JPS6261231B2 - - Google Patents

Info

Publication number
JPS6261231B2
JPS6261231B2 JP58107912A JP10791283A JPS6261231B2 JP S6261231 B2 JPS6261231 B2 JP S6261231B2 JP 58107912 A JP58107912 A JP 58107912A JP 10791283 A JP10791283 A JP 10791283A JP S6261231 B2 JPS6261231 B2 JP S6261231B2
Authority
JP
Japan
Prior art keywords
molecular weight
styrene polymer
styrene
weight
moldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58107912A
Other languages
Japanese (ja)
Other versions
JPS601247A (en
Inventor
Kazuhiko Sho
Isao Kuribayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10791283A priority Critical patent/JPS601247A/en
Publication of JPS601247A publication Critical patent/JPS601247A/en
Publication of JPS6261231B2 publication Critical patent/JPS6261231B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

スチレン重合体は透明性、成形性に優れかつ剛
性に優れている故に家庭用品、電気製品等の成形
材料として多量に使用されている。 最近の原材料の高騰に帰因する高品位樹脂から
の切替指向、成形時の省エネルギー化指向等を背
景にして、スチレン重合体の耐衝撃強度、成形性
耐熱性の同時改良が強く要望されている。 従来、スチレン重合体の平均分子量を高するこ
とにより、耐衝撃強度は向上するが、しかし、平
均分子量が高くなるにつれて成形性が低下し、成
形性を改良するためミネラルオイル等の可塑剤を
添加すると、剛性、耐熱性が低下し、しかも、金
型排気孔附近に可塑剤に帰因する附着物が発生
し、製品表面にキズとして転写されたり汚物とし
て付着し成形品の価値を著しく低下させる、とい
つたように、多項目の品質を同時に改良すること
は極めて困難であつた。可塑剤を使用せずにスチ
レン重合体の成形性を改良する方法として、特公
昭33―6986号、特公昭57―30843号の如く低分子
量部分の比率を高める方法が知られているが、低
分子量部分の比率が増加するにつれて耐衝撃強度
が著しく低下する。又、分子量分布を調整し、成
形性と耐衝撃強度のバランスをとる方法も提案さ
れているが、市場の改良要求を満足するには至つ
ていない。 本発明者らは耐衝撃強度、成形性、耐熱性のバ
ランスのとれたスチレン重合体を開発すべく鋭意
研究した結果、スチレン重合体中に極少量の超高
分子量スチレン重合体を含有させることにより、
スチレン重合体の成形性にほとんど影響を与える
ことなく耐衝撃強度を著しく向上させる本発明に
到達した。 すなわち本発明は分子量が200万以上のスチレ
ン重合体が0.8重量%〜3.0重量%、分子量が5万
以下のスチレン重合体が10重量%以下、分子量が
5万を越え200万未満のスチレン重合体が87重量
%〜99.2重量%から成り、しかもトルエンの10重
量%溶液の粘度が25℃下で30cp〜60cpであるス
チレン重合体組成物である。 本発明のスチレン重合体組成物は従来のスチレ
ン重合体に比較して、例えば成形性を同じにすれ
ば耐衝撃強度、耐熱性に優れている、といつた様
に、耐衝撃強度、成形性、耐熱性のバランスが著
しく改良されている。 本発明にの、スチレン重合体組成物の10重量%
トルエン溶液の粘度は成形品の形状、使用目的等
を考慮して、25℃で30cp〜60cpの領域で設定さ
れる。スチレン重合体組成物の10重量%トルエン
溶液の粘度が25℃で30cp未満であると、超高分
子量スチレン重合体を適量含有していても耐衝撃
強度の向上はほとんどない。又60cpを越える場
合は著しく成形性が悪くなり実用的でない。分子
量200万以上の超高分子量スチレン重合体の含有
量は0.8重量%〜3.0重量%の範囲であることが必
要である。より好ましくは、1.0重量〜2.5重量%
の範囲である。3.0重量%を越える場合は設定し
た10重量%トルエン溶液の粘度を有するスチレン
重合体組成物を得るためには超高分子量スチレン
重合体を除いたスチレン重合体組成物の平均分子
量を小さくする必要があり、その結果、耐衝撃強
度の向上度合が小さくなる。又、超高分子量スチ
レン重合体が流動性に影響を与えるようになり成
形性の向上度合も小さくなる。一方、0.8重量%
未満の場合は、超高分子量スチレン重合体による
耐衝撃強度向上の効果が出ない。分子量5万以下
のスチレン重合体は成形性には良い影響を与える
が耐衝撃強度を著しく低下させる効果を有してい
るので10重量%以下好ましくは5重量%以下であ
れば、成形性、耐衝撃強度のバランスを向上させ
るが、10重量%を越える場合は、超高分子量スチ
レン重合体の耐衝撃強度向上と相殺されてしまい
好ましくない。超高分子量スチレン重合体を除い
たスチレン重合体の分子量分布は狭い方が成形
性、耐衝撃強度の向上に好ましい。その分子量分
布は好ましくは3.0未満である。 なお、本発明では、超高分子量スチレン重合体
の分子量はGPC測定法により東洋曹達工業(株)製
GPC(HLC―802A)、同社製GPC用カラム
(TSK―GEL G6000H6―TSK―GEL G5000H6)
を用いて測定した。又、5万以下のスチレン重合
体の分子量は同社製GPC用カラム(TSK―GEL
GMH6×2本)を用いて測定した。含有量は面積
比により計算される。スチレン重合体の10重量%
トルエン溶液の粘度はオストワルドキヤノンフエ
ンスケ粘度管#350を用いて測定する。 本発明のスチレン重合体組成物はまず低温で塊
状又は溶液重合を行い超高分子量スチレン重合体
を製造するか、あるいは多管能低温触媒(3〜30
官能)を使用し超高分子量スチレン重合体を製造
し、その後、公知の方法で重合を進行させて製造
する方法;又はアニオン重合、乳化重合等で超高
分子量スチレン重合体を製造し、公知のスチレン
重合体とを溶液状態又はペレツト同士等公知の混
合方法を用いて適正な割合で混合し製造する方法
等により製造される。 本発明でいうスチレン重合体には、スチレン、
α―メチルスチレン、p―メチルスチレン、等の
単独又は混合物を重合したものが含まれる。 本発明のスチレン重合体は、添加剤、例えば、
ステアリン酸、ベヘニン酸、ステアリン酸亜鉛、
エチレンビスステアロアミド等を添加することが
できる。又、酸化防止剤として、ヒンダードフエ
ノール類、ヒンダードビスフエノール類、ヒンダ
ードトリスフエノール類等、例えば2,6―ジ―
t―ブチル―4―メチルフエノール;ステアリル
―β―(3,5―ジ―t―ブチル―4―ヒドロキ
シフエニル)プロピオネート;トリエチレングリ
コール―ビス―3―(3―t―ブチル―4―ヒド
ロキシ―5―メチルフエニル)プロピオネート
等;リン系化合物、例えばトリ(2,4―ジ―t
―ブチルフエニル)フオスフアイト;4,4′―ブ
チリデン―ビス―(3―メチル―6―t―ブチル
フエニル―ジ―トリデシル)フオスフアイト等が
