JPS6261142B2 - - Google Patents

Info

Publication number
JPS6261142B2
JPS6261142B2 JP54073695A JP7369579A JPS6261142B2 JP S6261142 B2 JPS6261142 B2 JP S6261142B2 JP 54073695 A JP54073695 A JP 54073695A JP 7369579 A JP7369579 A JP 7369579A JP S6261142 B2 JPS6261142 B2 JP S6261142B2
Authority
JP
Japan
Prior art keywords
core material
pressure
toner
capsule toner
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54073695A
Other languages
Japanese (ja)
Other versions
JPS55164834A (en
Inventor
Sajiro Inoe
Tetsuo Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7369579A priority Critical patent/JPS55164834A/en
Publication of JPS55164834A publication Critical patent/JPS55164834A/en
Publication of JPS6261142B2 publication Critical patent/JPS6261142B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電子写真法、静電記録法、磁気記録法
或いは静電印刷法などに用いられるトナーに関
し、特に加圧定着に適したカプセルトナー及び該
カプセルトナーの製造方法に関する。 従来、電子写真法としては米国特許第2297691
号、同第2825814号、同第3220324号、同第
3220831号、特公昭42−23910号公報及び特公昭43
−24748号公報等に記載されている如く、多数の
方法が知られているが、一般には光導電性物質を
利用し、種々の手段により感光体上に電気的潜像
を形成し、次いで該潜像をトナーを用いて現像
し、必要に応じて紙等の転写材にトナー画像を転
写した後、加熱、圧力或いは溶剤蒸気などにより
定着し複写物を得るものである。 また、電気的潜像をトナーを用いて可視化する
方法も種々知られている。 例えば米国特許第2874063号明細書に記載され
ている磁気ブラシ法、同第2618552号明細書に記
載されているカスケード現像法及び同第2221776
号明細書に記載されている粉末雲法、同第
2895847号明細書に記載されているタツチダウン
現像法及びフアーブラシ現像法、液体現像法等多
数の現像法が知られている。これらの現像法など
に用いられるトナーとしては、従来天然或いは合
成樹脂中に染料又は顔料を分散させた微粉末が使
用されている。更に、第3物質を種々の目的で添
加した現像微粉末を使用することも知られてい
る。 現像されたトナー画像は、必要に応じて紙など
の転写材に転写され定着される。 トナー画像の定着方法としては、トナーをヒー
ター或いは熱ローラーなどにより加熱溶融して支
持体に融着固化させる方法、有機溶剤によりトナ
ーのバインダー樹脂を軟化或いは溶解し支持体に
定着する方法、加圧によりトナーを支持体に定着
する方法などが知られている。 トナーは夫々の定着法に適するように材料を選
択され、特定の定着法に使用されるトナーは他の
定着法に使用できないのが一般的である。特に、
従来広く行われているヒーターによる熱融着定着
法に用いるトナーを熱ローラー定着法、溶剤定着
法、圧力定着法などに転用することはほとんど不
可能である。従つて、夫々の定着法に適したトナ
