X    −164送電線路
に対しIZtlは一意に定まるので、lVu’1.1I
ulよりIZFIを求めれば、計測点Pから故障点Pま
での距離Xが標定できる。
IZF 1-IZt l-X -164 Since IZtl is uniquely determined for the transmission line, lVu'1.1I
By calculating IZFI from ul, the distance X from the measurement point P to the failure point P can be located.

[実施例] 本発明の実施例を図に基づいて詳細に説明する。[Example] Embodiments of the present invention will be described in detail based on the drawings.

第1図は、本発明に基づく故障点標定装置5の構成ブロ
ック図である。
FIG. 1 is a block diagram of the configuration of a failure point locating device 5 based on the present invention.

三相各相に対し電流検出器51.電圧検出器52゜位相
差検出器53.インピーダンス計54.コンパレータ5
5.故障方向標定器56.故障距離計57、トリガ発生
器58が設置され、各相の情報及びタイマ59の情報が
記録計60に入力されるよう構成されている。
Current detector 51 for each of the three phases. Voltage detector 52° phase difference detector 53. Impedance meter 54. Comparator 5
5. Fault direction locator 56. A failure distance meter 57 and a trigger generator 58 are installed, and the information on each phase and the information on the timer 59 are configured to be input to a recorder 60.

本発明に基づく故障点標定装置5の動作は次のとおりで
ある。
The operation of the failure point locating device 5 according to the present invention is as follows.

送電線路各相の電流及び電圧を電流検出器51及び電圧
検出器52で計測し、これを位相差検出器53に入力す
る。位相差検出器53は両者の位相差を求め、故障方向
標定器56が位相差の値に基づき故障方向を標定し記録
計60に入力する。
The current and voltage of each phase of the power transmission line are measured by a current detector 51 and a voltage detector 52, and the measured values are input to a phase difference detector 53. The phase difference detector 53 determines the phase difference between the two, and the failure direction locator 56 locates the failure direction based on the value of the phase difference and inputs it to the recorder 60.

一方インピーダンス計54は、電流検出器51と電圧検
出器52の出力比により計測点から故障点迄のインピー
ダンスを求め、さらに故障距離計は予め与えられいる単
位長当りのインピーダンスから故障距離を求め、記録計
60に入力する。
On the other hand, the impedance meter 54 calculates the impedance from the measurement point to the failure point based on the output ratio of the current detector 51 and the voltage detector 52, and the failure distance meter calculates the failure distance from the impedance per unit length given in advance. Input to recorder 60.

なお、故障方向標定器56と故障距離計57の出力は、
トリガ発生器58よりトリガ信号が発生した時のみ生じ
るよう構成し、かつトリガ発生器58は、電流検出器5
1の出力があるしきい値を上回った時に動作するよう設
定する。コンパレータ55はそのしきい値を設定するた
めのものである。
Note that the outputs of the fault direction locator 56 and the fault distance meter 57 are as follows:
The trigger signal is generated only when the trigger signal is generated by the trigger generator 58, and the trigger generator 58 is configured to generate the trigger signal only when the trigger signal is generated by the current detector 5.
Set to operate when the output of 1 exceeds a certain threshold. Comparator 55 is for setting the threshold value.

上記の構成において、電流検出器51及び電圧検出器5
2の検出部としては通常のCTを用いる他に、ファラデ
効果を利用したYIG等の光学素子及び電気光学効果を
利用したBGO等の光学素子を用いてもよく、この場合
情報伝送路として光フアイバコードを用いることができ
る。検出部を光学系のみで構成することにより雷等の誘
導もなく信頼性に優れたものとなる。
In the above configuration, the current detector 51 and the voltage detector 5
In addition to using a normal CT as the detection section 2, an optical element such as YIG that uses the Faraday effect or an optical element such as BGO that uses the electro-optic effect may be used. In this case, an optical fiber is used as the information transmission path. Code can be used. By configuring the detection section only with an optical system, there is no induction of lightning or the like, resulting in excellent reliability.

以上述べた実施例は、地絡事故に対するものであるが、
相間短絡事故に対しても全く同様の原理で故障点標定が
可能である。即ち、第1図の構成ブロック中で電圧検出
器52の後段に相聞電位差計521を設け、第2図に示
す構成にして第1図の電圧検出部として用いればよい。
The embodiments described above are for ground fault accidents, but
Fault points can be located using exactly the same principle for phase-to-phase short circuit accidents. That is, a phase-to-phase potentiometer 521 may be provided after the voltage detector 52 in the configuration block of FIG. 1, and the configuration shown in FIG. 2 may be used as the voltage detection section of FIG. 1.

[発明の効果] 本発明によれば、故障相の電流及び電圧の位相差より故
障方向を標定すると同時に、電流及び電圧それぞれの絶
対値の比より標定点から故障点迄の距離も標定している
ため、高精度の標定が可能である。また、本発明に基づ
く故障方向標定装置は系統の各分校に高々1箇所設置す
れば充分であるから、従来の各鉄塔設置方式等に比べ、
長尺の伝送路を必要としないこと及び装置数が少なくて
よいことにより設備費が安く済む。
[Effects of the Invention] According to the present invention, the direction of the fault can be located based on the phase difference between the current and voltage of the faulty phase, and at the same time, the distance from the orientation point to the fault point can also be located based on the ratio of the absolute values of the current and voltage. Therefore, highly accurate orientation is possible. In addition, since it is sufficient to install the fault direction locating device based on the present invention at at most one location in each branch of the system, compared to the conventional method of installing each steel tower, etc.
Equipment costs are low because a long transmission line is not required and the number of devices is small.