添加できる。 又、成形品の形状、用途に応じて、可塑剤例え
ばミネラルオイル、ポリエチレングリコール等を
添加することもできる。 以下、実施例で本発明を具体的に説明する。 なお実施例の物性試験法を以下に記す。 メルトフローレート:ISO R1133に準ずる。 ビカツト軟化点:ASTM D1525に準ずる。 ノツチ無しアイゾツト衝撃強度:試験片にノツチ
を入れない以外、ASTM D256に準ずる。 繰返し衝撃強度:圧縮成形法(200℃)で厚さ2
mm、9cm×5cmの角状試験片を作成し、中
心より縦方向に2.5cmの所を金具で固定
し、3/4R、130gのミサイルを5cmの高さ
から試験片の中心に落下させ、クラツク発
生までの回数を求める。 一撃衝撃強度:圧縮成形法(200℃)で厚さ2
mm、直径10cmの円板状試験片を作成し、半
径7cmから半径10cmの環状部分を金具で固
定し、28gの鋼球を試験片の中心に落下さ
せて、試験片の50%が破壊する高さを求め
る。 実施例1,2;比較例1,2,3 まず、撹拌羽根を備えた5l反応機に表―1に示
す組成物を3Kg仕込み、窒素で反応機内に存在す
る空気を置換た後、表―1に示す温で10時間重合
した。その後反応溶液を取り出し200℃、15mmHg
の減圧下で未反応モノマーを除去し、スチレン重
合体を得た。得られたスチレン重合体の25℃にお
ける10重量%トルエン溶液の粘度を表―1に示
す。次に、得られたスチレン重合体を表―2に示
す割合で混合した。均一な混合物を得るため、混
合したスチレン重合体をトルエンに溶解させた
後、メタノールを加え、スチレン重合体組成物を
析出させ、乾燥後、物性を測定した。物性値を表
―2に示す。 実施例―1,2の超高分子量スチレン重合体を
除いたスチレン重合体の分子量分布は夫々2.7、
2.9であつた。
Styrene polymers have excellent transparency, moldability, and rigidity, and are therefore widely used as molding materials for household goods, electrical appliances, and the like. Against the backdrop of the recent trend of switching from high-grade resins due to the soaring prices of raw materials and the trend toward energy saving during molding, there is a strong demand for simultaneous improvements in the impact strength, moldability, and heat resistance of styrene polymers. . Conventionally, impact resistance strength has been improved by increasing the average molecular weight of styrene polymers, but as the average molecular weight increases, moldability decreases, and plasticizers such as mineral oil are added to improve moldability. As a result, the rigidity and heat resistance decrease, and in addition, deposits caused by the plasticizer occur near the mold exhaust hole, which are transferred as scratches or adhere to the product surface as dirt, significantly reducing the value of the molded product. , it has been extremely difficult to improve the quality of multiple items at the same time. As a method for improving the moldability of styrene polymers without using plasticizers, methods of increasing the proportion of low molecular weight moieties are known, as disclosed in Japanese Patent Publication No. 33-6986 and Japanese Patent Publication No. 57-30843. As the proportion of molecular weight moieties increases, the impact strength decreases significantly. In addition, methods have been proposed to balance moldability and impact strength by adjusting the molecular weight distribution, but these methods have not yet satisfied market demands for improvement. The present inventors conducted intensive research to develop a styrene polymer with a well-balanced impact strength, moldability, and heat resistance, and found that by incorporating a very small amount of ultra-high molecular weight styrene polymer into the styrene polymer. ,
The present invention has been achieved, which significantly improves the impact strength of styrene polymers without affecting their moldability. That is, the present invention uses 0.8% to 3.0% by weight of styrene polymers with a molecular weight of 2 million or more, 10% by weight or less of styrene polymers with a molecular weight of 50,000 or less, and styrene polymers with a molecular weight of more than 50,000 and less than 2 million. is 87% to 99.2% by weight, and the viscosity of a 10% by weight solution of toluene is 30cp to 60cp at 25°C. The styrene polymer composition of the present invention has superior impact strength and heat resistance compared to conventional styrene polymers, for example, when the moldability is the same. , the balance of heat resistance has been significantly improved. 10% by weight of the styrene polymer composition according to the invention