ーが研究開発されている。 トナーを加圧により定着する方法は米国特許第
3269626号明細書、特公昭46−15876号公報などに
記載されており、省エネルギー、無公害、複写機
の電源を入れれば待時間なしで複写が行えるこ
と、コピーの焼け焦げの危険もないこと、高速定
着が可能なこと及び定着装置が簡単であることな
ど利点が多い。 しかし、トナーの定着性、加圧ローラーへのオ
フカツト現象、加圧ローラーへの紙の巻付きなど
問題点もあり、加圧定着性の改善の為に種々の研
究開発が行われている。例えば特公昭44−9880号
公報には脂肪族成分と熱可塑性樹脂を含む圧力定
着トナーが記載されており、特開昭48−75032
号、同48−78931号、同49−17739号、同52−
108134号などには核に軟質物質を含んだカプセル
型の圧力定着トナーが記載されており、また特開
昭48−75033号には粘り強い重合体と軟質重合体
のブロツク共重合体を用いた圧力定着トナーが記
載されている。 しかし、加圧定着性能が充分であり、加圧ロー
ラーへのオフセツト現象や紙の巻付きを起さず、
繰り返し使用に対して現像性能、定着性能が安定
しており、キヤリヤー、金属スリーブ、感光体表
面への癒着を起さず、保存中に凝集、ケーキ化し
ない保存安定性の良好である実用的な面で充分満
足できる圧力定着トナーは得られていない。 例えば、軟質物質からなる圧力定着トナーは圧
力定着性は良好であるが、微粉砕してトナー化す
るのが困難であり、加圧ローラーへのオフセツト
現象を起し易く、更にキヤリヤー、感光体表面へ
の癒着を起し易く、また保存中に凝集、ケーキ化
を起すなど種々問題が多い。 また、従来の種々知られている圧力定着性カプ
セルトナーに於ては芯物質に圧力定着性の良好な
軟質物質を用いると圧力定着を繰り返すうちに加
圧ローラーに軟質物質が徐々に付着して、ついに
はオフセツトや転写紙の巻付きを起し、また、定
着性能のバラツキも大きく常に安定した実用的に
満足できるカプセルトナーはいまだに得られてい
ない。 更に、最近ではトナー中に磁性微粒子を含有せ
しめてキヤリヤー粒子を用いない一成分系現像剤
で静電潜像を現像する方法が行われているが、こ
の場合にはトナー結着樹脂は磁性微粒子との分散
性、密着性及びトナーの耐衝撃性、流動性などが
要求され、圧力定着性能と両立させることは相当
に困難なことである。 本発明は圧力定着性カプセルトナーに於て、芯
物質の硬さによつて殻物質の厚みを限定すること
により前述の如き欠点のない性能の安定した圧力
定着性カプセルトナー及びその製造方法を提供す
るものである。 本発明は普通紙に対して加圧による定着性が極
めて良好で安定しており、更に、多数枚複写を行
つても現像性能、定着性能が安定している圧力定
着性カプセルトナー及びその製造方法を提供する
ものである。 更に、本発明は加圧ローラーへのオフセツトを
起さず、キヤリヤー、現像スリーブ、感光体表面
への癒着を起さない圧力定着性カプセルトナー及
びその製造方法を提供するものである。 更に、本発明は使用中或いは保存中に凝集した
り、ケーキ化したりしない保存安定性に優れた圧
力定着性カプセルトナー及びその製造方法を提供
するものである。 更に、本発明は荷電性が良好で、しかも使用中
に常に安定した荷電性を示し、鮮明でカブリのな
い画像の得られる圧力定着性カプセルトナー及び
その製造方法を提供するものである。 更に、本発明は磁性微粒子を含有せしめ、一成
分系現像剤用又は磁気記録用の磁性トナーとした
場合にも、良好な圧力定着性を示し、良好な磁性
を示し、且つ静電的に転写のできる圧力定着性カ
プセルトナー及びその製造方法を提供するもので
ある。 更に、本発明は耐久性に優れ、流動性にも優れ
ている圧力定着性カプセルトナー及びその製造方
法を提供するものである。 即ち、本発明は、圧力定着性芯物質粒子が被膜
性物質で被覆されている圧力定着性カプセルトナ
ーに於て、カプセルトナーの主体粒度をaμm、
芯物質粒子の主体粒度をbμm、芯物質の硬さを
y(JIS―K2530、単位dmm)とすると、該カプ
