JPS6261322B2 - - Google Patents

Info

Publication number
JPS6261322B2
JPS6261322B2 JP58230527A JP23052783A JPS6261322B2 JP S6261322 B2 JPS6261322 B2 JP S6261322B2 JP 58230527 A JP58230527 A JP 58230527A JP 23052783 A JP23052783 A JP 23052783A JP S6261322 B2 JPS6261322 B2 JP S6261322B2
Authority
JP
Japan
Prior art keywords
polyimide
thin film
formula
composition
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58230527A
Other languages
Japanese (ja)
Other versions
JPS60125209A (en
Inventor
Asumaru Nakamura
Hiroshi Makino
Yoshihiro Kusuki
Takashi Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58230527A priority Critical patent/JPS60125209A/en
Publication of JPS60125209A publication Critical patent/JPS60125209A/en
Publication of JPS6261322B2 publication Critical patent/JPS6261322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00113Pretreatment of the casting solutions, e.g. thermal treatment or ageing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、ポリむミド半透膜の補法に関するも
のである。 特に、芳銙族ポリむミド系半透膜は、耐薬品
性、機械的性質などが優れおいる耐熱性の気䜓分
離膜ずしおかなり期埅されおいるものである。 ポリむミド半透膜の補造方法は特開昭56−
21602号に次のように瀺されおいる。即ち、䞀般
匏 ただし、は、芳銙族ゞアミンのアミノ基を陀
いた二䟡の残基であるで瀺される反埩単䜍を90
以䞊有するポリむミドの皮たたは皮以䞊
が、プノヌル系化合物の融解液䞭に溶解しおい
るポリむミド組成物を䜿甚しお、そのポリむミド
組成物の液状の薄膜を圢成させ、次いで、その薄
膜を凝固液䞭に浞挬しお凝固させるこずを特城ず
するポリむミド半透膜の補造方法である。 本発明者は䞊蚘の発明を曎に改良するために各
皮の怜蚎を行な぀た結果、ポリむミドずプノヌ
ル系化合物から成るポリむミド組成物、すなわち
ドヌプ液、に特定の芳銙族カルボン酞化合物を䞀
定量加えお補膜するこずにより半透膜を補造した
堎合にその半透膜は、䞊蚘の発明の方法で補造さ
れた半透膜に比范しお著しく優れた気䜓透過性
胜、特に、透過速床を䜎䞋させずに分離床を向䞊
させるこずができるこずを芋出し、本発明を完成
した。 すなわち本発明は、 (a) 前蚘のポリむミドの皮たたは皮以䞊 (b) プノヌル系溶剀そしお (c) 䞊蚘のポリむミドずプノヌル系溶剀の均䞀
混合物に䞀般匏Ar−COOHArおよび
は、特蚱請求の範囲に蚘茉のずおりであるで
瀺される特定の芳銙族カルボン酞化合物をポリ
むミド重量の〜40重量を含有するポリむミ
ド組成物を䜿甚しお、そのポリむミド組成物の
液状の薄膜を圢成させ、぀いで、その薄膜を凝
固液䞭に浞挬しお凝固させるこずを特城ずする
ポリむミド半透膜の補造法、からなるものであ
る。 本発明で甚いるポリむミドは、䞀般匏 ただし、は䞀般匏H2N−−NH2で瀺される
芳銙族ゞアミンのアミノ基を陀いた二䟡の残基で
あるで瀺される反埩単䜍を、党構成単䜍に察し
お90以䞊、奜たしくは95以䞊の割合で、ポリ
マヌ䞻鎖に有しおいる芳銙族ポリむミドであ぀
お、プノヌル系化合物の融解液に溶解しうるも
のである。 䞊蚘の芳銙族ポリむミドは、・3′・・4′−
ビプニルトラカルボン酞成分、・・3′・
4′−ビプニルテトラカルボン酞成分などのビフ
゚ニルテトラカルボン酞成分ず、䞀般匏H2N−
−NH2で瀺される芳銙族ゞアミン成分ずから瞮重
合反応およびむミド化反応むミド環化反応に
よ぀お埗られるものである。その造方法及び補造
条件等は特開昭56−21602号公報に蚘茉されおい
るため、ここに詳述しない。 本発明の方法で䜿甚されるプノヌル系溶剀ず
しおは、融点が玄100℃以䞋、奜たしくは80℃以
䞋であり、その沞点が垞圧で玄300℃以䞋、奜た
しくは280℃以䞋であるプノヌル系化合物が奜
たしく、䟋えば、プノヌル、−、−、たた
は−クレゟヌル、・−キシレノヌル、カル
バクロヌル、チモヌルなどの䞀䟡プノヌル、あ
るいは、その䞀䟡プノヌルの氎玠をハロゲンで
眮換したハロゲン化プノヌルを奜適に挙げるこ
ずができる。 特に、ハロゲン化プノヌルずしおは、䞀般匏
The present invention relates to a method for manufacturing a polyimide semipermeable membrane. In particular, aromatic polyimide semipermeable membranes are highly anticipated as heat-resistant gas separation membranes that have excellent chemical resistance, mechanical properties, and the like. The manufacturing method of polyimide semi-permeable membrane is disclosed in Japanese Patent Application Laid-Open No. 1986-
No. 21602 states as follows: That is, the general formula (However, R is a divalent residue of aromatic diamine excluding the amino group.) 90
