JPS6261694A - Electrodyalitic method for desalting seawater - Google Patents

Electrodyalitic method for desalting seawater

Info

Publication number
JPS6261694A
JPS6261694A JP60200504A JP20050485A JPS6261694A JP S6261694 A JPS6261694 A JP S6261694A JP 60200504 A JP60200504 A JP 60200504A JP 20050485 A JP20050485 A JP 20050485A JP S6261694 A JPS6261694 A JP S6261694A
Authority
JP
Japan
Prior art keywords
seawater
electrodialysis
preheated
solar cell
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60200504A
Other languages
Japanese (ja)
Inventor
Kiyoshi Furukawa
清 古川
Yasuharu Osawa
大沢 泰晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP60200504A priority Critical patent/JPS6261694A/en
Publication of JPS6261694A publication Critical patent/JPS6261694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To reduce electric energy to a large extent, by using a solar cell in a part of the power source of an electrodyalitic cell and preheating supplied seawater by a heat exchanger and a solar heater. CONSTITUTION:Seawater is guided to the cooler 10 for a solar cell 9 through a conduit 12 by a main pump to cool the solar cell 9 and preheated. The preheated seawater is guided to a heat exchanger 14 through a branched pipe 12a and further preheated through the heat-exchange with the high temp. fresh water discharged from an electrodyalitic cell 1. The preheated seawater is guided to a solar heater 11 and further preheated to 40-60 deg.C to be supplied to the electrodyalitic cell 1 and electrodyalized by the DC current obtained by utilizing the solar cell 9 as a part of a power source while fresh water is discharged through a conduit. By this method, installation cost and operation cost can be reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、電気透析法による海水淡水化方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a seawater desalination method using electrodialysis.

〔従来技術とその問題点〕[Prior art and its problems]

膜を使用した海水淡水化方法として、逆浸透法と電気透
析法とが知られている。逆浸透法は、海水を、1001
1/d程度の圧力で逆浸透膜に透過させることにより淡
水を得る方法である。しかしながらこの方法は、海水中
に含有されている水あかや微生物のこけ等によって、逆
浸透膜に目詰りが生ずることを防止するために、海水の
複雑な前処理が必要であり、取扱いが難しい上に、前処
理設備等により設備費が高価になる間層がある。
Reverse osmosis and electrodialysis are known as seawater desalination methods using membranes. The reverse osmosis method uses seawater to 1001
This is a method of obtaining fresh water by permeating it through a reverse osmosis membrane at a pressure of about 1/d. However, this method requires complicated pretreatment of the seawater in order to prevent the reverse osmosis membrane from clogging due to water scale and microbial moss contained in the seawater, and is difficult to handle. However, there is an intermediate layer where equipment costs are high due to pre-treatment equipment, etc.

電気透析法は、陽イオン交換膜と陰イオン交換膜とが交
互に並べられた電気透析槽内に海水を通し、これに直流
電流を通じ塩類の構成イオンを膜を透過させて除去する
ことにより淡水を得る方法である。この方法によれば、
逆浸透法のような海水の複雑な前処理は必要としないが
、一方、逆浸透性に比して多量の電力を必要とする問題
があり、実用的には、塩分(TDS)が1000〜20
00ppm程度の比較的低濃度の海水を200 ppm
程度に淡水化する場合に使用されている。
In the electrodialysis method, seawater is passed through an electrodialysis tank in which cation-exchange membranes and anion-exchange membranes are arranged alternately, and a direct current is applied to the tank to remove constituent ions of salts through the membrane. This is the way to obtain. According to this method,
Although it does not require complicated pretreatment of seawater like reverse osmosis, there is a problem in that it requires a large amount of electricity compared to reverse osmosis. 20
Seawater with a relatively low concentration of about 00ppm to 200ppm
It is used for desalination to a certain degree.

