JPS6261637A - Preparation of activated alumina carrier having high pore void volume - Google Patents

Preparation of activated alumina carrier having high pore void volume

Info

Publication number
JPS6261637A
JPS6261637A JP60203143A JP20314385A JPS6261637A JP S6261637 A JPS6261637 A JP S6261637A JP 60203143 A JP60203143 A JP 60203143A JP 20314385 A JP20314385 A JP 20314385A JP S6261637 A JPS6261637 A JP S6261637A
Authority
JP
Japan
Prior art keywords
particle size
alumina
carrier
activated alumina
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60203143A
Other languages
Japanese (ja)
Inventor
Hiroyasu Suenaga
末永 広恭
Koichi Kasahara
笠原 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Industrial Co Ltd filed Critical Cataler Industrial Co Ltd
Priority to JP60203143A priority Critical patent/JPS6261637A/en
Publication of JPS6261637A publication Critical patent/JPS6261637A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To easily form desired fine pore distribution, by granulating hydraulic alumina, obtained by treating aluminum hydroxide having specific particle size distribution and a specific average particle size in a hot air stream at specific temp., while water is sprayed to said alumina. CONSTITUTION:Aluminum hydroxide wherein the content of particles with a particle size of 5mum or less is 80% or more and an average particle size is 0.5-5mum is thrown in a hot air stream with temp. of 400-1,200 deg.C for 0.1-10sec to form hydraulic alumina. This hydraulic alumina is granulated while water is sprayed to prepare an activated alumina carrier wherein an entire void volume is 0.5-1.5cc/g and the volume of a pore size of 1,000-10,000Angstrom is 0.2-0.6cc/g. In the aforementioned method, for example, when granulation is performed by a pan type granulator, a powder is fine and filling property becomes inferior and, therefore, the filling density of the carrier can be regulated by the spray amount of water.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、自動車の排ガス浄化用触媒担体をはじめと
して、脱臭用、脱硝用等の公害防止用触媒担体や重質油
の水素化、脱硫、脱金属用触媒担体として有用な高細孔
容積を有する活性アルミナ担体の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to catalyst carriers for purifying automobile exhaust gas, catalyst carriers for pollution prevention such as deodorization and denitrification, and hydrogenation and desulfurization of heavy oil. , relates to a method for producing an activated alumina carrier having a high pore volume useful as a catalyst carrier for demetalization.

〔従来の技術〕[Conventional technology]

近年、活性アルミナ担体く求められる性質として、調節
された細孔分布と高い細孔容積を有することが挙げられ
ている。その理由は、本来活性アルミナ担体の細孔分布
は、細孔径が数百芙以下の部分に集中しておシ、これで
は細孔内の拡散が不十分で被毒されやすい。それで、よ
り大きい細孔径を有するアルミナ担体が要望され、特に
細孔径1000〜10000 Xの細孔容積が大きい担
体は拡散し易く被毒されにくいといわれている。
In recent years, properties required for activated alumina supports include having a controlled pore distribution and high pore volume. The reason for this is that the pore distribution of activated alumina carriers is originally concentrated in areas with pore diameters of several hundred square meters or less, which results in insufficient diffusion within the pores and is susceptible to poisoning. Therefore, there is a demand for an alumina carrier having a larger pore diameter, and it is said that in particular, a carrier having a large pore volume with a pore diameter of 1,000 to 10,000× is easy to diffuse and is difficult to be poisoned.

通常、工業的にバイヤー法で得られた平均粒径10〜5
0ミクロンの水酸化アルミニウムを、400〜1200
℃で急速脱水し、水硬性アルミナを得、これに水を噴霧
しながら・々ン型造粒機で球状に造粒した担体は、細孔
容積が0.4eC/、9以下と小さく、その大部分は細
孔径2001以下でありて、細孔径1000〜1000
0Åの容積ははとんどない。そこで、ノ譬ン盤造粒機に
よる造粒時に噴霧する水量を加減して1次粒子の間隙で
細孔容積、分布を制御する方法があるが、この範囲の平
均粒径では粉末の充填性がよいため。
Normally, the average particle size obtained industrially by the Bayer method is 10 to 5.
0 micron aluminum hydroxide, 400-1200
The carrier was rapidly dehydrated at ℃ to obtain hydraulic alumina, which was then granulated into spherical shapes using a spherical granulator while spraying water. Most of the pore diameter is 2001 or less, and the pore diameter is 1000 to 1000.
The volume of 0 Å is extremely small. Therefore, there is a method to control the pore volume and distribution in the gaps between the primary particles by adjusting the amount of water sprayed during granulation using a Nomonban granulator, but with an average particle size in this range, the filling of the powder is difficult. Because it is good.