% or more of polyimides dissolved in a melt of a phenolic compound, a liquid thin film of the polyimide composition is formed, and then the thin film is This is a method for producing a polyimide semipermeable membrane, characterized by coagulating it by immersing it in a coagulating liquid. As a result of various studies in order to further improve the above invention, the present inventor added a certain amount of a specific aromatic carboxylic acid compound to a polyimide composition consisting of polyimide and a phenolic compound, that is, a dope solution. When a semipermeable membrane is manufactured by film forming, the semipermeable membrane has significantly superior gas permeation performance compared to the semipermeable membrane manufactured by the method of the above invention, in particular, without reducing the permeation rate. The present invention was completed based on the discovery that the degree of separation can be improved. That is, the present invention provides: (a) one or more of the polyimides described above; (b) a phenolic solvent; and (c) a homogeneous mixture of the polyimide and the phenolic solvent having the general formula Ar-(COOH)n Ar and n
is as described in the claims) using a polyimide composition containing 5 to 40% by weight of the polyimide weight of the specific aromatic carboxylic acid compound shown in the claims. This method consists of a method for producing a polyimide semipermeable membrane, which is characterized by forming a thin film, and then immersing the thin film in a coagulating liquid to coagulate it. The polyimide used in the present invention has the general formula (However, R is a divalent residue excluding the amino group of an aromatic diamine represented by the general formula H 2 N-R-NH 2. ) 90% of the total structural units are The aromatic polyimide preferably has a proportion of 95% or more in the polymer main chain and is soluble in the melt of the phenolic compound. The above aromatic polyimide is 3, 3', 4, 4'-
Biphenyltracarboxylic acid component, 2, 3, 3',
A biphenyltetracarboxylic acid component such as a 4'-biphenyltetracarboxylic acid component and a general formula H 2 N-R
It is obtained from an aromatic diamine component represented by -NH 2 through a polycondensation reaction and an imidization reaction (imide cyclization reaction). The manufacturing method, manufacturing conditions, etc. are described in JP-A-56-21602, so they will not be described in detail here. The phenolic solvent used in the method of the present invention is a phenolic compound having a melting point of about 100°C or less, preferably 80°C or less, and a boiling point of about 300°C or less, preferably 280°C or less at normal pressure. For example, monovalent phenols such as phenol, o-, m-, or p-cresol, 3,5-xylenol, carvacrol, thymol, or halogenated phenols in which the hydrogen of the monovalent phenol is replaced with a halogen. can be preferably mentioned. In particular, as a halogenated phenol, the general formula

【匏】たたは[expression] or

【匏】 ただし、䞊蚘䞀般匏においお、R2は氎玠たたは
炭玠数〜のアルキル基であり、はハロゲン
原子であるで瀺され、しかもその融点が玄100
℃以䞋、奜たしくは80℃以䞋であり、その沞点が
垞圧で玄300℃以䞋、奜たしくは280℃以䞋である
ハロゲン化プノヌル化合物が、ポリむミドに察
する溶解性が優れおいるので最適である。 本発明の方法においお、ハロゲン化プノヌル
ずしお、䟋えば、−クロルプノヌルメタク
ロルプノヌル、−クロルプノヌルパラ
クロルプノヌル、−ブロムプノヌル、
−ブロムプノヌル、−クロル−−ヒドロキ
シトル゚ン、−クロル−−ヒドロキシトル゚
ン、−クロル−−ヒドロキシトル゚ン、−
クロル−−ヒドロキシトル゚ン、−ブロム−
−ヒドロキシトル゚ン、−ブロム−−ヒド
ロキシトル゚ン、−ブロム−−ヒドロキシト
ル゚ン、−ブロム−−ヒドロキシトル゚ン、
−ブロム−−ヒドロキシトル゚ンなどを挙げ
るこずができる。 本発明の方法においおポリむミド組成物には曎
に、前蚘のポリむミドずプノヌル系溶剀の均䞀
混合物に特定の芳銙族カルボン酞化合物がポリむ
ミド重量の〜40重量含たれる。すなわち本発
明で甚いるポリむミド組成物䞭に、ポリむミドに
察しお〜40重量の特定の芳銙族カルボン酞化
合物がポリむミド組成物、すなわちドヌブ液、に