セルトナーは、0.01exp(23a−b/b)≦y≦5exp (60a−b/b) の関係式[式中、yは0.5〜75であり、a−b/b は、0.04〜0.35である]を満足することを特徴と
する圧力定着性カプセルトナーを提供することに
ある。 さらに、本発明は、圧力定着性芯物質粒子を被
膜性物質で被覆して圧力定着性カプセルトナーを
製造する方法に於て、硬さy(JIS−K2530、単
位dmm)を有する芯物質から芯物質粒子を生成
し、生成された芯物質粒子を分級して主体粒度b
μmを有する芯物質粒子を調製し、調製された芯
物質粒子を被膜性物質で被覆して下記関係式、
0.01exp(23a−b/b)≦y≦5exp(60a−b/b) [式中、aはカプセルトナーの主体粒度aμm
を示し、yは0.5〜75であり、a−b/bは0.04〜0.35 である。] を満足するカプセルトナーを形成することを特
徴とする圧力定着性カプセルトナーの製造方法を
提供することにある。 圧力定着性カプセルトナーに於ては、圧力定着
性を示す芯物質及び荷電性、流動性などを改善す
る殻物質の材料選択がカプセルトナーの性能に影
響を与えるが、更に芯物質の硬さ、主体粒度、壁
の厚さなどが互いに密接に関係しており、それら
の好ましい関係を満足することが、圧力定着性カ
プセルトナーに特に重要であることが判つた。即
ち、カプセルトナーの製造の際に、圧力定着性の
良好な芯物質と荷電性、流動性などの良好な殻物
質を用い、かつ芯物質粒子と殻物質の比率に留意
してカプセルトナーを製造しても常に安定した性
能のカプセルトナーが得られるとは限らなかつ
た。その原因は芯物質粒子の粒径に分布があり、
出来上つたカプセルトナーにも粒度分布があるた
めに、カプセルトナー個々の粒子は必ずしも芯物
質と殻物質の比率が好ましい関係になつていない
為、芯物質の硬さと主体粒度に応じた適切な殻厚
が得られていないからである。 従つて、単に出来上つたカプセルトナーを分級
して粒度分布を揃えても安定した性能のカプセル
トナーは必ずしも得られない。 圧力定着性、荷電性、流動性などが常に安定し
たカプセルトナーを得る為には芯物質粒子の粒度
分布、カプセルトナーの粒度分布を注意深くコン
トロールし、更にその上で芯物質の硬さ、芯物質
の主体粒度に応じて殻物質の厚みを或る一定の関
係になる様にコトロールする必要があることがわ
かつた。 芯物質の硬さに応じて単に殻物質の厚みをコン
トロールする方法も考えられるが、その場合には
芯物質粒子の主体粒度に対応した適切な殻物質の
厚みが得られ難い。つまり主体粒度が大なる場合
にはやや厚みが不足し、小なる場合には厚み過剰
気味となる。この様な主体粒度の違いをカバーす
るには、芯物質粒子と殻物質の比率をコントロー
ルする方法が好ましい。 芯物質の硬さに応じて、芯物質粒子と殻物質の
比率、より実際的には芯物質粒子の粒径と殻物質
の厚みの比率をコントロールすることで性能の安
定化がはかれる。 即ち、芯物質粒子及びカプセルトナーの粒度分
布を適切にコントロールしたうえで、更に前述の
如く、カプセルトナーの主体粒度をaμm、芯物
質粒子の主体粒度をbμm、芯物質の硬さy
(JIS−K2530、単位dmm)とすると、0.01exp
(23a−b/b)≦y≦5exp(60a−b/b) 特に好ましくは0.03exp(27a−b/b)≦y≦3exp (47a−b/b) の関係式[式中、yは0.5〜75であり、a−b/bは 0.04〜0.35である。]を満足するようにコントロ
ールすると性能の安定した圧力定着性カプセルト
ナーが得られることが判つた。 即ち、種々の硬さ(y dmm)の芯物質を用
い、芯物質粒子と殻物質の比率(すなわちカプセ
ルトナーの殻の厚さ)を種々に変化させて実験を
行つたところ、上記の式の範囲のカプセルトナー
が安定した性能を示すことが判つた。 但し、殻を形成するには実用上からはa−bは
一般に0.01μm以上好ましくは0.02μm以上は必
要である。 芯物質粒子及びカプセルトナーの粒度分布コン
トロールは、粒度分布内に於て、最大の粒子数を