The viscosity of the toluene solution is set in the range of 30 cp to 60 cp at 25°C, taking into account the shape of the molded product, the purpose of use, etc. If the viscosity of a 10% by weight toluene solution of the styrene polymer composition is less than 30 cp at 25°C, there will be little improvement in impact resistance even if an appropriate amount of the ultra-high molecular weight styrene polymer is contained. Moreover, if it exceeds 60 cp, the moldability deteriorates significantly and is not practical. The content of the ultra-high molecular weight styrene polymer with a molecular weight of 2 million or more is required to be in the range of 0.8% by weight to 3.0% by weight. More preferably 1.0% to 2.5% by weight
is within the range of If it exceeds 3.0% by weight, it is necessary to reduce the average molecular weight of the styrene polymer composition excluding the ultra-high molecular weight styrene polymer in order to obtain a styrene polymer composition having the viscosity of the set 10% by weight toluene solution. As a result, the degree of improvement in impact strength becomes smaller. Furthermore, the ultra-high molecular weight styrene polymer affects the fluidity and the degree of improvement in moldability is also reduced. On the other hand, 0.8% by weight
If it is less than 20%, the effect of improving impact resistance strength by the ultra-high molecular weight styrene polymer will not be achieved. Styrene polymers with a molecular weight of 50,000 or less have a positive effect on moldability, but have the effect of significantly reducing impact strength. Therefore, if it is 10% by weight or less, preferably 5% by weight or less, moldability and resistance Although it improves the balance of impact strength, if it exceeds 10% by weight, it is undesirable because it cancels out the improvement in impact strength of the ultra-high molecular weight styrene polymer. The narrower the molecular weight distribution of styrene polymers other than ultra-high molecular weight styrene polymers, the better for improving moldability and impact strength. Its molecular weight distribution is preferably less than 3.0. In addition, in the present invention, the molecular weight of the ultra-high molecular weight styrene polymer is determined by the GPC measurement method.
GPC (HLC-802A), GPC column manufactured by the same company (TSK-GEL G6000H6-TSK-GEL G5000H6)
Measured using In addition, for the molecular weight of styrene polymers of 50,000 or less, use the same company's GPC column (TSK-GEL).
GMH6 x 2). Content is calculated by area ratio. 10% by weight of styrene polymer
The viscosity of the toluene solution is measured using an Ostwald Canon Fuenske viscosity tube #350. The styrene polymer composition of the present invention is first subjected to bulk or solution polymerization at low temperature to produce an ultra-high molecular weight styrene polymer, or alternatively, a multi-tubular low temperature catalyst (3 to 30