含たれおいる。䞊蚘の条件を満たさない堎合は十
分な分離床が埗られないか、透過速床が䜎いため
適圓でない。 本発明でポリむミド組成物に添加するのに適し
た䞀般匏Ar−COOHArおよびは、前述
のずおりであるで瀺される特定の芳銙族化合物
ずしおは、䟋えば、Arがナフタリン環の堎
合 −又は−ナフト゚酞などのモノカルボン酞
類、・−又は・−ナフタリン−ゞカルボ
ン酞などのゞカルボン酞類、・・−又は
・・−ナフタリントリ−カルボン酞などの
トリカルボン酞類、−アミノ−−ナフト゚酞
又は−アミノ−−ナフト゚酞などのアミノ眮
換誘導䜓、−ブロモ−−ナフト゚酞又は−
クロロ−−ナフト゚酞などのハロゲン眮換誘導
䜓、−アセチル−−ヒドロキシ−−ナフト
゚酞、−ヒドロキシ−−クロロ−−ナフト
゚酞などの倚眮換誘導䜓など、Arがビプ
ニル環の堎合 −又は−又は−ビプニルカルボン酞な
どのモノカルボン酞類、・2′−又は・3′−又
は・−ビプニルゞカルボン酞などのゞカル
ボン酞類、・3′−ゞメチル−・2′−ビプニ
ルゞカルボン酞や−ニトロ−・2′−ビプニ
ル−ゞカルボン酞などの眮換誘導䜓、Arが
その他の環の堎合 −又は−又は−アントラセンカルボン
酞、・10−アントラキノン−−カルボン酞、
・−又は・−又は・−ゞヒドロキシ
−・10−アントラキノン−−カルボン酞、 ・−ゞヒドロキシ−−メトキシ−・10
−アントラキノン−−カルボン酞、 −又は−ニトロ−・10−アントラキノン
−−カルボン酞、 −又は−、又は−又は−プナントレ
ンカルボン酞、 −又は−フルオレンカルボン酞 −フルオレノン−又は−又は−又は
−カルボン酞 などを挙げるこずができる。 本発明の方法においお䜿甚する液状のポリむミ
ド組成物、すなわちドヌプ液、には(a)のポリむミ
ドが党組成物に察しお少なくずも重量、そし
お(c)の特定の芳銙族カルボン酞化合物がポリむミ
ドに察しお少なくずも〜40重量含たれおいる
必芁があり、この範囲を逞脱した成分比の組成物
では本発明の目的ずする優れた透過性胜を有する
半透膜を埗るこずが困難なため奜たしくない。 本発明は、これたでに述べおきたようにポリむ
ミドずプノヌル系溶剀にポリむミドに察しお特
定の芳銙族カルボン酞化合物を特定の量加えたポ
リむミド組成物をドヌプ液ずしお甚いお半透膜を
補造する方法を提䟛するものであり、本発明の補
造法により埗られる半透膜は、ポリむミドずプ
ノヌル系溶剀ずからなるポリむミド組成物をドヌ
プ液ずしお甚いお補造した半透膜が有する優れた
耐熱性、耐薬品性、機械特性を同皋床に持぀以倖
に、特に気䜓透過性胜に぀いおは著しい向䞊がみ
られる。埓぀お本発明の補法により埗られた半透
膜は、各皮の気䜓の混合物から所望の気䜓を遞択
的に分離する目的に甚いるのに適しおいる。その
ような気䜓の混合物を構成する気䜓の組み合わせ
ずしおは、䟋えば氎玠ず䞀酞化炭玠、酞玠ず窒
玠、氎玠ず窒玠、二酞化炭玠ずメタン、ヘリりム
ずメタン、ヘリりムず窒玠などの組み合わせを挙
げるこずができる。 本発明の方法を実斜するに際しおは、ポリむミ
ドの合成反応の反応溶媒ずしおプノヌル系溶剀
を甚いた堎合にはその反応混合物に、必芁に応じ
おプノヌル系溶剀を曎に加えお濃床、組成、粘
床等を調敎した埌、前蚘のような芳銙族カルボン
酞化合物を加えお均䞀に混合し、補膜甚のポリむ
ミド組成物ずしお䜿甚する。 本発明の方法においおは、ポリむミド組成物ず
しお、前述の䞀般匏で瀺されるポリむミドを皮
類以䞊含有する組成物を䜿甚するこずができ、さ
らに、前述の䞀般匏で瀺されるポリむミドずその
他の芳銙族ポリむミドずを含有する組成物を䜿甚
するこずもできる。 前蚘の芳銙族ポリむミドは、30℃、濃床0.5
100mlml溶媒パラクロルプノヌル容量
ずオル゜クロルプノヌル容量ずの混合溶媒
で枬定した察数粘床が0.3〜7.0、特に0.4〜5.0、
さらに奜たしくは0.5〜4.0皋床の広範囲のものが
䜿甚できる。 本発明の方法においおは、ポリむミド組成物
は、含有する党ポリむミドの濃床が、党組成物に
察しお特に〜30重量、さらに〜25重量の
範囲内であるこずが奜たしい。たた、ポリむミド
組成物は、補膜の枩床である〜120℃、特に
〜100℃の範囲内においお、回転粘床が、少なく
ずも100センチポアズ以䞊、特に500〜10000ポア
ズ皋床の均䞀な液状の組成物ずなり、補膜甚のド
ヌプ液ずなりうるこずが奜たしい。 本発明の方法においお、前述のポリむミド組成
物を必芁であれば加枩しお補膜甚のドヌプ液ずし
お䜿甚しお、そのポリむミド組成物のドヌプ液か
ら液状の薄膜䟋えば平膜状、䞭空糞状、管状の
薄膜を圢成させ、次いで、その薄膜を凝固液䞭
に浞挬しお凝固させお、ポリむミドの半透膜を補
造するのである。 本発明の方法では、ポリむミド組成物の液状物
を適圓な公知のフむルタヌを䜿甚しお固圢物を陀
去し、あるいは充分に脱泡しお補膜甚のドヌプ液
ずするこずが奜たしい。 ポリむミド組成物のドヌプ液から液状の薄膜を
圢成する方法は、埓来公知の流延補膜法ず同様の
方法で行うこずができ、䟋えば、衚面が平滑な平
版基材ガラス板、銅板などの衚面に、前蚘ボ
リむミド組成物のドヌプ液を流延し、次いでドク
タヌブレヌドによ぀お均䞀な厚さの液状の薄膜ず
する方法、あるいは、倖呚面が平滑なロヌルの衚
面にポリむミド組成物のドヌプ液を䟛絊しロヌル
衚面に近接しお蚭けられたドクタヌナむフで均䞀
な厚さずしお流延しお薄膜を圢成したり、さらに
ポリむミド組成物をダむから薄膜状に抌し出し
おロヌル衚面に巻き掛けお薄膜を圢成するなどの
連続補膜法を採甚するこずができる。本発明の方
法においおは、補膜の際のポリむミド組成物のド
ヌプ液の枩床は、ポリむミド組成物の回転粘床ず
枩床ずの関係によ぀お、補膜に適圓な回転粘床ず
なる枩床にすべきであるが、できれば〜120
℃、特に〜100℃皋床の枩床範囲内であるこず
が奜たしく、10〜60℃の枩床範囲が最適である。
さらに前述のようにしお補膜される液状の薄膜の
厚さは、10〜500Ό、特に20〜200Ό皋床であるこ
ずが奜たしい。 前述のようにしお圢成された液状の薄膜は、そ
の液状の薄膜を圢成しながら、たたは液状の薄膜
を圢成した埌に、その液状の薄膜の片面からプ
ノヌル系溶剀を䞀郚蒞発させるず、次の凝固によ
぀お非察称の薄膜が効果的に圢成されるので奜適
である。 液状の薄膜の片面からプノヌル系溶剀を䞀郚
蒞発させる方法は、平版たたはロヌル呚面䞊の液
状の薄膜に、〜100℃、特に〜90℃の気䜓
を、少なくずも秒以䞊、特に秒〜30分間、さ
らに10秒〜20分間、吹き付ける方法が奜適である
が、平版たたはロヌル呚面䞊の液状の薄膜を加湿
しお枛圧雰囲気䞭に少なくずも数秒以䞊、特に10
秒〜30分間、さらに30秒〜20分間、攟眮する方法
であ぀おもよい。 本発明の方法においお、前述のようにしお圢成
されたポリむミドの液状の薄膜を凝固させるため
に䜿甚する凝固液は、プノヌル系溶剀ず自由に
混合され盞溶性を有する液䜓であればよく、䟋え
ば、メタノヌル、゚タノヌル、プロパノヌルなど
の䜎玚アルコヌル類、アセトン、メチル゚チルケ
トン、ゞ゚チルケトン、メチルプロピルケトンな
どケトン類、テトラヒドロフラン、ゞオキサン、
゚チレングリコヌルモノメチル゚ヌテルなどの゚
ヌテル類、ゞメチルアセトアミド、ゞメチルフオ
ルムアミドなどのアミド類、ゞメチルスルホキシ
ドなど、あるいは、氎ず前蚘アルコヌル類、ケト
ン類、゚ヌテル類、アミド類ずの混合液などを挙