細孔fi1000−10000Xの容積はあt)増加せ
ず、細孔径10000X以上の容積がわずかに増加する
だけである。
The volume of pores fi1000-10000X does not increase at), and the volume of pores with a diameter of 10000X or more increases only slightly.

te、上記のほかに、高細孔容積を有する担体を得る方
法として、4リビニルアルコール、メチルセルロースな
どの有機重合体やコンスターチ、カー−ノブラックなど
の可燃物をアルミナ担体に添加し、燃焼除去させる方法
等が数多く報告されている。
In addition to the above, as a method for obtaining a carrier with a high pore volume, organic polymers such as 4-livinyl alcohol and methylcellulose, and combustible substances such as cornstarch and carnoblack are added to the alumina carrier and removed by combustion. Many methods have been reported.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の従来技術において、可燃物をアルミナに添加する
ととくより、所望の細孔分布を有する高細孔容積の担体
を得ようとすると、その材料費分担体の価格が上昇する
。加えて、所望する細孔分布より大きい方ヘシフトする
のを防ぐために、また機械強度の低下を防ぐ九めに、添
加する可燃物の種類や量、粒子の大きさを調整したシ、
均一にアルミナ中に分散させなければならないなど、製
造工程が複雑になる九めさらに高価なものとなる。さら
に、可燃物除去時に発熱して高温になシ、アルミナが変
態して不活性化することもある。
In the above-mentioned prior art, if a combustible substance is added to alumina, and if an attempt is made to obtain a support with a high pore volume and a desired pore distribution, the cost of the material increases. In addition, in order to prevent the pore distribution from shifting to a larger one than the desired one, and to prevent a decrease in mechanical strength, the type and amount of combustible material added, as well as the particle size, are adjusted.
The manufacturing process is complicated, as it must be uniformly dispersed in the alumina, and it is also expensive. Furthermore, when removing combustibles, heat may be generated and the alumina may transform and become inactive.

〔問題点を解決する九めの手段〕[Ninth way to solve the problem]

この発明は、上記従来技術におけるような可燃物の添加
をおこなうことなく、所望の細孔分布を有する高細孔容
積の活性アルミナ担体を製を、従来の平均粒径10〜5
0ミクロンより微粒化させ、その粒子の80−以上の粒
径を5ミクロンより小さくし、かつ平均粒径を0,5〜
5ミクロンとすることによって、細孔径1000〜1o
oooXの容積を容易に増加させ得ることを見出した。
This invention makes it possible to produce a high pore volume activated alumina carrier having a desired pore distribution without adding combustible materials as in the prior art, compared to the conventional average particle size of 10 to 5.
The particles are made finer than 0 microns, the particle size of 80- or more particles is smaller than 5 microns, and the average particle size is 0.5 to 0.5 microns.
By setting the pore size to 5 microns, the pore diameter is 1000 to 1o.
It has been found that the volume of oooX can be easily increased.

しかして、この発明の高細孔容積を有する活性アルミナ
担体の製造方法は、上記に示した原料の水酸化アルミナ
担体を、400〜1200℃の熱気流中に、O,1〜1
0秒間投入して水硬性アルミナを得、これに水を噴霧し
ながら造粒することによって、全細孔容積が0.5〜1
.5C9fであシ、そのうち細孔径1000〜1000
0 Xの容積が0.2〜0.6eC/7である活性アル
ミナ担体を製造することを特徴とする。
Therefore, in the method for producing an activated alumina carrier having a high pore volume according to the present invention, the hydroxide alumina carrier as the raw material shown above is heated in a hot air stream at 400 to 1200°C.
By adding water for 0 seconds to obtain hydraulic alumina and granulating it while spraying water, the total pore volume is 0.5 to 1.
.. 5C9f, of which pore size is 1000-1000
The method is characterized in that an activated alumina support having an 0X volume of 0.2 to 0.6 eC/7 is produced.

なお、400℃未満であると、水酸化アルミニウム中の
水分除去が不充分で、水硬性をも次なくなる。また12
00Cを越したシ、10秒を越すと、アルミナの結晶形
態が変化し、やはシ水硬性をもたなくなる。
Note that if the temperature is less than 400°C, moisture removal from aluminum hydroxide will be insufficient and hydraulic properties will also be lost. Also 12
If the temperature exceeds 00C or exceeds 10 seconds, the crystal form of alumina will change and it will no longer have hydraulic properties.

