JPS62611A - Steel valve for internal-combustion engine - Google Patents

Steel valve for internal-combustion engine

Info

Publication number
JPS62611A
JPS62611A JP60138197A JP13819785A JPS62611A JP S62611 A JPS62611 A JP S62611A JP 60138197 A JP60138197 A JP 60138197A JP 13819785 A JP13819785 A JP 13819785A JP S62611 A JPS62611 A JP S62611A
Authority
JP
Japan
Prior art keywords
valve
steel
composite layer
internal combustion
contact surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60138197A
Other languages
Japanese (ja)
Inventor
Kazuhiko Mori
和彦 森
Munetani Takagi
高木 宗谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60138197A priority Critical patent/JPS62611A/en
Publication of JPS62611A publication Critical patent/JPS62611A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Laser Beam Processing (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve the abrasion resistance of the contact surface with a locker arm by forming a composite layer in matrix form into which ceramics particles are dispersed, at the top edge of the valve stem of an intake/exhaust valve for an engine. CONSTITUTION:In an exhaust valve 1 for engine which is made of steel, a composite layer 9 is formed onto the contact part with a locker arm at the upper edge part. Said composite layer 9 is made of the heat-resisting steel 7 in matrix form into which TiC particles 8 are dispersed. Said TiC particle is obtained by adding the aqueous solution of polyvinyl alcohol in 5% as bonding agent into TiC powder having an average particle size of 80mu and arranging said TiC powder into a layer form having a thickness of about 1mm except the peripheral edge part having a width of about 1.0mm at the edge surface of the valve and then drying said layer after the heating at about 110 deg.C in the atmosphere for 20min and then melting said layer in argon gas by a laser gun.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、内燃IIA閏に係り、更に詳細には内燃機関
の吸気系及び排気系に組込まれるJll製のバルブに係
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to internal combustion IIA valves, and more particularly to valves manufactured by Jll incorporated in the intake and exhaust systems of internal combustion engines.

従来の技術及び発明が解決しようとげる問題点内燃機関
の高性能化に伴い、吸気用及び排気用バルブの使用条件
が益々厳しくなってきており、バルブステム先端のロッ
カーアームとの当接面には高い耐摩耗性が要求されるよ
うになってきている。
Problems to be solved by conventional technology and inventions As the performance of internal combustion engines increases, the usage conditions for intake and exhaust valves are becoming increasingly strict. High wear resistance is increasingly required.

かかる要求に対処すべく、バルブを耐熱性に優れたオー
ステナイト系耐熱鋼にて形成し、オーステナイト系耐熱
鋼は焼入れ硬化能を有しないため、ステム先端にマルテ
ンサイト系耐熱鋼のチップを溶接し、しかる後ステム先
端を焼入れ硬化させることが従来より行われている。し
かしかかるバルブに於ては、必ずしも十分な耐摩耗性を
確保することができず、製造工程が?a雑であり、また
高コストであるという問題がある。
In order to meet these demands, the valve is made of austenitic heat-resistant steel with excellent heat resistance, and since austenitic heat-resistant steel does not have quench hardening ability, a chip of martensitic heat-resistant steel is welded to the tip of the stem. Conventionally, the tip of the stem is then hardened by quenching. However, in such valves, it is not always possible to ensure sufficient wear resistance, and the manufacturing process is difficult. There are problems in that it is complicated and expensive.

また上述の如き要求に対処すべく、バルブをJ■S規格
のS U +−を系の耐熱鋼にて形成し、ステム先端に
CO合金を盛金することも従来より行われている。しか
しかかるバルブに於ても、必ずしも満足し得る耐摩耗性
が得られておらず、またその製造に於ては熱源として一
般にアセチレン炎が使用され、高価なGo金合金摩耗量
に比して遥かに多量に盛金し、盛金部の2/3以上を研
摩により除去することが行われており、従ってバルブが
高コストであるという問題がある。更に上述の何れのバ
ルブもバルブ粗材のステム先端にチップ又は盛金が一体
的に結合された構造であるため、耐衝撃性が必ずしも十
分ではないという問題がある。
In addition, in order to meet the above-mentioned requirements, it has been conventionally practiced to form the valve from heat-resistant steel of the J■S standard S U +- series, and to deposit a CO alloy on the tip of the stem. However, even such valves do not necessarily have satisfactory wear resistance, and acetylene flame is generally used as a heat source in their manufacture, and the wear resistance is far greater than that of the expensive Go gold alloy. A large amount of metal is deposited on the valve, and two-thirds or more of the metal deposit is removed by polishing, which results in a problem that the valve is expensive. Furthermore, since all of the above-mentioned valves have a structure in which a chip or a metal plate is integrally bonded to the tip of the stem of the valve material, there is a problem that the impact resistance is not necessarily sufficient.

