JPS626168B2 - - Google Patents

Info

Publication number
JPS626168B2
JPS626168B2 JP13891781A JP13891781A JPS626168B2 JP S626168 B2 JPS626168 B2 JP S626168B2 JP 13891781 A JP13891781 A JP 13891781A JP 13891781 A JP13891781 A JP 13891781A JP S626168 B2 JPS626168 B2 JP S626168B2
Authority
JP
Japan
Prior art keywords
flow rate
flow
signal
liquid
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13891781A
Other languages
Japanese (ja)
Other versions
JPS5839912A (en
Inventor
Masaji Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tominaga Manufacturing Co
Original Assignee
Tominaga Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tominaga Manufacturing Co filed Critical Tominaga Manufacturing Co
Priority to JP13891781A priority Critical patent/JPS5839912A/en
Publication of JPS5839912A publication Critical patent/JPS5839912A/en
Publication of JPS626168B2 publication Critical patent/JPS626168B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 本発明は複数の流量計を並列に配備することに
よつて、単一の流量計では計量不可能な大流量を
計量するようになした流量測定装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow rate measuring device that measures a large flow rate that cannot be measured with a single flow meter by arranging a plurality of flow meters in parallel. .

この種の流量測定装置において、すでに通液を
許容される流量計の数を流量に応じて自動的に変
更するものが提案されている。しかしこれらはた
とえば小流量時用(A)、中流量時用(B)、大流量時用
(C)の流量計が決つており、小流量時には(A)のみ、
中流量時には(A)と(B)、大流量時には(A)と(B)と(C)が
それぞれ通液されるようになつている為、(C)より
も(B)がさらに(B)よりも(A)の流量計が良く利用され
るので(A)の流量計に至つては流量に無関係に常時
通液されるため、構成部品の機械的な摩耗が著し
いといつた欠点があつた。
Among this type of flow rate measurement devices, one has already been proposed that automatically changes the number of flowmeters that are allowed to pass liquid in accordance with the flow rate. However, these are for example for small flow rate (A), medium flow rate (B), and high flow rate.
The flowmeter (C) is fixed, and when the flow rate is small, only (A) is used.
At medium flow rates, (A) and (B) are passed through, and at high flow rates, (A), (B), and (C) are passed through, so (B) is more concentrated than (C). Flowmeters in (A) are more commonly used than those in (A), and as flowmeters in (A) constantly pass liquid regardless of the flow rate, they have the disadvantage of significant mechanical wear on their component parts. It was hot.

本発明は前記欠点を解決する為に提案するもの
で、同一能力の流量計を複数個使用して、流量に
無関係に通液される流量計をポンプ装置の付勢あ
るいは消勢に関連して順次変更させるようにし、
特定の流量計のみが極端に摩耗するのを防止した
ものである。
The present invention is proposed in order to solve the above-mentioned drawbacks, and uses a plurality of flowmeters with the same capacity, and allows the flowmeter to pass liquid regardless of the flow rate to be connected to the energization or deenergization of the pump device. Make sure to change them sequentially,
This prevents only certain flowmeters from becoming extremely worn out.

以下図示実施例を説明すると、Pは管路Cに挿
設されたポンプでモーターMによつて回転駆動さ
れれて貯液槽(図示略)などに貯めた液を汲み出
し後述する流量計へ圧送する。
To explain the illustrated embodiment below, P is a pump inserted in a pipe line C, which is rotationally driven by a motor M to pump out liquid stored in a liquid storage tank (not shown), etc., and forcefully send it to a flow meter to be described later. do.