〔作用〕[Effect]

この発明の方法においては、水を噴霧しながら、水硬性
アルミナを1例えばパン型造粒機等の造粒機で造粒する
際、粉が微粒でありて、充填性が悪くなるため、噴霧す
る水量によりて担体の充填密度を調節することが可能と
なシ、その1次粒子が構成する間隙で細孔径1000〜
10000Xの容積を増加させることができる。
In the method of this invention, when granulating hydraulic alumina with a granulator such as a pan-type granulator while spraying water, the powder is fine and the filling properties are poor. The packing density of the carrier can be adjusted by adjusting the amount of water.
The volume can be increased by 10000X.

〔実施例〕〔Example〕

実施例1 工業的にバイヤー法で得られた水酸化アルミニウムで、
その粒子の85%の粒径が5ミクロンより小さく、かつ
平均粒径が2ミクロンである粉末を、1000℃の熱気
流中に2秒間浮遊せしめて水硬性アルミナ粉末を得た。
Example 1 Aluminum hydroxide obtained industrially by Bayer method,
A powder in which 85% of the particles had a particle size smaller than 5 microns and an average particle size of 2 microns was suspended in a hot air stream at 1000° C. for 2 seconds to obtain a hydraulic alumina powder.

この粉末に水を120秒間噴霧しながら、パン型造粒機
で球状に造粒し、平均径5露のアルミナ担体を得た。こ
れを50℃の飽和水蒸気中で12時間再水和させ、15
0℃で水熱処理を行っ九。この後120℃で十分乾燥さ
せ、600℃で3時間焼成して活性アルミナ担体Aを得
た。
This powder was granulated into spheres using a pan-type granulator while spraying water for 120 seconds to obtain an alumina carrier having an average diameter of 5. This was rehydrated in saturated steam at 50°C for 12 hours, and
Hydrothermal treatment was performed at 0°C.9. Thereafter, it was thoroughly dried at 120°C and fired at 600°C for 3 hours to obtain activated alumina carrier A.

得られた担体Aの物性を測定し、その結果を下表に示し
九。また、担体Aの細孔分布を測定し、その結果を細孔
分布図として図に示した。
The physical properties of the obtained carrier A were measured and the results are shown in the table below. In addition, the pore distribution of carrier A was measured, and the results are shown in the figure as a pore distribution diagram.

実施例2 実施例1と同一の水酸化アルミニウムを使用し、実施例
1と同様にして水硬性アルミナ粉末を得た。この粉末に
水を60秒間噴霧しながら、ノ々ン屋造粒機で球状に造
粒し、平均粒径5■のアルミナ担体を得た。以後実施例
1と同一方法で活性アルミナ担体Bを得た。
Example 2 Hydraulic alumina powder was obtained in the same manner as in Example 1 using the same aluminum hydroxide as in Example 1. This powder was granulated into spheres using a Nononya granulator while spraying water for 60 seconds to obtain an alumina carrier having an average particle size of 5 .mu.m. Thereafter, activated alumina carrier B was obtained in the same manner as in Example 1.

得られた担体Bの物性を測定し、その結果を下表に示し
た。また、担体Bの細孔分布を測定し、その結果を細孔
分布図として図に示した。
The physical properties of the obtained carrier B were measured and the results are shown in the table below. In addition, the pore distribution of carrier B was measured, and the results are shown in the figure as a pore distribution diagram.

比較例1 工業的にバイヤー法で得られた水酸化アルミニウムで、
その粒子の40%の粒径が5ミクロンより小さく、かつ
平均粒径が15ミクロンである粉末から実施例1と同様
にして水硬性アルミナを得、さらに実施例1と同一方法
で活性アルミナ担体Cを得几。
Comparative Example 1 Aluminum hydroxide obtained industrially by Bayer method,
Hydraulic alumina was obtained in the same manner as in Example 1 from a powder in which 40% of the particles had a particle size smaller than 5 microns and the average particle size was 15 microns, and activated alumina carrier C was obtained in the same manner as in Example 1. Get it.

得られた担体Cの特性を測定し、その結果を下表に示し
た。また、担体Cの細孔分布を測定し、その結果を細孔
分布図として図に示した。
The properties of the obtained carrier C were measured and the results are shown in the table below. In addition, the pore distribution of carrier C was measured, and the results are shown in the figure as a pore distribution diagram.