本発明は、従来の内燃機関用鋼製バルブに於ける上述の
如き種々の問題に鑑み、バルブステム先端のロッカーア
ームとの当接面の耐摩耗性及びバルブステム先端の耐衡
撃性に帰れた低置な内燃機関用鋼製バルブを提供するこ
とを目的としている。
In view of the above-mentioned problems with conventional steel valves for internal combustion engines, the present invention aims to improve the wear resistance of the abutment surface of the valve stem tip with the rocker arm and the balance resistance of the valve stem tip. The purpose of the present invention is to provide a low-mounted steel valve for internal combustion engines.

問題点を解決するだめの手段 上述の如き目的は、本発明によれば、ステム先端にロッ
カーアームとの当接面を有し、該当接面が鋼のマトリッ
クス中にセラミック粒子が分散された複合層にて郭定さ
れている内燃機関用鋼製バルブによって達成される。
Means for Solving the Problems According to the present invention, the above object is achieved by having a contact surface with the rocker arm at the tip of the stem, and the contact surface being a composite material in which ceramic particles are dispersed in a steel matrix. This is achieved by a steel valve for internal combustion engines defined in layers.

発明の作用及び効果 本発明によれば、ステム先端のロッカーアームとの当接
面はマトリックスとしての鋼中にセラミック粒子が分散
された複合層により郭定されているので、上述の如き従
来のバルブに比してロッカーアームとの当接面の耐摩耗
性を遥かに高くすることができる。
Effects and Effects of the Invention According to the present invention, the contact surface of the stem tip with the rocker arm is defined by a composite layer in which ceramic particles are dispersed in steel as a matrix, so that the conventional valve as described above is not The wear resistance of the contact surface with the rocker arm can be made much higher than that of the rocker arm.

また本発明の内燃機関用鋼製バルブに於ける複合層は鋼
製のバルブ粗材のステム先端の端面にセラミック粉末を
配置し、セラミック粉末及びステム先端の表面部を高密
度エネルギ源、特にレーザにて局部的に加熱溶融し、セ
ラミック粉末をステム先端の表面部内に分散させること
により形成されてよいので、本発明の内燃機関用鋼製バ
ルブは上述の如ぎ従来のバルブに比して能率良く製造さ
れ得るものであり、またステム先端の複合層とバルブ粗
材との一体性は従来のバルブに於けるチップ又は盛金部
とパルプ粗材との一体性よりも遥かに優れており、従っ
てステム先端の耐衝撃性も遥かに優れている。
Further, in the composite layer of the steel valve for internal combustion engines of the present invention, ceramic powder is arranged on the end face of the stem tip of the steel valve raw material, and the ceramic powder and the surface of the stem tip are heated by a high-density energy source, especially a laser. The steel valve for internal combustion engines of the present invention is more efficient than conventional valves, as described above, because the steel valve for internal combustion engines of the present invention may be formed by locally heating and melting the ceramic powder and dispersing it within the surface of the stem tip. It can be easily manufactured, and the integrity of the composite layer at the tip of the stem and the pulp material is far superior to the integrity of the tip or fillet part and the pulp material in conventional valves. Therefore, the impact resistance of the stem tip is also far superior.

更に本発明によれば、ロッカーアームとの当接面を郭定
する複合層は上述の如く形成されてよく、またその深さ
はバルブが使用される過程に於て生じる当接面のI章耗
最に実質的に対応する数ミリ程度の小さい伯であってよ
く、従って複合層中に分散されるセラミック粒子の」も
少膳であってよいので、上述の如き従来のバルブに比し
て低置な内燃機関用鋼製バルブを得ることができる。
Furthermore, according to the invention, the composite layer defining the abutment surface with the rocker arm may be formed as described above, and its depth may be equal to the depth of the abutment surface that occurs during the use of the valve. Compared to conventional valves such as those mentioned above, the diameter of the ceramic particles dispersed in the composite layer can be small, on the order of a few millimeters, which corresponds substantially to the wear. A low-mounted steel valve for an internal combustion engine can be obtained.

本発明の内燃機、開用鋼製パルプに於けるセラミック粒
子は、酸化アルミニウム、酸化マグネシウム、酸化ケイ
素、酸化チタニウム等の酸化物系セラミック粒子、炭化
チタニウム、炭化タンタル、炭化モリブデン、炭化クロ
ム等の炭化物系セラミック粒子、窒化チタニウム、窒化
ジルコニウム、窒化ケイ素等の窒化物系セラミック粒子
の何れであってもよく、またこれらの二IIJX上の混
合粒子であってもよいが、本願発明者等が行った実験的
研究の結果によれば、ロッカーアームとの当接面の耐摩
耗性を十分な値に確保し、しかもバルブのコストを低減
するためには、複合層中に於番プるヒラミック粒子の体
積率は20〜95%、特に45〜85%であることが好
ましい。
The ceramic particles in the internal combustion engine and utility steel pulp of the present invention include oxide ceramic particles such as aluminum oxide, magnesium oxide, silicon oxide, and titanium oxide, and carbides such as titanium carbide, tantalum carbide, molybdenum carbide, and chromium carbide. It may be any of nitride-based ceramic particles such as titanium nitride, zirconium nitride, silicon nitride, etc., or it may be a mixture of these two IIJX particles. According to the results of experimental research, in order to ensure sufficient wear resistance of the contact surface with the rocker arm and reduce the cost of the valve, it is necessary to increase the amount of helical particles in the composite layer. The volume fraction is preferably 20 to 95%, particularly 45 to 85%.