A method in which an ultra-high molecular weight styrene polymer is produced using a functional compound, and then the polymerization is proceeded by a known method; or an ultra-high molecular weight styrene polymer is produced by anionic polymerization, emulsion polymerization, etc. It is manufactured by a method of mixing a styrene polymer in an appropriate ratio using a known mixing method such as a solution state or pellets. The styrene polymer referred to in the present invention includes styrene,
It includes polymers of α-methylstyrene, p-methylstyrene, etc. alone or in mixtures. The styrenic polymer of the present invention may contain additives such as
stearic acid, behenic acid, zinc stearate,
Ethylene bisstearamide, etc. can be added. In addition, as antioxidants, hindered phenols, hindered bisphenols, hindered trisphenols, etc., such as 2,6-di-
t-Butyl-4-methylphenol; Stearyl-β-(3,5-di-t-butyl-4-hydroxyphenyl)propionate; Triethylene glycol-bis-3-(3-t-butyl-4-hydroxy -5-methylphenyl)propionate, etc.; Phosphorus compounds, such as tri(2,4-di-t)
-butylphenyl) phosphorite; 4,4'-butylidene-bis-(3-methyl-6-t-butylphenyl-di-tridecyl) phosphorite, etc. can be added. Furthermore, depending on the shape and use of the molded article, a plasticizer such as mineral oil, polyethylene glycol, etc. may be added. Hereinafter, the present invention will be specifically explained with reference to Examples. In addition, the physical property test method of the example is described below. Melt flow rate: According to ISO R1133. Vikatsu Softening Point: According to ASTM D1525. Unnotched Izo impact strength: Conforms to ASTM D256 except that the test piece is not notched. Cyclic impact strength: Compression molding method (200℃) thickness 2
A square test piece of 9 cm x 5 cm was prepared, fixed with metal fittings at a point 2.5 cm vertically from the center, and a 3/4R, 130 g missile was dropped from a height of 5 cm onto the center of the test piece. Find the number of times until a crack occurs. One-shot impact strength: Compression molding method (200℃) thickness 2
Create a disk-shaped test piece with a diameter of 10 cm and a diameter of 7 cm, fix the annular part with a radius of 7 cm to 10 cm with metal fittings, drop a 28 g steel ball into the center of the test piece, and 50% of the test piece is destroyed. Find the height. Examples 1, 2; Comparative Examples 1, 2, 3 First, 3 kg of the composition shown in Table 1 was charged into a 5 liter reactor equipped with a stirring blade, and after replacing the air present in the reactor with nitrogen, the composition shown in Table 1 was charged. Polymerization was carried out at the temperature shown in 1 for 10 hours. After that, remove the reaction solution and heat at 200℃ and 15mmHg.
Unreacted monomers were removed under reduced pressure to obtain a styrene polymer. Table 1 shows the viscosity of a 10% by weight toluene solution of the obtained styrene polymer at 25°C. Next, the obtained styrene polymers were mixed in the proportions shown in Table 2. In order to obtain a homogeneous mixture, the mixed styrene polymer was dissolved in toluene, methanol was added to precipitate the styrene polymer composition, and after drying, the physical properties were measured. The physical property values are shown in Table 2. The molecular weight distribution of the styrene polymers excluding the ultra-high molecular weight styrene polymers of Examples 1 and 2 is 2.7 and 2.7, respectively.
It was 2.9.