F1,F2,F3はそれぞれ能力の同じ流量計で、
管路Cに並列配備され、各流量計F1,F2,F3
よる計量値は、各パルス発信器G1,G2,G3から
計量値に対応するパルスg1,g2,g3の数に変換さ
れて出力される。V1,V2,V3はそれぞれ電磁弁
のような弁を示し、後述する信号v1,v2,v3を受
けて開あるいは閉動作され、開の時のみおのおの
直列に接続した各流量計への通液が許容される。
F 1 , F 2 , and F 3 are flowmeters with the same capacity,
The measured values by the flowmeters F 1 , F 2 , F 3 are arranged in parallel in the conduit C, and the measured values from the respective pulse transmitters G 1 , G 2 , G 3 are transmitted by pulses g 1 , g 2 , g corresponding to the measured values. It is converted to the number 3 and output. V 1 , V 2 , and V 3 each indicate a valve such as a solenoid valve, which is opened or closed in response to signals v 1 , v 2 , and v 3 described later, and only when open, each of the flow rates connected in series is Allows fluid to flow through the meter.

Nは管路Cの先端に設けたノズルで、その操作
レバーN′を操作することによつて被給液槽(図
示略)への給液速度(流量)を調節する。
N is a nozzle provided at the tip of the conduit C, and by operating its operating lever N', the speed (flow rate) of liquid supplied to the liquid tank (not shown) is adjusted.

1は計数回路で、各パルス発信器G1,G2,G3
からら出力されるパルスg1,g2,g3の数を積算計
数して、その計数値を表示器駆動回路2を介して
表示器3へ出力し、各流量計F1,F2,F3が計量
した計量値の合計として数値表示させる。
1 is a counting circuit, and each pulse oscillator G 1 , G 2 , G 3
The number of pulses g 1 , g 2 , g 3 outputted from the flowmeters F 1 , F 2 , Display the numerical value as the sum of the weight values measured by F3 .

4は判定回路で、各パルスg1,g2,g3の一定時
間(たとえば1秒間)毎の合計を計数することに
よつて、単位時間当りの流量を判定し、その判定
結果を判定信号d,d′,d″として弁制御回路5へ
与える。判定回路4の判定内容および、判定信号
d,d′,d″については後述する。
4 is a determination circuit that determines the flow rate per unit time by counting the sum of each pulse g 1 , g 2 , g 3 every fixed time (for example, 1 second), and outputs the determination result as a determination signal. d, d', d'' to the valve control circuit 5. The determination contents of the determination circuit 4 and the determination signals d, d', d'' will be described later.

弁制御回路5は、この判定信号d,d′,d″を受
けて弁制御信号v1,v2,v3を各弁V1,V2,V3
与えて弁を開動作させる。
The valve control circuit 5 receives the determination signals d, d', d'' and applies valve control signals v 1 , v 2 , v 3 to each valve V 1 , V 2 , V 3 to open the valve.

6はモーター起動用のスイツチで、手動操作さ
れ、ONの時その出力信号eがHigh(H)OFFの時間
Low(L)となり、信号eがHの時モーター制御回路
7をしてモーターMを付勢させてポンプPを回転
駆動させ、信号eがLの時、モーターMを消勢さ
せる。
6 is a switch for starting the motor, which is manually operated, and when it is ON, the output signal e is High (H) and OFF.
When the signal e is low (L), the motor control circuit 7 energizes the motor M to rotate the pump P, and when the signal e is low, the motor M is deenergized.

なお、信号eのH→Lによつて切換信号発生回
路8は切換信号fを出力して弁制御回路5に常時
開の弁V1,V2又はV3の切換を指示し、L→Hに
よつて計数回路1の計数値が帰零させる。
In addition, in response to the change of the signal e from H to L, the switching signal generation circuit 8 outputs the switching signal f to instruct the valve control circuit 5 to switch the normally open valves V 1 , V 2 or V 3 , and the switching signal e changes from L to H. As a result, the count value of the counting circuit 1 returns to zero.

以上が構成の概略であるが、ここで第2図にも
とずいて流量計を複数個並列に接続して使用する
場合の利点や欠点について述べる。
The above is an outline of the configuration, and now, based on FIG. 2, the advantages and disadvantages of using a plurality of flowmeters connected in parallel will be described.