また本願発明者等が行った実験的研究の結果によれば、
鋼のマトリックス中に分散されるセラミック粒子の大き
さが小さすぎる場合にはロッカーアームとの当接面の耐
摩耗性を十分に向上させることが困難であり、セラミッ
ク粒子の大きさが大きすぎる場合にはバルブが使用され
る過程に於てセラミック粒子が複合層の表面より脱落す
るなどの不具合が生じ易くなる。従って本発明の他の一
つの詳細な特徴によれば、セラミック粒子の平均粒径は
0.1〜190μ、特に1.0〜30μとされる。
Also, according to the results of experimental research conducted by the inventors of the present application,
If the size of the ceramic particles dispersed in the steel matrix is too small, it is difficult to sufficiently improve the wear resistance of the contact surface with the rocker arm, and if the size of the ceramic particles is too large. When the valve is used, problems such as ceramic particles falling off the surface of the composite layer tend to occur. According to another detailed feature of the invention, therefore, the average particle size of the ceramic particles is between 0.1 and 190μ, in particular between 1.0 and 30μ.

また本願発明者等が行った実験的研究の結果によれば、
ロッカーアームとの当接面のうちセラミック粒子分散複
合層にて郭定される部分の面積比が小さすぎる場合には
、当接面の耐摩耗性を十分に向上させることが困難であ
る。従って本発明の更に他の一つの詳細な特徴によれば
、ロッカーアームとの当接面の50%以上の部分がセラ
ミック粒子分散複合層にて郭定される。
Also, according to the results of experimental research conducted by the inventors of the present application,
If the area ratio of the portion defined by the ceramic particle dispersed composite layer of the contact surface with the rocker arm is too small, it is difficult to sufficiently improve the wear resistance of the contact surface. According to yet another detailed feature of the invention, 50% or more of the contact surface with the rocker arm is defined by the ceramic particle dispersed composite layer.

更に本願発明者等が行った実験的研究の結果によれば、
複合層の中央部の深さが小さすぎる場合には、バルブの
使用の過程に於て生じる当接面の摩耗量をカバーしきれ
なくなり、複合層の中央部の深さが大きすぎる場合には
、それに伴い使用されるセラミック粒子の量が多(なる
のでバルブのコストが高くなる。従って本発明の更に他
の一つの詳細な特徴によれば、複合層の中央部の深さは
0.1〜2,011.好ましくは0.2〜0.5I1m
とされる。
Furthermore, according to the results of experimental research conducted by the inventors of the present application,
If the depth of the center of the composite layer is too small, it will not be able to cover the amount of wear on the contact surface that occurs during the use of the valve, and if the depth of the center of the composite layer is too large, According to yet another detailed feature of the invention, the depth of the central part of the composite layer is 0.1. ~2,011. Preferably 0.2-0.5I1m
It is said that

尚本発明の内燃機関用鋼製バルブが上述の如くレーザ等
の高密度エネルギ源を用いて製造される場合には、セラ
ミック粉末の表面部又は全体が溶融され、未溶融のセラ
ミックがマトリックス中に残存し又は溶融されたセラミ
ックがマトリックス中に晶出することにより、セラミッ
クがマトリックス中に微細に分散されるが、溶融された
セラミックの一部はマトリックスとしての鋼中に固溶さ
れるので、かくしてマトリックス中に固溶されたセラミ
ックによってもロッカーアームとの当接面の耐摩耗性が
向上される。また本発明の内燃機関用鋼製パルプが上述
の如き方法にて製造される場合には、バルブ粗材のステ
ム先端の端面全面が溶融されると所mraだれ現象が発
生するので、ロッカーアームとの当接面のうち複合層に
て郭定される部分の面積比は90%以下に抑えられるこ
とが好ましい。更に本発明の内燃機関用鋼製バルブを構
成する鋼はオーステナイト系耐熱鋼やマルテンサイト系
耐熱鋼など任意の耐熱鋼であってよい。
Note that when the steel valve for internal combustion engines of the present invention is manufactured using a high-density energy source such as a laser as described above, the surface portion or the entire ceramic powder is melted, and unmelted ceramic is left in the matrix. The remaining or molten ceramic crystallizes in the matrix, so that the ceramic is finely dispersed in the matrix, but a part of the molten ceramic is solidly dissolved in the steel as a matrix, thus The ceramic dissolved in the matrix also improves the wear resistance of the contact surface with the rocker arm. Furthermore, when the steel pulp for internal combustion engines of the present invention is produced by the method described above, when the entire end surface of the stem tip of the valve material is melted, mra sagging occurs in places, so the rocker arm and It is preferable that the area ratio of the portion of the contact surface defined by the composite layer be suppressed to 90% or less. Further, the steel constituting the steel valve for an internal combustion engine of the present invention may be any heat-resistant steel such as austenitic heat-resistant steel or martensitic heat-resistant steel.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