比較例2 比較例1と同一の水酸化アルミニウムを使用して、水硬
性アルミナ粉末を得た。この粉末から実施例2と同一方
法で活性アルミナ担体りを得九。
Comparative Example 2 The same aluminum hydroxide as in Comparative Example 1 was used to obtain hydraulic alumina powder. An activated alumina carrier was obtained from this powder in the same manner as in Example 2.

得られた担体りの特性を測定し、その結果を下表に示し
た。tw担体りの細孔分布を1111定し、その結果を
細孔分布図として図に示し友。
The properties of the obtained carrier were measured and the results are shown in the table below. The pore distribution of the TW carrier was determined and the results are shown in the figure as a pore distribution diagram.

比較例3 実施例1と同一の水硬性アルミナ粉末を使用し、この粉
末が90重量%、平均粒径10ミクロンのコンスターチ
が10重量%になるように混合した。この混合粉末から
実施例1と同一方法で活性アルミナ担体Eを得た。
Comparative Example 3 The same hydraulic alumina powder as in Example 1 was used, and the powder was mixed in an amount of 90% by weight and cornstarch having an average particle size of 10 microns was mixed in an amount of 10% by weight. Activated alumina carrier E was obtained from this mixed powder in the same manner as in Example 1.

その結果を細孔分布図として図に示し九。The results are shown in Figure 9 as a pore distribution map.

被毒耐久試験 以上の担体A−Eについて白金を1.0II/A担持し
、触媒化し被毒耐久試験をおこなりた。
A poisoning durability test was carried out by supporting platinum at 1.0 II/A on carriers A-E, which were better than the poisoning durability test, and catalyzing them.

耐久試験条件は、1600CC4気筒エンジンに同心円
上に触媒量lサンプル40d充填可能なコンバーターを
接続し、触媒床温度を700〜800℃に設定した。燃
料は市販されている無鉛ガソリンに、トリクレジルフイ
スフエイトを添加し、P O,0311/U、S、ガロ
ン、pbO,oIII/U、S、ガロンのPおよびpb
含有ガソリンを使用した。上記条件で30時間耐入試験
をおこなった。
The durability test conditions were as follows: A converter capable of filling 1 sample of catalyst (40 d) was concentrically connected to a 1600 CC 4-cylinder engine, and the catalyst bed temperature was set at 700 to 800°C. The fuel was commercially available unleaded gasoline with the addition of tricresyl fluoride, and P O,0311/U, S, gallon, pbO,oIII/U, S, gallon of P and pb.
Containing gasoline was used. A 30-hour resistance test was conducted under the above conditions.

上記触媒を1000と)、C3H6500ppme 、
 C3H42000ppmo、 C02、H20各10
1.col1023僑残シはN2ガスからなる合成ガス
を、触媒入ガス温度り50℃、空間速度30.OQ O
hr  で流すことにより浄化率を測定し、その結果を
第2表に示した。
1000 ppm of the above catalyst), C3H6500 ppme,
C3H42000ppmo, C02, H20 10 each
1. The col1023 residue was prepared by using a synthesis gas consisting of N2 gas at a catalyst input gas temperature of 50°C and a space velocity of 30. OQ O
The purification rate was measured by flowing at hr, and the results are shown in Table 2.

第  2  表 @HCおよびCOはそれぞれ炭化水素 および一酸化炭素を示す。Table 2 @HC and CO are each hydrocarbon and carbon monoxide.

〔発明の効果〕〔Effect of the invention〕

第1!!に示したようく、この発明の製造方法によると
、細孔径1000−10000叉の容積が0.2ないし
0.6cc/IIの範囲である高細孔容積の活性アルミ
ナ担体を得ることができる。このようなこの発明の方法
によって得られた活性アルミナ担体は、細孔容積が大き
いので、細孔内の拡散が十分となって第2表に示したよ
うに被毒されにくいものとなる。
1st! ! As shown in , according to the production method of the present invention, it is possible to obtain an activated alumina carrier with a high pore volume in which the pore diameter is 1000 to 10000 mm and the volume is in the range of 0.2 to 0.6 cc/II. Since the activated alumina support obtained by the method of the present invention has a large pore volume, diffusion within the pores is sufficient and it is not easily poisoned as shown in Table 2.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の製・遣方法によりて得られた高細孔容積
を有する活性アルミナ担体についてO細孔分布図である
。 出Mm  弁理士錦江武彦 #11ノ1Lτ艷(入)
The figure is an O pore distribution diagram for an activated alumina support having a high pore volume obtained by the manufacturing and processing method of the present invention. Out Mm Patent attorney Takehiko Kinko #11-1Lτ艷 (in)