占める粒径を意味する主体粒度、及び、主体粒度
からの個々の粒子の粒径分布幅をコントロールす
ることによる。そして或る粒径の粒子数の測定は
粒子アナライザーにより行う。即ち、光学的に拡
大された被測定粒子群の像をテレビジヨンカメラ
によつてビデオ信号に変換し、この画像情報をス
レツシヨールド回路に送り、2値化画像情報と
し、さらに計数回路に送る。計数回路ではテレビ
ジヨンの走査線と、走査線を細分したポイントを
利用し、粒子径及び粒子数を測定する。 粒子アナライザーとしては、例えば日本レギユ
レーター(株)製のLUZEX 450などがある。 芯物質の粒子を製造し、その後に殻物質で被覆
してカプセルトナーを製造する場合には、予め芯
物質粒子を主体粒度±3μmの範囲で分級を行つ
てから殻物質の被覆を行い、更にカプセルトナー
が出来上つてから分級を行い主体粒度±3μmの
カプセルトナーが70%(個数)以上含まれるよう
にするのが特に好ましい。しかし製造条件を適当
に定めることにより、粒度分布が好ましい範囲に
設定出来るならば、以後その製造条件を厳密に規
定することによつて必ずしも分級する必要はなく
なる場合もある。 芯物質の硬さを表わす尺度としてはJISK2530
記載の針入度を用いる。これは一定形状の針が、
一定温度に於て一定荷重で一定時間に貫入する深
さを0.1mm単位で表わすもので、材料試験機の一
種である針入度計を利用して測定する。 前述の関係式に於て、芯物質の硬さに対して
(a−b)/bの値が規定の範囲よりも小さい方
へはずれると、カプセルトナーの荷電性、及び流
動性が悪くなり、凝集による保存安定性低下、耐
久性劣化、を来たす。また逆に大きい方へはずれ
ると荷電性、流動性は維持出来ても、圧力定着性
が極めて悪くなる。 次に、本発明に於て芯物質に用いられる圧力定
着性成分は従来より、圧力定着性カプセルトナー
の芯物質に用いられている物質が適宜使用される
が、圧力下で粘着性、塑性流動を示すもの或いは
常温、常圧下で粘着性を示すもの、例えば軟質物
質粘着付与剤などが単独或いは混合して用いられ
る。 要は圧力定着性を示す材料であれば使用可能で
あり、例えば特公昭44−9880号、特開昭48−7503
号、同48−78931号、同49−17739号、同52−
108134号、同48−75033号などに多数記載されて
いるものが使用可能である。 特に好ましいのは、高級脂肪酸(ステアリン
酸、パルミチン酸、ラウリン酸など)、ポリオレ
フイン(低分子量ポリエチレン、低分子量ポリプ
ロピレン、酸化ポリエチレン、ポリ4フツ化エチ
レンなど)、低分子量ポリスチレン、エポキシ樹
脂、ポリエステル樹脂(酸価10以下)、ポリアミ
ド樹脂、スチレン−ブタジエン共重合体(モノマ
ー比5〜30:95〜70)、エチレン−アクリル酸共
重合体、エチレン−メタクリル酸共重合体、エチ
レン−酢酸ビニル共重合体、ポリビニルピロリド
ン、メチルビニルエーテル―無水マレイン酸共重
合体、マレイン酸変性フエノール樹脂、フエノー
ル変性テルペン樹脂、などである。 また外殻物質としては種々の樹脂類が使用可能
であるが、絶縁性で被膜形成能が良好であるも
の、正又は負荷電性が良好であるもの、流動性が
よく、非凝集性であるもの、芯物質の圧力定着性
を阻害しないものなどが特に好ましい。例えば、
ポリスチレン、ポリ―p―クロルスチレン、ポリ
ビニルトルエン、スチレン―ブタジエン共重合
体、スチレン―アクリル酸共重合体、スチレン―
無水マレイン共重合体などのスチレン又はその置
換体の重合体又は共重合体、ポリエステル樹脂、
アクリル系樹脂、キシレン樹脂、ポリアミド樹
脂、アイオノマー樹脂、フラン樹脂、ケトン樹
脂、テルペン樹脂、ロジン、ロジン変性ペンタエ
リスリトールエステル、天然樹脂変性フエノール
樹脂、天然樹脂変性マレイン酸樹脂、クマロンイ
ンデン樹脂、脂環族炭化水素樹脂、石油樹脂、フ
タル酸酢酸セルロース、澱粉グラフト重合体、ポ
リビニルブチラール、ポリビニルアルコール、な
どが単独或いは混合して使用出来る。特に平均分
子量1500以上のスチレン系樹脂、ポリエステル樹