X11 第1図は本発明による内燃ia+用鋼製鋼製バルブつの
実施例を示す正面図、第2図は第1図に示された実施例
の要部を示す広大部分縦断面図である。これらの図に於
て、1は耐熱鋼(J[S規格S U H36)にて形成
された内燃機関用鋼製バルブを示している。バルブ1は
図には示されていない内燃機関の吸気ボート又は排気ボ
ートを開閉する傘部2と、該傘部と一体に形成され軸線
3に沿って延在するステム4とよりなっている。ステム
4はその先端4aの端面5に図には示されていないロッ
カーアームとの当接面6を有している。第2図に詳細に
示されている如く、当接面6は図示の実施例に於ては、
マトリックスとしての耐熱鋼7中にTiC粒子8が分散
された複合層9により郭定されている。
X11 FIG. 1 is a front view showing an embodiment of the steel valve for internal combustion IA+ according to the present invention, and FIG. 2 is a large-scale longitudinal sectional view showing the main part of the embodiment shown in FIG. 1. In these figures, reference numeral 1 indicates a steel valve for an internal combustion engine made of heat-resistant steel (J [S standard S U H36). The valve 1 includes a cap section 2 that opens and closes an intake boat or an exhaust boat of an internal combustion engine (not shown), and a stem 4 that is formed integrally with the cap section and extends along an axis 3. The stem 4 has a contact surface 6 with a rocker arm (not shown) on an end surface 5 of its tip 4a. As shown in detail in FIG. 2, the abutment surface 6 in the illustrated embodiment is
It is defined by a composite layer 9 in which TiC particles 8 are dispersed in heat-resistant steel 7 as a matrix.

この第1図及び第2図に示された内燃機関用鋼製バルブ
は以下の如く製造された。まず第3図に示されている如
く、耐熱鋼(JIS規格S U l−136)よりなり
第1図及び第2図に示された内燃機開用鋼製バルブと実
質的に同一の形状及び寸法のバルブ粗材10を用意した
。次いで平均粒径80μのTiC粉末を用意し、該Ti
C粉末に粘結剤としてポリビニルアルコールの5%水溶
液を添加することにより、水よりも粘性が高く粘土より
も粘性が低いペーストを形成した。次いでバルブ粗材1
0の先端10aの端面11上に幅約1.011mの周縁
部を除き厚さ約111−の層状に配置し、該ペーストを
大気中に於て約110℃にて20分間に亙り加熱するこ
とによって乾燥させ、これにより第3図に示されている
如く端面11上にTiC粉末層12を形成した。
The steel valve for an internal combustion engine shown in FIGS. 1 and 2 was manufactured as follows. First, as shown in Fig. 3, it is made of heat-resistant steel (JIS standard S U l-136) and has substantially the same shape and dimensions as the internal combustion engine opening steel valve shown in Figs. 1 and 2. A valve rough material 10 was prepared. Next, TiC powder with an average particle size of 80 μm was prepared, and the Ti
A 5% aqueous solution of polyvinyl alcohol as a binder was added to the C powder to form a paste that was more viscous than water and less viscous than clay. Next, valve rough material 1
The paste is placed in a layer with a thickness of about 111-m on the end face 11 of the tip 10a of the paste, excluding the periphery with a width of about 1.011 m, and heated in the atmosphere at about 110° C. for 20 minutes. The TiC powder layer 12 was thereby formed on the end surface 11 as shown in FIG.

次いで第4図に示されている如く、レーザガン13の先
端よりシールドガスとしてのアルゴンを放出させ、これ
により端面11の溶融部をアルゴンにてシールドしつつ
、TiC1tf)末層12に対しレーザ14を照射し、
これにより下記の表1に示された条件にてTiC粉末及
び端面11を局部的に加熱して先端10aを部分的に溶
融させ、これにより溶融層中にTiC粉末を分散させ、
第5図に示されている如くマトリックスとしての耐熱鋼
7中にTiC粒子8が分散された複合層15を形成した
。次いで複合層15の表面を軸線3に対し垂直に0.2
〜Q、4+em研削することにより、第1図及び第2図
に示されている如き内燃機関用鋼製バルブとした。
Next, as shown in FIG. 4, argon as a shielding gas is emitted from the tip of the laser gun 13, thereby shielding the molten part of the end face 11 with argon, and the laser 14 is applied to the TiC1tf) terminal layer 12. irradiate,
As a result, the TiC powder and the end surface 11 are locally heated under the conditions shown in Table 1 below to partially melt the tip 10a, thereby dispersing the TiC powder in the molten layer,
As shown in FIG. 5, a composite layer 15 was formed in which TiC particles 8 were dispersed in heat-resistant steel 7 as a matrix. Next, the surface of the composite layer 15 is perpendicular to the axis 3 by 0.2
~Q, 4+em grinding was performed to obtain a steel valve for an internal combustion engine as shown in FIGS. 1 and 2.