〔発明の目的〕[Purpose of the invention]

従って、この発明の目的は、電気透析法によって、塩分
(TDS’)が約30,000 ppm以上の高濃度の
海水を、多量の電力を必要とすることなく、経済的に淡
水化するための方法を提供することにある。
Therefore, the purpose of this invention is to provide a method for economically desalinating seawater with a high concentration of salinity (TDS') of approximately 30,000 ppm or more by electrodialysis without requiring a large amount of electricity. The purpose is to provide a method.

〔発明の概要〕[Summary of the invention]

この発明は、陽イオン交換膜および陰イオン交換膜を有
する電気透析槽内に海水を導き、前記電気透析槽内に設
けられた陽極および陰極を介して、前記海水に直流電流
を流し、海水中の塩分を前記陽イオン交換膜および前記
陰イオン交換膜によって除去する電気透析式海水淡水化
方法において、前記直流電流の電源の一部として太陽電
池を使用し、且つ、前記電気透析槽に導かれる海水を、
前記電気透析槽から排出された高温の淡水と熱交換し、
更に、前記電気透析槽の入側に設けられた太陽加温器に
よって予熱することに特徴を有するものである。
This invention introduces seawater into an electrodialysis tank having a cation exchange membrane and an anion exchange membrane, and passes a direct current through the seawater through an anode and a cathode provided in the electrodialysis tank. In an electrodialysis seawater desalination method in which salt is removed by the cation exchange membrane and the anion exchange membrane, a solar cell is used as a part of the power source for the direct current, and the direct current is guided to the electrodialysis tank. sea water,
exchanging heat with high temperature fresh water discharged from the electrodialysis tank,
Furthermore, the electrodialysis tank is characterized in that preheating is performed by a solar heater provided on the entrance side of the electrodialysis tank.

〔発明の構成〕[Structure of the invention]

次に1この発明を図面を参照しながら説明する。 Next, 1 this invention will be explained with reference to the drawings.

第1図はこの発明の一実施態様を示す要部の説明図であ
る。図面に示すように、電気透析槽1は、槽体1a内に
交互に並べられた、耐高温性を有する所定間隔をあけた
陽イオン交換膜2および陰イオン交換膜3と、陽イオン
交換膜2および陰イオン交換膜3の各々の外側に配置さ
れた陽極4および陰極5からなっている。
FIG. 1 is an explanatory diagram of essential parts showing one embodiment of the present invention. As shown in the drawing, the electrodialysis tank 1 includes cation exchange membranes 2 and anion exchange membranes 3, which are high temperature resistant and are arranged alternately at a predetermined interval in a tank body 1a, and a cation exchange membrane 3. 2 and an anion exchange membrane 3, respectively.

陽極4および陰極5の各々は、導線8a。Each of the anode 4 and the cathode 5 is a conductive wire 8a.

8bKよってバッテリー6のプラス極およびマイナス極
に接続されている。7はバッテリー6に充電するための
充電器である。
8bK is connected to the positive and negative electrodes of the battery 6. 7 is a charger for charging the battery 6.

バッテリー6のプラス極には太陽電池9のマイナス極が
導線10aによって接続されており、バッテリー6のマ
イナス極には太陽電池9のグラス極が導線10bによっ
て接続されている。1oは太陽電池9を冷却するための
冷却器である。
The negative pole of the solar cell 9 is connected to the positive pole of the battery 6 by a conductive wire 10a, and the glass pole of the solar cell 9 is connected to the negative pole of the battery 6 by a conductive wire 10b. 1o is a cooler for cooling the solar cell 9.

海水を電気透析槽1に導くための導管12は、その途中
において太陽電池冷却器10に接続されており、太陽電
池冷却器10の出側の導管12の途中には、太陽加温器
11が設けられている。電気透析槽1から排出された高
温の淡水を導く導管13の途中には、熱交換器14が設
けられている。
A conduit 12 for guiding seawater to the electrodialysis tank 1 is connected to a solar cell cooler 10 in the middle, and a solar warmer 11 is connected in the middle of the conduit 12 on the outlet side of the solar cell cooler 10. It is provided. A heat exchanger 14 is provided in the middle of a conduit 13 that guides the high temperature fresh water discharged from the electrodialysis tank 1.