脂、アイオノマー樹脂、フタル酸酢酸セルロー
ス、澱粉グラフト重合体、ポリビニルブチラール
などが好ましかつた。 芯物質粒子と殻物質の親和性、接着性が悪い場
合には、中間接着層を設けても良い。 また、外殻用の絶縁性物質中に従来よりトナー
に用いられている含金属染料、ニグロシンなどの
荷電制御剤を適当量添加してもよい。 更に荷電制御剤微粒子をトナーと混合(外添)
して用いることも出来る。 本発明のカプセルトナーには必要に応じて従来
よりトナー用の着色剤として用いられている染
料、顔料などが使用可能であり、芯物質粒子また
は外殻の一方或いは両方に添加すればよい。また
磁性トナーを得たい場合にはトナー中に磁性微粒
子を添加すればよい。磁性物質としては磁性を示
すか、磁化可能な材料であればよく、例えば鉄、
マンガン、ニツケル、コバルト、クロムなどの金
属微粉末、各種フエライト、マンガンなどの合金
や化合物、その他の強磁性合金など従来より磁性
材料として知られているものが使用出来る。これ
らの磁性微粒子は芯物質粒子、殻物質のいずれに
添加してもよいが、絶縁性トナーを得る場合には
芯物質粒子に添加するのが好ましい。 本発明のカプセルトナーにより得られた画像は
圧力を負荷された一対のローラー間を通過し定着
されるが、補助的な加熱が行なわれてもよい。加
えられる圧力は一般には約10〜30Kg/cmである。
圧力定着装置に関しては、特公昭44−12797号、
米国特許第3269626号、同第3612682号、同第
3655282号、同第3731358号などに記載がある。 以下本発明を実施例により具体的に説明する。
実施例中の部数は重量部である。 実施例 1〜3 芯物質としての酸化ポリエチレン(密度0.99、
針入度0.5)100部、及びカーボンブラツク10部を
ロールミルを用いて約150℃で30分間充分混練し
た。このものを、カツターミル、ジエツトミル等
の粉砕機を用いて微粉末とした。この微粉状芯物
質粒子の主体粒度は14.5μmであつた。この粉末
を分級し、14.5±3μm径の粒子が90%以上とな
る様にした。 次に、この粒子をスチレン―ブタジエン共重合
体の10%シクロヘキサン溶液に充分分散した後ス
プレイドライアーを用いて乾燥し、スチレン―ブ
タジエン共重合体を穀物質とするカプセルトナー
とした。このカプセルトナーの主体粒度は15.2μ
であつた。 このカプセルトナー10部を鉄粉キヤリアー(日
本鉄粉製、商品名EFV200/300)90部と混合
し、現像剤とした。 この現像剤を乾式電子複写機(キヤノン製、商
品名NP−5000)の現像器に入れ、定着器をデイ
ベロツプ社の定着ローラー(全圧460Kgの上下2
本のクロムメツキされた剛体ローラー)に変えて
連続複写を行なつた。その結果定着性の良好なカ
ブリのない鮮明な画像が得られた。更に、連続複
写を続け、3万枚の複写を行なつたが、初期の画
像に較べて画像性、定着性いずれも遜色のない複
写物が得られた。定着性の試験結果は5〜6級で
あつた。定着性の評価は摩擦に対する染色堅ろう
度試験方法(JIS−L0849−1971)に準じて行つ
た。即ち、摩擦試験機を用いて規定の方法(乾燥
試験)に基づいて、トナーの定着面と摩擦用白綿
布とを互いに摩擦し、摩擦用白綿布の着色の程度
を汚染用グレースケールと比較して、その定着性
の判定を級で示した。 上例に於いて、穀物質の厚みを種々変えて定着
性及び耐久性をテストした。結果は表1の実施例
2,3及び比較例1,2の通りであつた。 実施例 4〜6 実施例1に於いて、芯物質を低分子量ポリエチ
レン(針入度3.5)(商品名、AC−6、アライド
ケミカル製)に代えてほぼ同様に行つた。芯物質
粒子の主体粒度は16.0μmであり、穀物質の厚み
を種々変えて圧力定着性及び耐久性をテストし
た。結果は表−1の実施例4〜6、比較例3の通
りであつた。 実施例 7〜9 実施例1に於いて、芯物質をポリエチレン(針
入度7.5)(商品名、AC−617、アライドケミカル
製)に代えてほぼ同様に行つた。芯物質粒子の主