げるこずができる。特に凝固液ずしおは、混合比
氎の単䜍䜿甚量に察しおが0.1〜10、特に0.2
〜皋床である氎ずアルコヌル類、氎ず゚ヌテル
類、氎ずケトン類、たたは氎ずアミド類ずの混合
液が奜たしい。 液状の薄膜を前蚘の凝固液で凝固する方法は、
公知のどのような方法であ぀おもよいが、薄膜
を、その薄膜が圢成流延されおいる基材ず共
に、前蚘の凝固液䞭に浞挬するこずが奜たしく、
たたその凝固液の枩床が50℃以䞋、特に−10〜30
℃、さらに−〜20℃皋床であるこずが奜たし
い。前述のようにしお薄膜を凝固液䞭に浞挬しお
おく時間は、ポリむミド組成物の皮類、凝固液の
皮類、その他の条件によ぀おかわるが、䞀般的に
は0.1〜20時間、0.5〜10時間皋床であればよい。 前述のようにしお液状の薄膜から凝固された膜
は、すでに半透膜ずしおの性質を充分に有する倚
孔質局を有する膜ずな぀おいるが、さらに、メチ
ルアルコヌル、゚チルアルコヌル、プロピルアル
コヌルなどの䜎玚アルコヌル類䞭に〜50℃で玄
0.5〜10時間浞挬し、凝固膜内の残䜙のプノヌ
ル系溶剀などを掗浄し陀去する埌凊理を行うヘプ
タン、ヘキサン、などの脂肪族炭化氎玠に浞挬凊
理しお也燥し也燥半透膜を埗る。必芁に応じお熱
凊理しおも良い。 次に、参考䟋ポリむミドの合成䟋、実斜䟋
および比范䟋を瀺す。 実斜䟋および比范䟋においお、倚孔質膜の気䜓
透過性胜を䞋蚘の方法で行぀た。 倚孔質膜を膜面積14.65cm2のステンレス補セル
にセツトし、セルの䞀方に氎玠ガスをKgcm2に
加圧導入し、氎玠ガスが膜を透過する速床を流量
蚈を甚いお枬定した。䞀酞化炭玠に぀いおも同様
に枬定した。なお、枬定枩床は、恒枩槜を利甚し
お30℃にお䞀定に維持した。埗られた枬定倀か
ら、次匏に埓぀お透過床ず分離床ずを蚈算した。 透過床P′透過気䜓量膜面積cm2・透過時間秒・圧力差cm 分離床氎玠の透過床䞀酞化炭玠の透過床
′ 参考䟋 ・3′・・4′−ビプニルテトラカルボン酞
二無氎物40ミリモル、・4′−ゞアミノゞプニ
ル゚ヌテル40ミリモル、およびパラクロルプノ
ヌルPCP165を、撹拌機ず窒玠ガス導入管
ずが付蚭されたセパラブルフラスコに入れお、窒
玠ガスを流通し、撹拌しながら、反応液を垞枩か
ら180℃たで玄50分間で昇枩し、さらにその反応
液を180℃で時間保持しお、重合およびむミド
化を段で行぀お、芳銙族ポリむミドを生成さ
せ、粘皠なポリむミドの均䞀な溶液を補造した。 そのポリむミドの均䞀な溶液は、ポリマヌ濃床
が玄10重量であり、ポリマヌの察数粘床50
℃、0.5100mlPCPが2.2であり、ポリマヌ
のむミド化率が赀倖線吞収スペクトルで枬定しお
95以䞊であ぀た。 比范䟋  参考䟋で補造したポリむミドの均䞀な溶液をガ
ラス板䞊に60°で流延しお厚さ0.2mmの薄膜を圢
成し、60℃で分攟眮也燥時間埌その薄膜を
゚タノヌル容量ず氎容量ずの混合液の凝固液
℃䞭に浞挬し、玄20時間攟眮しお薄膜を凝
固させた。その凝固膜を゚タノヌル䞭に20゜でさ
らに20時間浞挬し、぀づいお−ヘキサン䞭に25
゜で20時間浞挬した埌、空気流通䞋、25℃で時
間颚也し、次いで100℃、時間也燥し、ポリむ
ミド膜を埗た。 補膜条件及び膜の透過特性倀を第衚に瀺す。 比范䟋  補膜を80゜、也燥時間を分ずした以倖は比范
䟋ず同様に行぀た。補膜条件及びその結果を第
衚に瀺す。 実斜䟋〜11及び比范䟋〜 参考䟋ず同様にしお補造したポリむミドの均䞀
な溶液に第衚に瀺す添加剀をポリマヌに察し所
定量添加し、均䞀溶液ずした埌第衚に瀺す補膜
条件で補膜した以倖は比范䟋ず同様に行぀た。
それぞれの透過特性は第衚に瀺す。
[Formula] (However, in the above general formula, R 2 is hydrogen or an alkyl group having 1 to 3 carbon atoms, and X is a halogen atom), and its melting point is about 100
A halogenated phenol compound having a boiling point of about 300°C or less, preferably 280°C or less at normal pressure is optimal because it has excellent solubility in polyimide. In the method of the present invention, examples of halogenated phenols include 3-chlorophenol (metachlorophenol), 4-chlorophenol (parachlorophenol), 3-bromophenol, 4-chlorophenol, and 4-chlorophenol.
-bromophenol, 2-chloro-4-hydroxytoluene, 2-chloro-5-hydroxytoluene, 3-chloro-6-hydroxytoluene, 4-
Chloro-2-hydroxytoluene, 2-bromo-
4-hydroxytoluene, 2-bromo-5-hydroxytoluene, 3-bromo-5-hydroxytoluene, 3-bromo-6-hydroxytoluene,
Examples include 4-bromo-2-hydroxytoluene. In the method of the present invention, the polyimide composition further contains a specific aromatic carboxylic acid compound in a homogeneous mixture of the polyimide and a phenolic solvent in an amount of 5 to 40% by weight based on the weight of the polyimide. That is, in the polyimide composition used in the present invention, 5 to 40% by weight of a specific aromatic carboxylic acid compound based on the polyimide is contained in the polyimide composition, that is, the dove solution. If the above conditions are not met, it is not suitable because sufficient separation cannot be obtained or the permeation rate is low. Specific aromatic compounds of the general formula Ar-(COOH)n (Ar and n are as described above) suitable for addition to the polyimide composition in the present invention include, for example, ()Ar In the case of a naphthalene ring Monocarboxylic acids such as 1- or 2-naphthoic acid, dicarboxylic acids such as 1,2- or 2,3-naphthalene dicarboxylic acid, 1,2,5- or 1,4,5-naphthalene dicarboxylic acid, etc. - tricarboxylic acids such as carboxylic acid, amino-substituted derivatives such as 2-amino-1-naphthoic acid or 3-amino-2-naphthoic acid, 4-bromo-1-naphthoic acid or 2-