表     ル −ザ出カニ3kW レーザ照射時間:0.8sec レーザビーム径:6.511 アルゴンの流ffi:  80Q/1n上述の如く製造
されたバルブのステム4の先端4aの直径りは8.0I
I11であり、複合層9の直径dは7.Qia+であり
、複合119の深さtは1.21であった。また複合1
19にFA&ノるTiC粒子の平均粒径及び体積率はそ
れぞれ3.0μ、55%であり、当接面6の硬さはHV
−600〜1100であった。
Table Laser output 3kW Laser irradiation time: 0.8sec Laser beam diameter: 6.511 Argon flow ffi: 80Q/1n The diameter of the tip 4a of the stem 4 of the valve manufactured as described above is 8.0I
I11, and the diameter d of the composite layer 9 is 7. Qia+, and the depth t of composite 119 was 1.21. Also complex 1
The average particle diameter and volume fraction of the TiC particles in 19 are 3.0μ and 55%, respectively, and the hardness of the contact surface 6 is HV.
-600 to 1100.

上述の如く製造されたバルブのロッカーアームとの当接
面の耐摩耗性を評価すべく、荷重20kg、ロータ回転
数104、滑り速度Q、 3 m/SeO。
In order to evaluate the wear resistance of the contact surface with the rocker arm of the valve manufactured as described above, the load was 20 kg, the rotor rotation speed was 104, and the sliding speed Q was 3 m/SeO.

滑り距離1001Wの条件にて表面硬さHv=約500
の高り[1ム鋳鉄を相手材とする入超式摩耗試験を行い
、当接面の摩耗ff1(摩耗長さmm)を測定した。ま
た比較の目的でマルテンサイト系耐熱鋼(JIS規格5
UH11)製のチップが溶接され該チップが高周波焼入
れにより硬化されたバルブ(比較例1)、及びステライ
ト合金がバルブ粗材のステム先端の端面に盛金された従
来のバルブ(比較例2)についても同一の条件にて摩耗
試験を行った。これらの摩耗試験の結果を第6図に示す
Surface hardness Hv = approx. 500 under the condition of sliding distance 1001W
A wear test was conducted using 1 mm cast iron as the mating material, and the wear ff1 (wear length mm) of the contact surface was measured. In addition, for comparison purposes, martensitic heat-resistant steel (JIS standard 5
Regarding a valve in which a tip made of UH11) was welded and the tip was hardened by induction hardening (Comparative Example 1), and a conventional valve in which Stellite alloy was deposited on the end face of the stem tip of the valve raw material (Comparative Example 2). A wear test was also conducted under the same conditions. The results of these wear tests are shown in FIG.

第6図より、実施例1の内燃機関用鋼製バルブの当接面
の摩耗量は比較例1及び2の摩耗量に比較してそれぞれ
約1/8、約1/3であり、従って実施例1のバルブの
当接面の耐摩耗性は何れの比較例のバルブよりも逼かに
優れていることが解る。
From FIG. 6, the amount of wear on the contact surface of the steel valve for internal combustion engines in Example 1 is about 1/8 and about 1/3 of the amount of wear in Comparative Examples 1 and 2, respectively. It can be seen that the abrasion resistance of the contact surface of the valve of Example 1 is significantly superior to that of any of the valves of Comparative Examples.

また実施例のバルブの複合H9と耐熱鋼のみよりなる部
分との一体性、及び比較例のバルブのチップ又は盛金部
と耐熱鋼のみよりなる部分との一体性を評価すべく、衝
撃荷重40kg/l1l12)衝撃荷重負荷時間0.3
sec1負荷サイクル1×107ナイクルの条件にて繰
返し衝撃試験を行ったところ、比較例1及び2のバルブ
に於てはチップ及びステライト合金の盛金部が耐熱鋼の
みよりなる部分より剥離する兆候が見られたのに対し、
実施例1のバルブに於てはかかる兆候は全く認められな
かった。
In addition, in order to evaluate the integrity of the composite H9 of the valve of the example and the part made only of heat-resistant steel, and the integrity of the chip or fillet part of the valve of the comparative example and the part made only of heat-resistant steel, an impact load of 40 kg was applied. /l1l12) Impact load loading time 0.3
When repeated impact tests were conducted under the conditions of a sec1 load cycle of 1 x 107 nicles, in the valves of Comparative Examples 1 and 2, there were signs that the chip and the stellite alloy fill-in part were separated from the part made only of heat-resistant steel. Whereas it was seen
No such signs were observed in the valve of Example 1.

また第7図は上述の如く製造されたバルブの複合層9の
中央部の軸線に沿う断面の金属組織を400倍にて示ず
光学顕微鏡写真である。図に於て白色の島状の部分がT
iC粒子であり、灰色の地の部分がマトリックスとして
の耐熱鋼の部分である。この第7図より、比較的微細で
比較的均一な大きさのTiC粒子がマトリックス中に均
一に分散されており、気孔等の不良は全く発生していな
いことが解る。
Further, FIG. 7 is an optical micrograph showing the metal structure of a cross section along the axis of the central part of the composite layer 9 of the bulb manufactured as described above, but not shown at 400 times magnification. In the figure, the white island-like part is T
These are iC particles, and the gray area is the heat-resistant steel part as a matrix. From FIG. 7, it can be seen that relatively fine and relatively uniformly sized TiC particles are uniformly dispersed in the matrix, and defects such as pores are not generated at all.