体粒度は18.0μmであり、穀物質の厚みを種々変
え圧力定着性及び耐久性をテストした結果は表−
1の実施例7〜9、比較例4の通りであつた。 但し、芯物質の粉砕の際に若干の冷却操作が必
要であつた。 実施例 10,11 予め尿素ホルムアルデヒド初期縮合物を次の様
にして調製した。 尿素20部と37%のホルマリン55部を混合し10%
エタノールアミンを加えてPH8.0に調節し、70℃
の温度で25時間撹拌を行ない、若干増粘した透明
な尿素ホルムアルデヒド初期縮合物を得た。 この初期縮合物24部を水180部に溶かし、撹拌
しながら、この中にエチレン―酢酸ビニル共重合
体(アライドケミカル社製、AC―430、針入度
75)の60%トルエン温溶液を乳化分散した。次に
この系にクエン酸を2〜3回に分けて加え、系の
PHを3.5付近に調節し、45〜50℃に保ちながら約
6時間撹拌を続け、更に、一夜放置した。得られ
た沈澱物を、よく水洗乾燥し芯物質粒子を得た。
核内に含まれていたトルエンは長時間のカプセル
化操作の過程で既に大部分が失なわれており、実
質的に固体芯となつていた。針入度75、主体粒度
13μであつた。次いでこのカプセル粒子に実施例
1と同様にスチレン―ブタジエン共重合体の穀物
物質層を設け、同様の定着性、耐久性のテストを
行なつた。 結果を表―1に示す。
The present invention relates to a toner used in electrophotography, electrostatic recording, magnetic recording, electrostatic printing, etc., and particularly relates to a capsule toner suitable for pressure fixing and a method for producing the capsule toner. Conventionally, as an electrophotographic method, U.S. Patent No. 2297691
No. 2825814, No. 3220324, No. 3220324, No.
3220831, Special Publication No. 42-23910 and Special Publication No. 43
Many methods are known, as described in Japanese Patent No. 24748, etc., but in general, a photoconductive substance is used to form an electrical latent image on a photoreceptor by various means, and then the A latent image is developed using toner, and after the toner image is transferred to a transfer material such as paper as necessary, it is fixed by heat, pressure, solvent vapor, etc. to obtain a copy. Various methods are also known for visualizing electrical latent images using toner. For example, the magnetic brush method described in US Pat. No. 2,874,063, the cascade development method described in US Pat. No. 2,618,552, and US Pat. No. 2,221,776
The powder cloud method described in the specification of the same No.