第2図は流量計の使用可能な最大流量を100%
とした時の各流量における器差曲線hの変化を示
しており、一個の流量計の前記最大流量が100
/minであると仮定すると、実際に使用可能な
最低流量は20/minとなり、それ以下の流量で
は計量値に大きな狂いが生じてしまう。
Figure 2 shows the maximum usable flow rate of the flowmeter at 100%.
It shows the change in the instrumental error curve h at each flow rate when the maximum flow rate of one flowmeter is 100
/min, the lowest flow rate that can actually be used is 20/min, and a flow rate lower than that will cause a large deviation in the measured value.

しかし、1個の流量計では100/minまでし
か計量できないので、流量計を3個並列に接続す
ると使用可能な最大流量を300/minまで引き
上げることができるが、そのままでは使用可能な
最低流量は20×3=60/minとなり小流量測定
時に不都合を生じてしまう。
However, one flowmeter can only measure up to 100/min, so if you connect three flowmeters in parallel, you can increase the maximum usable flow rate to 300/min, but the minimum usable flow rate is 20×3=60/min, which causes inconvenience when measuring small flow rates.

又、各流量計を最大流量で使用することは実際
上好ましくないので、たとえば流量が0〜60/
min(小流量)の時1個の流量計を使用し、61〜
120/min(中流量)の時2個の流量計を、121
/minを超える(大流量)時3個の流量計を全
て使用して計量を行なうように構成している。
Also, since it is practically undesirable to use each flowmeter at the maximum flow rate, for example, when the flow rate is 0 to 60/
min (small flow rate), use one flowmeter, 61~
At 120/min (medium flow rate), two flowmeters, 121
The configuration is such that all three flowmeters are used for measurement when the flow rate exceeds /min (large flow rate).

次に第1図に戻つて第2図について説明した例
にもとずいて詳細に説明すると、判定回路4は前
記したようにパルスg1,g2,g3の単位時間当りの
数を計数して小流量に該当すると判定した時には
信号dを、中流量に該当すると判定した時には信
号dに加える信号d′を、大流量に該当すると判定
した時にはさらに信号d″をも出力して弁制御回
路5へ与える。弁制御回路5は信号dの入力によ
つて信号v1を出力して弁V1を開とし、信号d′の入
力によつて信号v2を出力して弁V2を開とし、信
号d″の入力によつて信号v3を出力して弁V3を開
とする。
Next, returning to FIG. 1 and explaining in detail based on the example explained in FIG. 2, the determination circuit 4 counts the number of pulses g 1 , g 2 , g 3 per unit time as described above. When it is determined that the flow rate corresponds to a small flow rate, the signal d is added to the signal d, and when it is determined that the flow rate is a medium flow rate, a signal d' is added to the signal d.When it is determined that the flow rate is a large flow rate, a signal d'' is also output to control the valve. The valve control circuit 5 outputs the signal v 1 to open the valve V 1 in response to the input of the signal d, and outputs the signal v 2 to open the valve V 2 in response to the input of the signal d'. The valve V 3 is opened by outputting the signal v 3 in response to the input of the signal d″.

よつて、判定回路4の判定によつて小流量時に
流量計F1が、中流量時に流量計F1およびF2が、
大流量時に流量計F1,F2およびF3がそれぞれ通
液されることになる。なお、大流量から中流量へ
流量が低下すると信号d″が消失し、さらに中流
量から小流量への流量低下で信号d′が消失し、こ
れを受けて弁制御回路5の出力もv3がさらにv2
消失して弁V3さらにV2が閉じられ、通液される
流量計の数を減じる。
Therefore, according to the judgment of the judgment circuit 4, the flowmeter F 1 is set at a small flow rate, and the flowmeters F 1 and F 2 are set at a medium flow rate.
When the flow rate is large, the flowmeters F 1 , F 2 and F 3 will each be supplied with liquid. Note that when the flow rate decreases from a large flow rate to a medium flow rate, the signal d'' disappears, and when the flow rate further decreases from a medium flow rate to a small flow rate, the signal d' disappears, and in response to this, the output of the valve control circuit 5 also becomes v 3 In addition, v 2 disappears and valve V 3 and V 2 are closed, reducing the number of flowmeters that are flowed.