本発明が長尺かつ分校の多い送電系統や、布設方式に変
化を持つ系統の故障点標定に利用された場合には、その
真髄が遺感なく発揮されるものと考える。
When the present invention is utilized for locating fault points in a long power transmission system with many branches, or in a system with varying installation methods, it is believed that its true essence will be clearly demonstrated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づく故障点標定装置の構成ブロック
図、第2図は相間短絡対応のための構成の部分説明図、
第3図は一回線送電系統モデル図。 第4図は■相地格事故の場合の事故電流事故電圧の分布
を示す線図である。 1・・・送?[l路、2・・・電   源。 51・・・電流検出器、52・・・電圧検出器。 522・・・相聞電位差計、53・・・位相差検出器。 54・・・インピーダンス計、55・・・コンパレータ
。 56・・・故障方向標定器、57・・・故障距離計。 58・・・トリが発生器、60・・・記 録 計。 代理人 弁理士 佐 藤 不二雄 第 1 凹 兜 21¥] 短 3 l 蔭4凹 手続補正書く方式)60.’、。、。3昭和   年 
  月   日
FIG. 1 is a block diagram of the configuration of a failure point locating device based on the present invention, and FIG. 2 is a partial explanatory diagram of the configuration for dealing with short circuits between phases.
Figure 3 is a model diagram of a single-line power transmission system. FIG. 4 is a diagram showing the distribution of fault current and fault voltage in the case of a phase fault. 1...Shipping? [l path, 2...power supply. 51... Current detector, 52... Voltage detector. 522... Phase difference potentiometer, 53... Phase difference detector. 54... Impedance meter, 55... Comparator. 56... Fault direction locator, 57... Fault distance meter. 58...The bird is the generator, 60...The recorder. Agent Patent Attorney Fujio Sato No. 1 Concave helmet 21 yen] Short 3 l Shadow 4 concave procedure amendment writing method) 60. ',. ,. 3rd Showa year
time

Claims (2)

【特許請求の範囲】[Claims] (1)送電線路の故障点を標定する方式において、多相
からなる送電線路任意位置から相電流及び相電圧を計測
し、故障相と判断された相に間し相電流と相電圧との位
相差を求め、その位相差より故障方向を標定すると同時
に、前記故障相の相電流及び相電圧の絶対値の比を求め
ることにより計測点から故障点迄の距離を標定すること
を特徴とする故障点標定方式。
(1) In the method of locating fault points on power transmission lines, phase currents and phase voltages are measured from any position on a power transmission line consisting of multiple phases, and the phase current and phase voltage are determined between the phases determined to be faulty phases. A fault characterized in that a phase difference is determined, a fault direction is located from the phase difference, and at the same time, a distance from a measurement point to a fault point is located by finding a ratio of the absolute values of the phase current and phase voltage of the faulty phase. Point orientation method.
(2)前記相電圧を計測した直後に該、相電圧を相間電
圧に変換し、前記相電流と該相間電圧を用いることを特
徴とする特許請求の範囲第1項記載の故障点標定方式。
(2) The fault point locating method according to claim 1, characterized in that immediately after measuring the phase voltage, the phase voltage is converted into an inter-phase voltage, and the phase current and the inter-phase voltage are used.
JP14540685A 1985-07-02 1985-07-02 Faulty point locating system Pending JPS626183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14540685A JPS626183A (en) 1985-07-02 1985-07-02 Faulty point locating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14540685A JPS626183A (en) 1985-07-02 1985-07-02 Faulty point locating system

Publications (1)

Publication Number Publication Date
JPS626183A true JPS626183A (en) 1987-01-13

Family

ID=15384517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14540685A Pending JPS626183A (en) 1985-07-02 1985-07-02 Faulty point locating system

Country Status (1)

Country Link
JP (1) JPS626183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262073A (en) * 1989-03-31 1990-10-24 Ngk Insulators Ltd Apparatus for detecting accident point of transmission line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262073A (en) * 1989-03-31 1990-10-24 Ngk Insulators Ltd Apparatus for detecting accident point of transmission line

Similar Documents

Publication Publication Date Title
US20240044965A1 (en) Parameter independent traveling wave-based fault location using unsynchronized measurements
CN106054023B (en) The method of two sides system impedance is estimated in a kind of transmission line of electricity single end distance measurement
Xinzhou et al. Optimizing solution of fault location
Hans et al. Identification of underground cable fault location and development
WO2019130126A1 (en) Parameter free identification of fault location in multi- terminal power transmission lines
Sain et al. Underground Cable Fault Distance Conveyed Over GSM
WO2019166903A1 (en) Method and device for fault location in a two-terminal transmission system
Han et al. Locating phase-to-ground short-circuit faults on radial distribution lines
Das et al. Review of fault location techniques for transmission and sub-transmission lines
Lee Development of an Accurate Transmission Line Fault Locator Using the Global Positioning System Satellites
JPS626183A (en) Faulty point locating system
da Cruz et al. A state estimation approach for fault location in transmission lines considering data acquisition errors and non-synchronized records
EP3767314B1 (en) Fault location in an hvdc system
Jamali et al. Fault location on transmission line using high frequency travelling waves
WO2022058410A1 (en) Fault location determination in a power transmission system
de Freitas A brief history of fault location in transmission lines
JPS6198119A (en) Device for standardizing trouble point
Anierobi et al. Review of Impedance-Based Fault Location Algorithm in Electric Power Transmission Line, using computerized fault recorders.
JPH0345345B2 (en)
JPS628070A (en) Failure orientation system
Bello et al. A Comparative Study of Different Traveling Wave Fault Location Techniques
JPS628068A (en) System for locating troubled point direction
Haleem et al. A single pole to ground fault location method for HVDC transmission lines based on coupling characteristics
Das Estimating locations of shunt faults on distribution lines
JPS628069A (en) Failure orientation system