熱交換器14には、海水を太陽電池冷却器10を経ずに
太陽加温器11に導くための、導管12から分岐した分
岐管12aが通っており、前記電気透析槽1から導!’
13を通って排出された約40〜60℃の温度の高温の
淡水によって、海水は予熱される。
A branch pipe 12a branched from the conduit 12 passes through the heat exchanger 14 to lead the seawater to the solar warmer 11 without passing through the solar cell cooler 10. '
The seawater is preheated by hot fresh water with a temperature of approximately 40-60°C discharged through 13.

第2図はこの発明の一実施態様を示す系統図である。第
2図において、12b、12cは、電気透析槽l内にお
ける通電性を向上させ且つ陽イオン交換膜2および陰イ
オン交換M3を保護するために、海水を直接電気透析槽
IK導くための、導管12から分岐した分岐管であり、
15は、導管12bを通って導かれた海水を、電気透析
槽lに循環させるための、その途中に循環ポンプ16を
有する循環導管である。17は電気透析槽1において海
水中から分離された塩分の多い19(水を排出するため
の導管であり、18は前記減水の一部を電気透析槽1に
循環させるための、その途中に循環ポン7’19を有す
る循環導管である。20は電気透析槽1の入側の導管1
2の途中に設けられたカートリッジフィルターであり、
21は各導管の途中に設けられた可変パルプ、22は同
じく開閉パルプ、23は同じく流量調整パルプ、24は
導管12の途中に設けられた主ポンプである。
FIG. 2 is a system diagram showing one embodiment of the present invention. In FIG. 2, 12b and 12c are conduits for directly guiding seawater to the electrodialysis tank IK in order to improve the conductivity in the electrodialysis tank I and protect the cation exchange membrane 2 and anion exchange M3. It is a branch pipe branching from 12,
Reference numeral 15 denotes a circulation conduit having a circulation pump 16 in the middle thereof for circulating the seawater led through the conduit 12b to the electrodialysis tank l. 17 is a conduit for discharging salt-rich water 19 (water) separated from seawater in the electrodialysis tank 1; 18 is a conduit for circulating a part of the reduced water to the electrodialysis tank 1; 20 is a circulation conduit having a pump 7'19.
It is a cartridge filter installed in the middle of 2.
21 is a variable pulp provided in the middle of each conduit, 22 is an opening/closing pulp, 23 is a flow rate adjusting pulp, and 24 is a main pump provided in the middle of the conduit 12.

海水は1主ポンプ24により、導管12を通り太陽電池
用冷却器10VC導かれて太陽電池を冷却すると共に予
熱され、また、分岐管12aを通り熱交換器14に導か
れて電気透析槽1から排出された高温の淡水と熱交換さ
れ予熱される。
The seawater is guided by a main pump 24 through a conduit 12 to a solar cell cooler 10 VC to cool and preheat the solar cells, and is also led to a heat exchanger 14 through a branch pipe 12a to be removed from the electrodialysis tank 1. It is preheated by heat exchange with the discharged high temperature fresh water.

このようにして予熱された海水は、太陽加温器11に導
かれて更に予熱され、約40〜60℃の温度に昇温され
た上、電気透析槽1に供給される。
The seawater thus preheated is led to the solar warmer 11 where it is further preheated, raised to a temperature of about 40 to 60°C, and then supplied to the electrodialysis tank 1.

電気透析槽1に供給された上記海水は、太陽電池9をm
源の一部とする直流電流によって電気透析され、塩分が
分離されて淡水となり、導管13を通って排出される。
The seawater supplied to the electrodialysis tank 1
It is electrodialyzed by direct current as part of the source, and the salts are separated into fresh water, which is discharged through conduit 13.