Claims (1)

【特許請求の範囲】[Claims] 5ミクロンより小さい粒径の粒子が80%以上を占め、
平均粒径が0.5〜5ミクロンである水酸化アルミニウ
ムを、400〜1200℃の熱気流中に0.1〜10秒
間投入して水硬性アルミナを得、これに水を噴霧しなが
ら造粒することによって、全細孔容積が0.5〜1.5
cc/gであり、そのうち細孔径1000〜10000
Åの容積が0.2〜0.6cc/gである活性アルミナ
担体を製造することを特徴とする高細孔容積を有する活
性アルミナ担体の製造方法。
Particles with a particle size smaller than 5 microns account for more than 80%,
Aluminum hydroxide with an average particle size of 0.5 to 5 microns is poured into a hot air stream at 400 to 1200°C for 0.1 to 10 seconds to obtain hydraulic alumina, which is then granulated while spraying water. By doing so, the total pore volume is 0.5 to 1.5
cc/g, of which the pore size is 1000-10000
A method for producing an activated alumina carrier having a high pore volume, the method comprising producing an activated alumina carrier having a volume of 0.2 to 0.6 cc/g.
JP60203143A 1985-09-13 1985-09-13 Preparation of activated alumina carrier having high pore void volume Pending JPS6261637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203143A JPS6261637A (en) 1985-09-13 1985-09-13 Preparation of activated alumina carrier having high pore void volume

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203143A JPS6261637A (en) 1985-09-13 1985-09-13 Preparation of activated alumina carrier having high pore void volume

Publications (1)

Publication Number Publication Date
JPS6261637A true JPS6261637A (en) 1987-03-18

Family

ID=16469125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203143A Pending JPS6261637A (en) 1985-09-13 1985-09-13 Preparation of activated alumina carrier having high pore void volume

Country Status (1)

Country Link
JP (1) JPS6261637A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091595A (en) * 1973-12-15 1975-07-22
JPS50161494A (en) * 1974-06-20 1975-12-27
JPS56149320A (en) * 1980-04-21 1981-11-19 Sumitomo Alum Smelt Co Ltd Manufacture of activated alumina molding with low density

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091595A (en) * 1973-12-15 1975-07-22
JPS50161494A (en) * 1974-06-20 1975-12-27
JPS56149320A (en) * 1980-04-21 1981-11-19 Sumitomo Alum Smelt Co Ltd Manufacture of activated alumina molding with low density

Similar Documents

Publication Publication Date Title
US4483940A (en) Method for manufacture of honeycomb catalyst
US3284370A (en) Alumina supported copper oxide-rare earth oxide catalyst compositions
US3565830A (en) Coated film of catalytically active oxide on a refractory support
KR100584799B1 (en) Catalytic Material Having Improved Conversion Performance
CA1154740A (en) Method for forming high surface area catalyst carrier and catalyst using same
US4123391A (en) Auto emission purifying catalyst and method of manufacture
US4237030A (en) Catalyst for purifying exhaust gas from an internal combustion engine
CA1100292A (en) Catalysis
JPH06154599A (en) New alpha-alumina system catalyst carrier
KR20120104383A (en) Metal oxide support material containing nanoscaled iron-platinum group metal particles
JPS5976548A (en) Production of catalyst for treating exhaust gas from internal combustion engine
EP0500154B1 (en) Improved ceramic coating for a catalyst support
JPS6193832A (en) Catalyst and method for treating exhaust gas form internal combustion engine
JPS5813495B2 (en) Method for producing spherical alumina particles
CN111068710A (en) Catalyst for burning carbon smoke and preparation method and application thereof
JPH0622680B2 (en) Catalyst and method for producing the same
EP0119715B1 (en) Catalysts with support coatings having increased macroporosity
US3377269A (en) Oxidation catalyst comprising variable density activator
US5763352A (en) Catalyst composition for the purification of the exhaust of diesel vehicles, catalyst using the same and preparing methods thereof
JPS6261637A (en) Preparation of activated alumina carrier having high pore void volume
JP3033303B2 (en) Oxygen-deficient magnetite hollow particles, production method thereof and use thereof
US3407030A (en) Method of catalytically treating gases
JPH0194945A (en) Catalyst of carrying superfine gold particles fixed on metal oxide and manufacture therefor
JPH0299141A (en) Carbon monoxide oxidizing catalyst composition
BG104214A (en) Method for reducing the nitrogen oxide content in gases and the respective catalysts