【表】【table】

【表】【table】

【表】 実施例3,4;比較例4,5,6,7,8 表―3に示すように原料組成物び重合温度を変
え、実施例―1,2;比較例―1,2,3と同様
の操作を行いスチレン重合体を得た。得られたス
チレン重合体の25℃における10重量%トルエン溶
液の粘度を表―3に示す。得られたスチレン重合
体を表―4に示す割合で混合し、実施例―1,
2;比較例1,2,3と同様の操作を行いスチレ
ン重合体組成物を得、物性を測定した。物性値を
表―4に示す。 なお、実施例―3,4の超高分子量スチレン重
合体組成物を除いたスチレン重合体組成物の分子
量分布は夫々2.5、2.7であつた。
[Table] Examples 3, 4; Comparative Examples 4, 5, 6, 7, 8 As shown in Table 3, the raw material composition and polymerization temperature were changed, and Examples 1, 2; Comparative Examples 1, 2, The same operation as in 3 was performed to obtain a styrene polymer. Table 3 shows the viscosity of a 10% by weight toluene solution of the obtained styrene polymer at 25°C. The obtained styrene polymers were mixed in the proportions shown in Table 4, and Example 1,
2; The same operations as in Comparative Examples 1, 2, and 3 were performed to obtain a styrene polymer composition, and the physical properties were measured. The physical property values are shown in Table 4. The molecular weight distributions of the styrene polymer compositions excluding the ultra-high molecular weight styrene polymer compositions of Examples 3 and 4 were 2.5 and 2.7, respectively.

【表】 ヘキサン
[Table] Hexane

【表】【table】

【表】 表―2より、本発明の重合体は成形性、耐衝撃
強度が優れていることがわかる。可塑剤を使用し
成形性を本発明の重合体と同じにした場合(比較
例―2)耐熱性の低下が著るしい。又、低分子量
スチレン重合体(分子量5万以下)が10%以上の
場合(比較例―3)耐衝撃強度の低下が著るしい
ことがわかる。同じことが表―4からもわかる。
すなわち、強度、耐熱性を本発明の重合体と同じ
にした場合(比較例―7)成形性が著るしく低下
し、可塑剤で成形性を改良すれば(比較例―8)
耐熱性の低下が著るしく、かつ強度も若干低下す
る。超高分子量スチレン重合体の含有量を多くし
た場合(比較例―6)、成形性、強度の向上が認
められないことがわかる。 本発明の重合体は成形性、耐衝撃強度、耐熱性
が同時に改良されている。
[Table] Table 2 shows that the polymer of the present invention has excellent moldability and impact strength. When a plasticizer was used to make the moldability the same as that of the polymer of the present invention (Comparative Example-2), the heat resistance decreased significantly. Furthermore, it can be seen that when the low molecular weight styrene polymer (molecular weight 50,000 or less) is 10% or more (Comparative Example-3), the impact strength is significantly reduced. The same thing can be seen from Table 4.
That is, when the strength and heat resistance were made the same as the polymer of the present invention (Comparative Example-7), the moldability decreased significantly, but when the moldability was improved with a plasticizer (Comparative Example-8)
The heat resistance is significantly lowered, and the strength is also slightly lowered. It can be seen that when the content of the ultra-high molecular weight styrene polymer was increased (Comparative Example-6), no improvement in moldability or strength was observed. The polymer of the present invention has simultaneously improved moldability, impact strength, and heat resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 分子量が200万以上のスチレン重合体が0.8重
量%〜3.0重量%、分子量が5万以下のスチレン
重合体が10重量%以下、分子量が5万を越え200
万未満のスチレン重合体が87重量%〜99.2重量%
から成るスチレン重合体組成物であつて、しかも
トルエンの10重量%溶液の粘度が25℃で30cp〜
60cpであるスチレン重合体組成物。
1 0.8% to 3.0% by weight of styrene polymers with a molecular weight of 2 million or more, 10% by weight or less of styrene polymers with a molecular weight of 50,000 or less, 200% by weight or less of styrene polymers with a molecular weight of 2 million or more,
Less than 10,000 styrene polymers 87% to 99.2% by weight
A styrene polymer composition consisting of
A styrene polymer composition that is 60 cp.
JP10791283A 1983-06-17 1983-06-17 Styrene polymer composition Granted JPS601247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10791283A JPS601247A (en) 1983-06-17 1983-06-17 Styrene polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10791283A JPS601247A (en) 1983-06-17 1983-06-17 Styrene polymer composition