一方、電気透析槽1によって分離された塩分の多いl’
、:<水は、導管17を通って排出される。
On the other hand, the salt-rich l' separated by the electrodialysis tank 1
, :<The water is discharged through conduit 17.

なお、各導管に海水を流すためのポンプ等の駆動用直流
モータの電源として、その一部または全部に太陽電池9
を使用してもよい。
In addition, as a power source for the driving DC motor of the pump etc. for flowing seawater through each conduit, a part or all of it is equipped with a solar battery 9.
may be used.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明によれば、電気透析槽の電
源の一部に太陽電池を使用し、且つ、電気透析槽内に供
給される海水は熱交換器、太陽加温器等で予熱されてい
るから、電気透析槽1において電気透析のために必要と
される電力量を大幅に低減することができ、塩分(TD
S)が30,000ppm以上の海水から、500 p
pm以下の淡水を経済的に製造することができる。また
、海水の前処理は濾過のみでよいから、逆浸透法の場合
に比べて、海水の前処理に要する設備費およびその運転
費を約50%以下に低減でき、更に、その操作も簡単で
ある等、多くの優れた効果がもたらされる。
As described above, according to the present invention, a solar cell is used as a part of the power source of the electrodialysis tank, and the seawater supplied into the electrodialysis tank is preheated by a heat exchanger, a solar heater, etc. Therefore, the amount of electricity required for electrodialysis in the electrodialysis tank 1 can be significantly reduced, and the amount of salt (TD
S) from seawater with 30,000 ppm or more, 500 p
Fresh water below pm can be produced economically. In addition, since seawater pretreatment requires only filtration, the equipment costs and operating costs required for seawater pretreatment can be reduced to approximately 50% or less compared to reverse osmosis, and furthermore, the operation is simple. Many excellent effects are brought about.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施態様を示す要部の説明図、第
2図は同じく系統図である。図面において、 1・・・電気透析槽、   1a・・・槽体、2・・・
陽イオン交換膜、3・・・陰イオン交換膜、4・・・陽
極、      5・・・陰極、6・・・バッテリー、
   7・・・充N器、9・・・太陽電池、   10
・・・太陽電池冷却器、11・・・太陽加温器、  1
4・・・熱交換器、16.19・・・循環ポンプ、 20・・・カートリッジフィルター、 21・・・可変バルブ、 22・・・開閉バルブ、23
・・・流量調整用バルブ、 24・・・主Iンゾ。
FIG. 1 is an explanatory diagram of essential parts showing one embodiment of the present invention, and FIG. 2 is a system diagram. In the drawings, 1... Electrodialysis tank, 1a... Tank body, 2...
Cation exchange membrane, 3... Anion exchange membrane, 4... Anode, 5... Cathode, 6... Battery,
7...N charger, 9...Solar battery, 10
...Solar cell cooler, 11...Solar warmer, 1
4... Heat exchanger, 16.19... Circulation pump, 20... Cartridge filter, 21... Variable valve, 22... Open/close valve, 23
...Flow rate adjustment valve, 24...Main inlet.

Claims (1)

【特許請求の範囲】 陽イオン交換膜および陰イオン交換膜を有する電気透析
槽内に海水を導き、前記電気透析槽内に設けられた陽極
および陰極を介して、前記海水に直流電流を流し、海水
中の塩分を前記陽イオン交換膜および前記陰イオン交換
膜によつて除去する電気透析式海水淡水化方法において
、 前記直流電流の電源の一部として太陽電池を使用し、且
つ、前記電気透析槽に導かれる海水を、前記電気透析槽
から排出された高温の淡水と熱交換し、更に、前記電気
透析槽の入側に設けられた太陽加温器によつて予熱する
ことを特徴とする電気透析式海水淡水化方法。
[Scope of Claims] Seawater is introduced into an electrodialysis tank having a cation exchange membrane and an anion exchange membrane, and a direct current is passed through the seawater through an anode and a cathode provided in the electrodialysis tank, In an electrodialysis seawater desalination method for removing salt in seawater using the cation exchange membrane and the anion exchange membrane, a solar cell is used as a part of the power source for the direct current, and the electrodialysis The seawater introduced into the tank is heat-exchanged with high-temperature fresh water discharged from the electrodialysis tank, and is further preheated by a solar heater installed on the inlet side of the electrodialysis tank. Electrodialysis seawater desalination method.
JP60200504A 1985-09-12 1985-09-12 Electrodyalitic method for desalting seawater Pending JPS6261694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60200504A JPS6261694A (en) 1985-09-12 1985-09-12 Electrodyalitic method for desalting seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60200504A JPS6261694A (en) 1985-09-12 1985-09-12 Electrodyalitic method for desalting seawater