一方、切換信号発生回路8は信号eがH→Lと
なる毎に信号fを1回(ワンパルス)出力し、弁
制御回路5へ与えているが、弁制御回路5では信
号fの入力によつて小流時、中流時、大流時の出
力信号を変更する。すなわち、弁制御回路5は現
在、前記したように、小流量時(信号dの入力
時)に信号v1を、中流量時(信号d,d′の入力
時)に信号v1,v2を、大流量時(信号d,d′,
d″の入力時)に信号v1,v2,v3をそれ出力してい
るが、ここで信号fが1回入力されると、小流時
に信号v2が、中流時に信号v2,v3が、大流時に信
号v2,v3,v1が出力され、さらに信号fがもう1
回入力されると小流時に信号v3が、中流時に信号
v3,v1が、大流時に信号v3,v1,v2が出力され、
次の信号fの入力によつて元の状態に一巡して戻
ることになる。
On the other hand, the switching signal generation circuit 8 outputs the signal f once (one pulse) every time the signal e changes from H to L, and supplies it to the valve control circuit 5. This changes the output signal when the flow is small, medium, or large. That is, as described above, the valve control circuit 5 currently outputs the signal v 1 when the flow rate is small (when the signal d is input), and the signals v 1 and v 2 when the flow rate is medium (when the signals d and d ' are input). , at large flow rate (signals d, d′,
The signals v 1 , v 2 , v 3 are output when the current is input (d''), but when the signal f is input once, the signal v 2 is output when the flow is small, and the signals v 2 , v 2 when the flow is midstream. When v 3 is a large flow, signals v 2 , v 3 , v 1 are output, and further signal f is output.
When input twice, signal V 3 is generated when the flow is small, and signal V 3 when the flow is medium.
When v 3 , v 1 is large, signals v 3 , v 1 , v 2 are output,
When the next signal f is input, the state returns to the original state.

なお、本実施例では、切換信号発生回路8は信
号eのH→Lで信号fを出力するようにしている
が、信号eのL→Hで出力するようにも出来、並
列使用する流量計の数も3個に限定されるもので
はない。
In this embodiment, the switching signal generating circuit 8 outputs the signal f when the signal e changes from H to L, but it can also output the signal f when the signal e changes from L to H. The number of is also not limited to three.