衷ILと TiC粉末の代わりに平均粒径80μのTiC粉末と平
均粒径60μのAt 203粉末とが1:1の重量比に
て混合された混合粉末が使用された点を除き、上述の実
施例1の場合と同一の要領及び同一の条件にてバルブを
製造した。かくして製造されたバルブのステム先端のロ
ッカーアームとの当接面について実施例1の場合と同一
の条件にて入超式摩耗試験を行った。この摩耗試験の結
果を実施例1の摩耗試験の結果と共に第8図に示す。
The above implementation was carried out except that instead of IL and TiC powder, a mixed powder of TiC powder with an average particle size of 80μ and At 203 powder with an average particle size of 60μ mixed in a weight ratio of 1:1 was used. A valve was manufactured in the same manner and under the same conditions as in Example 1. The contact surface of the stem tip of the valve thus manufactured with the rocker arm was subjected to an ultra-thread wear test under the same conditions as in Example 1. The results of this wear test are shown in FIG. 8 together with the results of the wear test of Example 1.

尚複合層に於けるTiC粒子及びAl2O3粒子の平均
粒径はそれぞれ3.0μ、2.5μであり、これらの粒
子の体積率は両者共30%であった。
The average particle diameters of the TiC particles and Al2O3 particles in the composite layer were 3.0 .mu. and 2.5 .mu., respectively, and the volume fractions of these particles were both 30%.

第6図及び第8図より、この実施例のバルブのロッカー
アームとの当接面の摩耗量は比較例1及び比較例2の摩
耗量のそれぞれ約1/10.約1/4であり、従ってこ
の実施例のバルブの当接面の耐摩耗性は比較例1及び2
の何れのバルブよりも遥かに優れていることが解る。
From FIGS. 6 and 8, the amount of wear on the contact surface of the valve of this example with the rocker arm is approximately 1/10 of the amount of wear in Comparative Examples 1 and 2, respectively. Therefore, the wear resistance of the contact surface of the valve of this example is about 1/4 that of Comparative Examples 1 and 2.
You can see that it is far superior to any other valve.

またこの実施例のバルブについても実施例1の場合と同
一の条件にて繰返し衝撃試験を行ったところ、複合層が
耐熱鋼のみよりなる部分より剥離する兆候は全く認めら
れなかった。
Further, when the valve of this example was subjected to repeated impact tests under the same conditions as in Example 1, no signs of peeling of the composite layer from the portion made only of heat-resistant steel were observed.

実施例3 TiC粉末の代わりに平均粒径50μの7−i3N4粉
末と平均粒径80μのTaC粉末とが3=1の重層化に
て混合された混合粉末が使用された点を除き、実施例1
の場合と同一の要領及び同一の条件にてバルブを製造し
た。かくして製造されたバルブについて実施例1の場合
と同一の条件にて入超式摩耗試験を行った。この摩耗試
験の結果を第8図に示す。尚複合層に於けるTi3N4
粒子及び180粒子の平均粒径はそれぞれ1.0μ、3
.5μであり、これらの粒子の体積率はそれぞれ30%
、10%であった。
Example 3 Example 3 except that a mixed powder in which 7-i3N4 powder with an average particle size of 50 μm and TaC powder with an average particle size of 80 μm were mixed in a 3=1 multilayer structure was used instead of TiC powder. 1
A valve was manufactured in the same manner and under the same conditions as in the case of . The thus manufactured valve was subjected to an ultra-thread wear test under the same conditions as in Example 1. The results of this wear test are shown in FIG. Furthermore, Ti3N4 in the composite layer
The average particle diameters of particles and 180 particles are 1.0μ and 3μ, respectively.
.. 5μ, and the volume fraction of these particles is 30% each.
, 10%.

第6図及び第8図より、この実施例のバルブのロッカー
アームとの当接面との摩耗量は上述の実施例1及び2の
場合よりも僅かに大きいが、比較例1及び2の摩耗量の
それぞれ約115、約1/2であり、従ってこの実施例
のバルブの当接面の耐摩耗性も比較例1及び2よりも遥
かに優れていることが解る。
6 and 8, the amount of wear on the abutment surface of the valve of this example with the rocker arm is slightly larger than that of Examples 1 and 2 described above, but the amount of wear in Comparative Examples 1 and 2 is Therefore, it can be seen that the wear resistance of the valve contact surface of this example is also far superior to that of Comparative Examples 1 and 2.

またこの実施例のバルブについても実施例1の場合と同
一の条件にて繰返し衝撃試験を行ったところ、複合層が
耐熱鋼のみよりなる部分より剥離する兆候は全く認めら
れなかった。
Further, when the valve of this example was subjected to repeated impact tests under the same conditions as in Example 1, no signs of peeling of the composite layer from the portion made only of heat-resistant steel were observed.