Publications (1)

Publication Number Publication Date
JPS6261694A true JPS6261694A (en) 1987-03-18

Family

ID=16425413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60200504A Pending JPS6261694A (en) 1985-09-12 1985-09-12 Electrodyalitic method for desalting seawater

Country Status (1)

Country Link
JP (1) JPS6261694A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255987A (en) * 2000-12-27 2002-09-11 Pigeon Corp Cell active substance, method for producing the same, medicine and cosmetic containing the cell active substance
WO2010122989A1 (en) * 2009-04-21 2010-10-28 国立大学法人東北大学 Electrodialyzer
JP2010264385A (en) * 2009-05-14 2010-11-25 Tohoku Univ Electrodialyzer
CN110357195A (en) * 2018-03-26 2019-10-22 钱家振 A kind of desalination plant using solar energy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255987A (en) * 2000-12-27 2002-09-11 Pigeon Corp Cell active substance, method for producing the same, medicine and cosmetic containing the cell active substance
WO2010122989A1 (en) * 2009-04-21 2010-10-28 国立大学法人東北大学 Electrodialyzer
JP2010264385A (en) * 2009-05-14 2010-11-25 Tohoku Univ Electrodialyzer
CN110357195A (en) * 2018-03-26 2019-10-22 钱家振 A kind of desalination plant using solar energy

Similar Documents

Publication Publication Date Title
CN107089753B (en) The processing method of power plant desulfurization wastewater
KR101632685B1 (en) Hybrid system for accomplishing selectively electrodialysis reversal and reverse electrodialysis
CN102267747B (en) Electrodialysis concentration salt-making device
Geraldes et al. Process water recovery from pulp bleaching effluents by an NF/ED hybrid process
JPS6261694A (en) Electrodyalitic method for desalting seawater
CN205773544U (en) A kind of novel homogeneous EDBM equipment containing heat sink
CN107108278A (en) The method and system of water purifying is permeated for Driven by Solar Energy
CN108597636A (en) A kind of method and system of film distillation technology processing radioactive wastewater
CN210385508U (en) Membrane electrodialysis apparatus
JP2005144301A (en) Desalting apparatus and desalting method
Solt et al. Electrodialysis
CN202186914U (en) Evaporation-free salt maker
JPS6359725B2 (en)
JPS6336893A (en) Method for operating desalination apparatus by means of electrodialysis
CN215506353U (en) Equipment for preheating raw water by using heat of reverse osmosis system
JPS59154187A (en) Desalting method utilizing waste heat of diesel engine
CN214422446U (en) Novel integrated system for desalting bitter water
CN213506121U (en) Full-automatic crystallization desalination device
Korngold Electrodialysis unit: Optimization and calculation of energy requirement
CN210736429U (en) Resourceful coupling integrated system for salt-containing wastewater
CN208087281U (en) A kind of recirculated cooling water electric desalting apparatus
JPS61114704A (en) Desalting apparatus by electrodialytic method
LU502575B1 (en) System and method for extracting pure water and concentrating and desalinating seawater
JP3707940B2 (en) Condensate treatment system and condensate treatment method
EP3870344A1 (en) High recovery electrodialysis method