Halogen-substituted derivatives such as chloro-1-naphthoic acid, polysubstituted derivatives such as 4-acetyl-3-hydroxy-2-naphthoic acid, 1-hydroxy-4-chloro-2-naphthoic acid, etc., where ()Ar is a biphenyl ring Monocarboxylic acids such as 2- or 3- or 4-biphenylcarboxylic acid, dicarboxylic acids such as 2,2'- or 3,3'- or 3,5-biphenyldicarboxylic acid, 3,3'- Substituted derivatives such as dimethyl-2,2'-biphenyl dicarboxylic acid and 4-nitro-2,2'-biphenyl dicarboxylic acid, when ()Ar is another ring 1-, 2-, or 9-anthracenecarboxylic acid , 9,10-anthraquinone-2-carboxylic acid,
1,3- or 1,4- or 4,5-dihydroxy-9,10-anthraquinone-2-carboxylic acid, 4,5-dihydroxy-7-methoxy-9,10
-anthraquinone-2-carboxylic acid, 1- or 5-nitro-9,10-anthraquinone-2-carboxylic acid, 1- or 2-, or 3- or 9-phenanthrenecarboxylic acid, 1- or 9-fluorene Carboxylic acid 9-fluorenone-1 or 2- or 3- or 4
-carboxylic acids and the like. The liquid polyimide composition, i.e., dope, used in the method of the present invention contains (a) at least 5% by weight of the polyimide, based on the total composition, and (c) a specific aromatic carboxylic acid compound containing the polyimide. It is necessary to contain at least 5 to 40% by weight of the component, and if the composition has a component ratio outside of this range, it is difficult to obtain a semipermeable membrane with the excellent permeation performance that is the objective of the present invention. Undesirable. As described above, the present invention manufactures a semipermeable membrane using a polyimide composition in which a specific amount of a specific aromatic carboxylic acid compound is added to polyimide and a phenolic solvent as a dope solution. The semipermeable membrane obtained by the production method of the present invention has excellent heat resistance, which is possessed by a semipermeable membrane produced using a polyimide composition composed of polyimide and a phenolic solvent as a dope liquid. In addition to having the same chemical resistance and mechanical properties, there is a marked improvement in gas permeation performance in particular. Therefore, the semipermeable membrane obtained by the production method of the present invention is suitable for use in selectively separating a desired gas from a mixture of various gases. Combinations of gases constituting such gas mixtures include, for example, combinations of hydrogen and carbon monoxide, oxygen and nitrogen, hydrogen and nitrogen, carbon dioxide and methane, helium and methane, helium and nitrogen, etc. . When carrying out the method of the present invention, if a phenolic solvent is used as a reaction solvent in the polyimide synthesis reaction, the phenolic solvent may be further added to the reaction mixture as necessary to adjust the concentration, composition, viscosity, etc. After adjustment, the aromatic carboxylic