以上詳述したように構成したので各流量計が平
均に通液され、特定の流量計のみが酷使され、寿
命を著しく短縮されるといつた弊害を有効に防止
でき、同一能力の流量計を使用しているので、計
量値にバラツキがなくメンテナンスも容易に行な
えるものである。
With the configuration described in detail above, each flowmeter passes liquid evenly, effectively preventing problems such as only a specific flowmeter being overworked and significantly shortening its life. Since it is used, there is no variation in measured values and maintenance is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる管路と各制御回路をブ
ロツク図で示したもので、第2図は流量計の使用
可能な最大流量を100%とした場合の各流量にお
ける器差の変化を示した図である。 1……計数回路、3……表示器、4……判定回
路、5……弁制御回路、6……スイツチ、8……
切換信号発生回路、V1,V2,V3……弁、F1
F2,F3……流量計、P……ポンプ、N……ノズ
ル。
Figure 1 shows a block diagram of the pipe line and each control circuit according to the present invention, and Figure 2 shows the change in instrumental error at each flow rate when the maximum usable flow rate of the flowmeter is 100%. FIG. 1... Counting circuit, 3... Display, 4... Judgment circuit, 5... Valve control circuit, 6... Switch, 8...
Switching signal generation circuit, V 1 , V 2 , V 3 ... valve, F 1 ,
F 2 , F 3 ...flow meter, P ... pump, N ... nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 流路に複数個の流量計を並列に、又、各流量
計への通液を制限あるいは許容ならしめる弁をそ
れぞれ配備し、流液の流量の大小に応じて前記弁
を駆動させ通液が許容されるべき流量計の数を制
御するようになすとともに、各流量計へ送液する
ポンプ装置を備えた流量測定装置において、前記
複数の流量計を全て同一能力のものを使用すると
ともに、流量の大小に応じて各弁へ出力される弁
駆動信号の出力順位が前記ポンプ装置の付勢ある
いは消勢をつかさどるモーター制御信号の出力に
関連して出力される切換信号の入力により順次変
更される弁制御回路を含んで構成されたことを特
徴とする流量測定装置。
1 A plurality of flowmeters are arranged in parallel in the flow path, and valves are provided to restrict or allow the flow of liquid to each flowmeter, and the valves are driven according to the magnitude of the flow rate of the liquid to pass the liquid. controls the number of flow meters that should be allowed, and in the flow measurement device equipped with a pump device for sending liquid to each flow meter, all of the plurality of flow meters are of the same capacity, The output order of the valve drive signals output to each valve according to the magnitude of the flow rate is sequentially changed by the input of the switching signal output in connection with the output of the motor control signal that controls energization or deenergization of the pump device. 1. A flow rate measuring device comprising a valve control circuit.
JP13891781A 1981-09-02 1981-09-02 Flow rate measuring device Granted JPS5839912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13891781A JPS5839912A (en) 1981-09-02 1981-09-02 Flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13891781A JPS5839912A (en) 1981-09-02 1981-09-02 Flow rate measuring device

Publications (2)

Publication Number Publication Date
JPS5839912A JPS5839912A (en) 1983-03-08
JPS626168B2 true JPS626168B2 (en) 1987-02-09

Family

ID=15233158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13891781A Granted JPS5839912A (en) 1981-09-02 1981-09-02 Flow rate measuring device

Country Status (1)

Country Link
JP (1) JPS5839912A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466525U (en) * 1990-10-19 1992-06-11
JP2010185889A (en) * 2010-06-02 2010-08-26 Panasonic Corp Device for measuring flow rate

Also Published As

Publication number Publication date
JPS5839912A (en) 1983-03-08

Similar Documents

Publication Publication Date Title
US3831812A (en) Fluid dispensing system
US3410293A (en) In-line blending
JPH0574008B2 (en)
AU685461B2 (en) Fluid dosing arrangement and beverage dispensing system provided with such a dosing arrangement
JPS6348550B2 (en)
US3555901A (en) Method of and apparatus for measuring varying fluid flow
US6253779B1 (en) Blending system and method using an auxiliary measuring device
US3474815A (en) Fluid proportioning and blending system
US4093871A (en) Correction circuit
JPS626168B2 (en)
US3665959A (en) Pressure regulating and reducing gas-flow meter for industrial installations
JPH0442274B2 (en)
US3029637A (en) Flowmeters
US4838261A (en) Gas metering arrangement
JPS6154674B2 (en)
US3589389A (en) Method and system for maintaining equal and continuous flows of liquid to and from intermittently operating apparatus
US3812714A (en) Method and device for measuring the flow rate of an intermittent fluid flow
JPH039090Y2 (en)
JPS6118124B2 (en)
JPS61128124A (en) Flow meter
JPS5826224A (en) Detection of abnormality in measuring in fluid measuring device
SU1264003A1 (en) Thermal flowmeter
Viswanathan Microprocessor based flow rate and flow volume indicator common for any flow sensor which gives pulse output
JPS6112835B2 (en)
SU344274A1 (en) DEVICE CONTROL QUANTITY of liquid in the CAPACITY