A large number of development methods are known, such as the touchdown development method described in No. 2895847, the furbrush development method, and the liquid development method. As toners used in these developing methods, fine powders in which dyes or pigments are dispersed in natural or synthetic resins have conventionally been used. Furthermore, it is also known to use fine developing powder to which a third substance is added for various purposes. The developed toner image is transferred and fixed onto a transfer material such as paper, if necessary. Methods for fixing toner images include a method in which the toner is heated and melted using a heater or a heated roller, and then fused and solidified on the support, a method in which the binder resin of the toner is softened or dissolved with an organic solvent and then fixed on the support, and a method in which the toner is fixed on the support by applying pressure. A method of fixing toner on a support by using a method is known. Toner materials are selected to be suitable for each fixing method, and toners used for a particular fixing method generally cannot be used for other fixing methods. especially,
It is almost impossible to transfer the toner used in the conventionally widely used heat fusion fixing method using a heater to a hot roller fixing method, a solvent fixing method, a pressure fixing method, or the like. Therefore, toners suitable for each fixing method are being researched and developed. The method of fixing toner by applying pressure is based on US Patent No.
It is described in specification No. 3269626, Japanese Patent Publication No. 46-15876, etc., and is energy saving, non-pollution, copying can be done without waiting time when the copier is turned on, there is no risk of burning copies, and high speed. It has many advantages such as being able to be fixed and having a simple fixing device. However, there are problems with toner fixability, off-cut phenomena on the pressure roller, paper wrapping around the pressure roller, etc., and various research and developments are being carried out to improve the pressure fixability. For example, Japanese Patent Publication No. 44-9880 describes a pressure fixing toner containing an aliphatic component and a thermoplastic resin;
No. 48-78931, No. 49-17739, No. 52-
No. 108134 describes a capsule-type pressure fixing toner containing a soft material in the core, and JP-A-48-75033 describes a pressure fixing toner using a block copolymer of a tenacious polymer and a soft polymer. The fixing toner is listed. However, the pressure fixing performance is sufficient and there is no offset phenomenon or paper wrapping around the pressure roller.
It has stable developing performance and fixing performance even after repeated use, does not cause adhesion to the carrier, metal sleeve, or photoreceptor surface, and has good storage stability that does not cause aggregation or caking during storage.Practical. A pressure fixing toner that is fully satisfactory in terms of surface area has not yet been obtained. For example, a pressure fixing toner made of a soft material has good pressure fixing properties, but it is difficult to finely pulverize into a toner, tends to cause offset phenomenon to the pressure roller, and also There are many problems such as easy adhesion to particles, agglomeration and cake formation during storage. In addition, in various conventional pressure fixing capsule toners, if a soft material with good pressure fixing properties is used as the core material, the soft material gradually adheres to the pressure roller as pressure fixing is repeated. In the end, offset and wrapping of the transfer paper occur, and the fixing performance varies widely, so that a capsule toner that is always stable and that is practically satisfactory has not yet been obtained. Furthermore, recently, a method has been used in which electrostatic latent images are developed using a one-component developer that contains magnetic fine particles in the toner and does not use carrier particles, but in this case, the toner binding resin contains magnetic fine particles. The toner is required to have good dispersibility and adhesion with the toner, as well as impact resistance and fluidity, and it is extremely difficult to achieve both this and the pressure fixing performance. The present invention provides a pressure fixable capsule toner with stable performance without the above-mentioned drawbacks by limiting the thickness of the shell material depending on the hardness of the core material, and a method for producing the pressure fixable capsule toner. It is something to do. The present invention provides a pressure-fixing capsule toner that has extremely good and stable fixing properties under pressure on plain paper, and further has stable developing performance and fixing performance even when copying a large number of sheets, and a method for producing the same. It provides: Furthermore, the present invention provides a pressure-fixable capsule toner that does not cause offset to a pressure roller and does not cause adhesion to a carrier, a developing sleeve, or a photoreceptor surface, and a method for producing the same. Furthermore, the present invention provides a pressure-fixable capsule toner with excellent storage