Publications (2)

Publication Number Publication Date
JPS601247A JPS601247A (en) 1985-01-07
JPS6261231B2 true JPS6261231B2 (en) 1987-12-21

Family

ID=14471204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10791283A Granted JPS601247A (en) 1983-06-17 1983-06-17 Styrene polymer composition

Country Status (1)

Country Link
JP (1) JPS601247A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19611968A1 (en) * 1995-03-31 1996-10-02 Sumitomo Chemical Co Process for the production of styrene polymers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137388A (en) * 1978-01-06 1979-01-30 United States Steel Corporation Polystyrene with distinct moieties of molecular weight distribution
JPS55164207A (en) * 1979-06-07 1980-12-20 Denki Kagaku Kogyo Kk Styrene polymer
JPS5730843A (en) * 1980-07-31 1982-02-19 Fuji Xerox Co Ltd Electrophotographic receptor
JPS5876405A (en) * 1981-10-31 1983-05-09 Denki Kagaku Kogyo Kk Manufacture of styrene polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137388A (en) * 1978-01-06 1979-01-30 United States Steel Corporation Polystyrene with distinct moieties of molecular weight distribution
JPS55164207A (en) * 1979-06-07 1980-12-20 Denki Kagaku Kogyo Kk Styrene polymer
JPS5730843A (en) * 1980-07-31 1982-02-19 Fuji Xerox Co Ltd Electrophotographic receptor
JPS5876405A (en) * 1981-10-31 1983-05-09 Denki Kagaku Kogyo Kk Manufacture of styrene polymer

Also Published As

Publication number Publication date
JPS601247A (en) 1985-01-07

Similar Documents

Publication Publication Date Title
US11180650B2 (en) Thermoplastic resin composition and molded product manufactured therefrom
WO2008078570A1 (en) Polyacetal resin composition
EP2226337A1 (en) Process for the production of polypropylene random copolymers for injection moulding applications
EP3127927B1 (en) Heat resistant san resin, preparation method therefor, and heat resistant san resin composition containing same
EP0451918B1 (en) Polyketone polymer compositions
JP3931725B2 (en) POLYPROPYLENE RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND INJECTION MOLDED PRODUCT COMPRISING THE SAME
CN112708205B (en) Low-odor impact-resistant scratch-resistant polypropylene composition and preparation method thereof
JPS6261231B2 (en)
US3963807A (en) Polymers of acrylonitrile and aromatic olefins which contain grafted rubber
JP3729560B2 (en) Styrenic resin composition
JPH09143322A (en) Styrene resin composition
JPH0333142A (en) Styrene polymer composition
KR100572282B1 (en) ABS resin composition excellent in chemical resistance
JPS6072948A (en) Olefin copolymer composition
JP3254060B2 (en) Rubber-modified vinyl aromatic resin composition
JPS60166338A (en) Rubber-modified styrenic resin composition having improved appearance, impact strength and heat resistance
JP3471981B2 (en) Styrene polymer composition
EP1123347A1 (en) Monovinylidene aromatic resins
JP2024059224A (en) AS-based resin composition and molded body
JPS61183340A (en) Rubber-modified polystyrene composition
JP2002128841A (en) Beverage container
JP5105676B2 (en) Method for producing styrene resin
JP2534262B2 (en) Saponified ethylene-vinyl acetate copolymer
JPS63251457A (en) Polyphenylene ether resin composition
JPH0361685B2 (en)