acid compound as described above is added and mixed uniformly, and used as a polyimide composition for film formation. In the method of the present invention, a composition containing two or more kinds of polyimides represented by the above general formula can be used as the polyimide composition, and furthermore, a composition containing two or more kinds of polyimides represented by the above general formula and other aromatic polyimides can be used. It is also possible to use compositions containing polyimide. The above aromatic polyimide was heated at 30°C and at a concentration of 0.5.
g/100mlml solvent (mixed solvent of 4 volumes of parachlorophenol and 1 volume of orthochlorophenol)
Logarithmic viscosity measured at 0.3-7.0, especially 0.4-5.0,
More preferably, a wide range of about 0.5 to 4.0 can be used. In the method of the present invention, the concentration of the total polyimide contained in the polyimide composition is preferably in the range of 6 to 30% by weight, more preferably 8 to 25% by weight, based on the total composition. In addition, the polyimide composition has a film forming temperature of 0 to 120°C, especially 5°C.
It is preferable that a uniform liquid composition with a rotational viscosity of at least 100 centipoise, particularly about 500 to 10,000 poise, be formed within the range of ~100° C., and can be used as a dope solution for film formation. In the method of the present invention, the above-mentioned polyimide composition is heated if necessary and used as a dope solution for film formation, and the dope solution of the polyimide composition is used to form a liquid thin film (for example, a flat film shape, a hollow fiber shape). A semipermeable polyimide membrane is produced by forming a tubular thin film) and then immersing the thin film in a coagulating liquid to coagulate it. In the method of the present invention, it is preferable to use a suitable known filter to remove solid matter from the liquid polyimide composition or to sufficiently degas it to obtain a dope solution for film formation. A method for forming a liquid thin film from a dope solution of a polyimide composition can be carried out by a method similar to a conventionally known casting film forming method. A dope solution of the polyimide composition is cast onto the surface of the polyimide composition, and then a liquid thin film with a uniform thickness is formed using a doctor blade. A thin film is formed by supplying a liquid and casting it to a uniform thickness using a doctor knife placed close to the roll surface, or by extruding the polyimide composition into a thin film from a T-die and wrapping it around the roll surface. A continuous film forming method such as forming a thin film can be adopted. In the method of the present invention, the temperature of the dope solution of the polyimide composition during film formation should be set to a temperature that provides a rotational viscosity suitable for film formation, depending on the relationship between the rotational viscosity of the polyimide composition and temperature. However, preferably 0 to 120
The temperature range is preferably about 5 to 100 degrees Celsius, most preferably about 10 to 60 degrees Celsius.