11九先 ステム先端の端面の面積に対する複合層の面積の比率(
以下複合化面積率という)により、ロッカーアームとの
当接面の摩耗fit(摩耗長さ膳■)が如何に変化する
かを検討すべく、実施例1の場合と同一の要領及び条件
にてパルプ粗材の先端の端面に平均粒径3.0μの粒子
が体積率60%にて分散された耐熱鋼よりなる複合層を
形成し、各バルブの当接面について実施例1の場合と同
一の条件にて入超式摩耗試験を行った。この場合複合化
面積率が90%、80%、60%、50%、40%、2
0%に設定された6種類のバルブについて摩耗試験を行
った。この摩耗試験の結果金弟9図に示す。尚第9図に
於て仮想線はステライト合金が盛金された従来のバルブ
のロッカーアームとの。
11 Ratio of the area of the composite layer to the area of the end surface of the tip of the nine-pointed stem (
In order to examine how the wear fit (wear length) of the contact surface with the rocker arm changes depending on the composite area ratio (hereinafter referred to as composite area ratio), the same procedure and conditions as in Example 1 were carried out. A composite layer made of heat-resistant steel in which particles with an average particle size of 3.0μ are dispersed at a volume ratio of 60% is formed on the end face of the tip of the pulp rough material, and the contact surface of each valve is the same as in Example 1. An ultra-high-pressure wear test was conducted under the following conditions. In this case, the composite area ratio is 90%, 80%, 60%, 50%, 40%, 2
Wear tests were conducted on six types of valves set at 0%. The results of this wear test are shown in Figure 9. In Fig. 9, the imaginary line indicates the rocker arm of a conventional valve filled with Stellite alloy.

当接面の摩耗ff1(摩耗長さl−)を示している。The wear ff1 (wear length l-) of the contact surface is shown.

第9図にす、ロッカーアームとの当接面の摩耗量がステ
ライト合金が盛金された従来のバルブよりも小さくなる
のは、複合化面積率が45%以上、好ましくは50%以
上の場合であることが解る。
As shown in Figure 9, the amount of wear on the contact surface with the rocker arm is smaller than that of conventional valves with stellite alloy overlay when the composite area ratio is 45% or more, preferably 50% or more. It turns out that.

以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて他の種々の実施例が可能で
あることは当業者にとって明らかであろう。
Although the present invention has been described above in detail with reference to several embodiments, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. It will be clear to those skilled in the art that

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による内燃機関用鋼製パルプの一つの実
施例を示す正面図、第2図は第1図に示された実施例の
要部を示す拡大部分縦断面図、第3図乃至第5図は第1
図及び第2図に示された実施例のバルブの製造工程を示
す工程図、第6図は実施例1のバルブ及び従来のバルブ
のステム先端のロッカーアームとの当接面について行わ
れた摩耗試験の結果を示すグラフ、第7図は実施例1の
バルブの複合層の中央の軸線に沿う断面の金属組織を4
00倍にて示す光学顕微鏡写真、第8図は実施例1〜3
のバルブのステム先端のロッカーアームとの当接面につ
いて行われた摩耗試験ノ結果を示すグラフ、第9図は複
合化面積率を種々の値に設定してバルブのステム先端の
ロッカーアームとの当接面について行われた摩耗試験の
結果を示すグラフである。 1・・・内燃機関用鋼製バルブ、2・・・傘部、3・・
・軸線、4・・・ステム、4a・・・先端、5・・・端
面、6・・・当接面、7・・・耐熱鋼、8・・・TiC
粒子、9・・・複合層。 10・・・バルブ粗材、10a・・・先端、11・・・
端面。 12・・・TiC粉末粉末層、13・・・レーザガン、
14・・・レーザ、15・・・複合層 特 許 出 願 人  トヨタ自動車株式会社代   
  理     人   弁理士  明  石  昌 
 毅第1図 第 6 図 比較例1 比較例2 実施例1 第7 図 へ 複合化面槙率(%)
FIG. 1 is a front view showing one embodiment of the steel pulp for internal combustion engines according to the present invention, FIG. 2 is an enlarged longitudinal cross-sectional view of a main part of the embodiment shown in FIG. 1, and FIG. Figures 5 to 5 are the first
FIG. 6 is a process diagram showing the manufacturing process of the valve of the embodiment shown in FIG. A graph showing the test results, FIG. 7, shows the metal structure of a cross section along the central axis of the composite layer of the bulb of Example 1.
Optical micrograph shown at 00x magnification, Figure 8 shows Examples 1 to 3.
Figure 9 is a graph showing the results of wear tests conducted on the abutment surface between the tip of the valve stem and the rocker arm. It is a graph showing the results of a wear test conducted on the contact surface. 1... Steel valve for internal combustion engine, 2... Umbrella part, 3...
・Axis line, 4... Stem, 4a... Tip, 5... End face, 6... Contact surface, 7... Heat resistant steel, 8... TiC
Particles, 9...composite layer. 10... Valve rough material, 10a... Tip, 11...
End face. 12... TiC powder powder layer, 13... laser gun,
14...Laser, 15...Composite layer patent Applicant: Toyota Motor Corporation representative
Patent attorney Masa Akashi
Takeshi Figure 1 Figure 6 Comparative Example 1 Comparative Example 2 Example 1 Figure 7 Combined surface area ratio (%)