Further, the thickness of the liquid thin film formed as described above is preferably about 10 to 500 microns, particularly about 20 to 200 microns. The liquid thin film formed as described above can be obtained by partially evaporating the phenolic solvent from one side of the liquid thin film while forming the liquid thin film or after forming the liquid thin film. This is preferred because an asymmetric thin film is effectively formed by solidification. A method for partially evaporating the phenolic solvent from one side of a liquid thin film is to apply a gas at 0 to 100°C, especially 5 to 90°C, to the liquid thin film on the peripheral surface of a flat plate or roll for at least 1 second, especially 5 to 90°C. It is preferable to spray the film for 10 seconds to 20 minutes, or for 10 seconds to 20 minutes.
It may also be a method of leaving it for 30 seconds to 30 minutes, or for 30 seconds to 20 minutes. In the method of the present invention, the coagulating liquid used to coagulate the polyimide liquid thin film formed as described above may be any liquid that is freely mixed and compatible with the phenolic solvent, for example, Lower alcohols such as methanol, ethanol, and propanol, ketones such as acetone, methyl ethyl ketone, diethyl ketone, and methyl propyl ketone, tetrahydrofuran, dioxane,
Examples include ethers such as ethylene glycol monomethyl ether, amides such as dimethyl acetamide and dimethyl formamide, dimethyl sulfoxide, and mixtures of water and the above-mentioned alcohols, ketones, ethers, and amides. . In particular, as a coagulating liquid, the mixing ratio (relative to the unit amount of water used) is 0.1 to 10, especially 0.2.
A mixed solution of water and alcohols, water and ethers, water and ketones, or water and amides having a molecular weight of about 5 to 5 is preferable. The method of coagulating a liquid thin film with the above-mentioned coagulating liquid is as follows:
Any known method may be used, but it is preferable to immerse the thin film together with the base material on which the thin film is formed (cast) in the coagulation solution,
Also, the temperature of the coagulating liquid is below 50℃, especially -10 to 30℃.
℃, more preferably about -5 to 20℃. The time for which the thin film is immersed in the coagulation solution as described above varies depending on the type of polyimide composition, the type of coagulation solution, and other conditions, but is generally 0.1 to 20 hours, 0.5 to 10 hours. It only takes about an hour. The membrane solidified from the liquid thin film as described above already has a porous layer with sufficient properties as a semipermeable membrane, but it is also coated with methyl alcohol, ethyl alcohol, propyl alcohol, etc. Approximately 0 to 50℃ in lower alcohols
After immersing for 0.5 to 10 hours, post-treatment is performed to wash and remove residual phenolic solvents in the coagulated membrane.The membrane is immersed in an aliphatic hydrocarbon such as heptane or hexane, and then dried to obtain a dry semipermeable membrane. Heat treatment may be performed if necessary. Next, reference examples (polyimide synthesis examples), examples, and comparative examples are shown. In Examples and Comparative Examples, the gas permeation performance of porous membranes was tested using the following method. A porous membrane was set in a stainless steel cell with a membrane area of 14.65 cm 2 , hydrogen gas was introduced under pressure at 1 kg/cm 2 into one side of the cell, and the rate at which hydrogen gas permeated through the membrane was measured using a flowmeter. . Carbon monoxide was also measured in the same way. Note that the measurement temperature was maintained constant at 30°C using a constant temperature bath. From the obtained measured values, the transmittance and resolution were calculated according to the following equations. Permeability (P') = permeated gas amount/membrane area (cm 2 ), permeation time (seconds), pressure difference (cmHg) Separation rate = hydrogen permeability (P H2 )/carbon monoxide permeability (P' CO ) Reference Example 40 mmol of 3,3',4,4'-biphenyltetracarboxylic dianhydride, 40 mmol of 4,4'-diaminodiphenyl ether, and 165 g of parachlorophenol (PCP) were mixed with a stirrer and The reaction solution was placed in a separable flask equipped with a nitrogen gas inlet tube, and while flowing nitrogen gas and stirring, the reaction solution was heated from room temperature to 180℃ in about 50 minutes, and then the reaction solution was heated to 180℃. Holding for 8 hours, polymerization and imidization were carried out in one step to produce aromatic polyimide and produce a viscous homogeneous solution of polyimide. The homogeneous solution of polyimide has a polymer concentration of approximately 10% by weight and a polymer logarithmic viscosity (50
℃, 0.5g/100ml PCP) is 2.2, and the imidization rate of the polymer is measured by infrared absorption spectrum.
It was over 95%. Comparative Example 1 The homogeneous polyimide solution produced in Reference Example was cast onto a glass plate at 60° to form a thin film with a thickness of 0.2 mm, and after being left at 60°C for 3 minutes (drying time), the thin film was soaked in ethanol. The thin film was immersed in a coagulating solution (0° C.) of a mixture of 1 volume of water and 1 volume of water, and left to stand for about 20 hours to solidify the thin film. The coagulated film was immersed in ethanol at 20° for an additional 20 hours, and then in n-hexane for 25 hours.
After being immersed for 20 hours at 20°C, it was air-dried at 25°C for 5 hours under air circulation, and then at 100°C for 1 hour to obtain a polyimide film. Table 1 shows the film forming conditions and the permeation characteristic values of the film. Comparative Example 2 The same procedure as Comparative Example 1 was carried out except that the film was formed at 80° and the drying time was 2 minutes. Film forming conditions and results are shown in Table 1. Examples 1 to 11 and Comparative Examples 3 to 8 A predetermined amount of the additive shown in Table 1 was added to the polymer to a homogeneous solution of polyimide produced in the same manner as in the reference example, and after making a homogeneous solution, the additives shown in Table 1 were added. The same procedure as in Comparative Example 1 was conducted except that the film was formed under the film forming conditions shown.
The transmission characteristics of each are shown in Table 1.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  (a) 䞀般匏 ただし、は、芳銙族ゞアミンのアミノ基を
陀いた二䟡の残基であるで瀺される反埩単䜍
を90以䞊有するポリむミドの皮たたは皮
以䞊 (b) プノヌル系溶剀そしお (c) 䞊蚘ポリむミドずプノヌル系溶剀の均䞀混
合物に䞀般匏 Ar−COOH Ar【匏】 【匏】【匏】 【匏】 【匏】【匏】 【匏】、 たたはそれらの誘導䜓、 〜の敎数 で瀺される芳銙族カルボン酞化合物をポリむミド
重量の〜40含有するポリむミド組成物を䜿甚
しお、そのポリむミド組成物の液状の薄膜を圢成
させ、぀いで、その薄膜を凝固液䞭に浞挬しお凝
固させるこずを特城ずするポリむミド半透膜の補
造法。
[Claims] 1 (a) General formula (However, R is a divalent residue of an aromatic diamine excluding an amino group.) One or more polyimides having 90% or more of repeating units: (b) a phenolic solvent: and (c) A homogeneous mixture of the above polyimide and a phenolic solvent has the general formula Ar-(COOH)n Ar: [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula], or derivatives thereof; Using a polyimide composition containing an aromatic carboxylic acid compound represented by n: an integer of 1 to 3 in an amount of 5 to 40% by weight of the polyimide, a liquid thin film of the polyimide composition is formed, and then the thin film is A method for producing a polyimide semipermeable membrane, which is characterized by immersing it in a coagulating solution and coagulating it.
JP58230527A 1983-12-08 1983-12-08 Improvement in preparation of polyimide separation membrane Granted JPS60125209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58230527A JPS60125209A (en) 1983-12-08 1983-12-08 Improvement in preparation of polyimide separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58230527A JPS60125209A (en) 1983-12-08 1983-12-08 Improvement in preparation of polyimide separation membrane

Publications (2)

Publication Number Publication Date
JPS60125209A JPS60125209A (en) 1985-07-04
JPS6261322B2 true JPS6261322B2 (en) 1987-12-21

Family

ID=16909140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58230527A Granted JPS60125209A (en) 1983-12-08 1983-12-08 Improvement in preparation of polyimide separation membrane

Country Status (1)

Country Link
JP (1) JPS60125209A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880442A (en) * 1987-12-22 1989-11-14 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes
US5026823A (en) * 1989-09-12 1991-06-25 The Dow Chemical Company Novel alicyclic polyimides and a process for making the same
US4988371A (en) * 1989-09-12 1991-01-29 The Dow Chemical Company Novel alicyclic polyimide gas separation membranes
DE19957499A1 (en) * 1999-11-29 2001-06-07 Karosseriewerk Heinrich Meyer Loadable articulated train, especially for the transport of food

Also Published As

Publication number Publication date
JPS60125209A (en) 1985-07-04

Similar Documents

Publication Publication Date Title
US4378324A (en) Process for preparing aromatic polyimide semipermeable membranes
JPS6153103B2 (en)
JPS621617B2 (en)
JPH03267130A (en) Gas separation hollow-fiber membrane and its production
JPH0247931B2 (en)
JPS5827963B2 (en) Method for manufacturing selectively permeable membrane
JPS6153087B2 (en)
JPS6153086B2 (en)
RU2335335C2 (en) Ultra-filtrating heat and chemical resistant polyimide membrane and method of its
JPH0647067B2 (en) Production of aromatic polyimide film
JPH0568859A (en) Gas separation hollow-fiber membrane and its production
KR102447406B1 (en) Improved method for making carbon molecular sieve hollow fiber membranes
JPS588512A (en) Preparation of polyimide separation membrane
JPS6225405B2 (en)
JPS6252603B2 (en)
JPS6252604B2 (en)
JPS6274410A (en) Production process for separating membrane
JPS6261322B2 (en)
JPS6274411A (en) Production process for separating membrane
WO1991000774A1 (en) Separative membrane made of aromatic polyimide
JPS6153089B2 (en)
JPS621615B2 (en)
JPS6261228B2 (en)
JPS6225404B2 (en)
JPS6153088B2 (en)