Claims (5)

【特許請求の範囲】[Claims] (1)ステム先端にロッカーアームとの当接面を有し、
該当接面が鋼のマトリックス中にセラミック粒子が分散
された複合層にて郭定されている内燃機関用鋼製バルブ
(1) The tip of the stem has a contact surface with the rocker arm,
A steel valve for internal combustion engines whose contact surface is defined by a composite layer of ceramic particles dispersed in a steel matrix.
(2)特許請求の範囲第1項の内燃機関用鋼製バルブに
於て、前記複合層に於ける前記セラミック粒子の体積率
は20〜92%であることを特徴とする内燃機関用鋼製
バルブ。
(2) The steel valve for internal combustion engines according to claim 1, wherein the volume percentage of the ceramic particles in the composite layer is 20 to 92%. valve.
(3)特許請求の範囲第1項又は第2項の内燃機関用鋼
製バルブに於て、前記セラミック粒子の平均粒径は0.
5〜190μであることを特徴とする内燃機関用鋼製バ
ルブ。
(3) In the steel valve for an internal combustion engine according to claim 1 or 2, the ceramic particles have an average particle size of 0.
A steel valve for an internal combustion engine, characterized in that it has a diameter of 5 to 190μ.
(4)特許請求の範囲第1項乃至第3項の何れかの内燃
機関用鋼製バルブに於て、前記当接面の50%以上の部
分が前記複合層にて郭定されていることを特徴とする内
燃機関用鋼製バルブ。
(4) In the steel valve for an internal combustion engine according to any one of claims 1 to 3, 50% or more of the contact surface is defined by the composite layer. A steel valve for internal combustion engines featuring:
(5)特許請求の範囲第1項乃至第4項の何れかの内燃
機関用鋼製バルブに於て、前記複合層の中央部の深さは
0.1〜2.0mmであることを特徴とする内燃機関用
鋼製バルブ。
(5) The steel valve for an internal combustion engine according to any one of claims 1 to 4, characterized in that the depth of the central portion of the composite layer is 0.1 to 2.0 mm. Steel valves for internal combustion engines.
JP60138197A 1985-06-25 1985-06-25 Steel valve for internal-combustion engine Pending JPS62611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60138197A JPS62611A (en) 1985-06-25 1985-06-25 Steel valve for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60138197A JPS62611A (en) 1985-06-25 1985-06-25 Steel valve for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS62611A true JPS62611A (en) 1987-01-06

Family

ID=15216348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60138197A Pending JPS62611A (en) 1985-06-25 1985-06-25 Steel valve for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS62611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842395A (en) * 1984-12-27 1989-06-27 Canon Kabushiki Kaisha Finder of variable magnification
US4905658A (en) * 1983-08-26 1990-03-06 Pfefferle William C Method of operating I.C. engines and apparatus thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905658A (en) * 1983-08-26 1990-03-06 Pfefferle William C Method of operating I.C. engines and apparatus thereof
US4842395A (en) * 1984-12-27 1989-06-27 Canon Kabushiki Kaisha Finder of variable magnification

Similar Documents

Publication Publication Date Title
CN105779997A (en) Method for cladding nickel-based alloy coating on surface of vermicular graphite cast iron mould after laser pre-heating treatment
JPH03194157A (en) Light metal pistion for pressure cast internal combustion engine
US7013858B2 (en) Method for the production of a valve seat
KR101048733B1 (en) Method of manufacturing wear protection devices and wear protection devices
CN105603260A (en) High-temperature-resistant turbocharger turbine wheel
US4483286A (en) Piston
CN1108211C (en) Cam shaft of iron-base surface composite material and its manufacture
JPS62611A (en) Steel valve for internal-combustion engine
JPS60258481A (en) Manufacture of surface coated member containing dispersed particles
US4421717A (en) Method of making wear resistant ferrous based parts
RU2310089C2 (en) Piston for large-capacity engine and method of making wear protective layer of such piston (versions)
JPS62178336A (en) Sliding or frictional blank with functional section consisting of ceramic material and manufacture thereof
WO1996015359A1 (en) Ceramic sliding part
KR102205475B1 (en) Thin layer tappet including WC-Ni based hard metals and manufacturing thereof
KR100205795B1 (en) Valve lifter and its mamufacturing method of internal combustion engine
JPS60224790A (en) Wear resistant al alloy member and its production
KR20020019296A (en) Sintered alloy for valve seat manufactured by laser cladding
JPS62612A (en) Steel valve for internal-combustion engine
JPH09317413A (en) Joining type valve seat
JPS62177184A (en) Cast iron cylinder head for internal combustion engine and its production
JPH10141019A (en) Internal combustion engine tappet and its manufacture
JPH0227149A (en) Piston made of al alloy
CN110777321B (en) Manufacturing method of wear-resistant cylinder sleeve based on surface treatment
JPS5947523A (en) Sliding member
JP2775885B2 (en) Cylinder head and method of manufacturing the same