stability that does not aggregate or form cakes during use or storage, and a method for producing the same. Furthermore, the present invention provides a pressure-fixable capsule toner that has good chargeability, always exhibits stable chargeability during use, and provides clear, fog-free images, and a method for producing the same. Furthermore, even when the present invention contains magnetic fine particles and is used as a magnetic toner for one-component developer or magnetic recording, it exhibits good pressure fixing properties, good magnetism, and electrostatic transferability. The present invention provides a pressure-fixable capsule toner and a method for producing the same. Further, the present invention provides a pressure-fixable capsule toner having excellent durability and fluidity, and a method for producing the same. That is, the present invention provides a pressure-fixable capsule toner in which pressure-fixable core material particles are coated with a film material, in which the main particle size of the capsule toner is a μm,
Assuming that the main particle size of the core material particles is bμm and the hardness of the core material is y (JIS-K2530, unit dmm), the capsule toner has the following formula: 0.01exp (23a-b/b)≦y≦5exp (60a-b/ An object of the present invention is to provide a pressure-fixable capsule toner that satisfies the following relational expression b) [wherein y is 0.5 to 75 and a-b/b is 0.04 to 0.35]. Furthermore, the present invention provides a method for manufacturing a pressure fixable capsule toner by coating pressure fixable core material particles with a film material, in which a core material having a hardness y (JIS-K2530, unit: dmm) is used. Generate material particles and classify the generated core material particles to obtain main particle size b
A core material particle having a diameter of μm is prepared, and the prepared core material particle is coated with a coating material to form the following relational expression:
0.01exp(23a-b/b)≦y≦5exp(60a-b/b) [where a is the main particle size of the capsule toner a μm
, y is 0.5 to 75, and a-b/b is 0.04 to 0.35. ] An object of the present invention is to provide a method for producing a pressure-fixable capsule toner, which is characterized by forming a capsule toner that satisfies the following. In pressure fixable capsule toner, the performance of the capsule toner is influenced by the selection of materials for the core material that exhibits pressure fixability and the shell material that improves chargeability, fluidity, etc., but the hardness of the core material, It has been found that the main particle size, wall thickness, etc. are closely related to each other, and that it is particularly important for pressure-fixable capsule toners to satisfy these favorable relationships. That is, when manufacturing capsule toner, a core material with good pressure fixability and a shell material with good chargeability, fluidity, etc. are used, and the ratio of core material particles to shell material is taken into consideration. However, it was not always possible to obtain a capsule toner with stable performance. The reason for this is the distribution of the particle size of the core material particles.
Since the finished capsule toner also has a particle size distribution, each particle of the capsule toner does not necessarily have a favorable ratio of core material to shell material. This is because the thickness is not obtained. Therefore, even if the finished capsule toner is simply classified to have a uniform particle size distribution, it is not necessarily possible to obtain a capsule toner with stable performance. In order to obtain a capsule toner with always stable pressure fixability, chargeability, fluidity, etc., the particle size distribution of the core material particles and the particle size distribution of the capsule toner must be carefully controlled, and then the hardness of the core material and the particle size distribution of the capsule toner must be carefully controlled. It was found that it is necessary to control the thickness of the shell material so that it has a certain relationship depending on the main particle size of the shell material. Although it is conceivable to simply control the thickness of the shell material according to the hardness of the core material, in that case, it is difficult to obtain an appropriate thickness of the shell material corresponding to the main particle size of the core material particles. In other words, when the main particle size is large, the thickness is slightly insufficient, and when it is small, the thickness is slightly excessive. In order to compensate for such differences in main particle size, it is preferable to control the ratio of core material particles to shell material particles. Depending on the hardness of the core material, performance can be stabilized by controlling the ratio between the core material particles and the shell material, or more practically, the ratio between the particle size of the core material particles and the thickness of the shell material. That is, after appropriately controlling the particle size distribution of the core material particles and capsule toner, as described above, the main particle size of the capsule toner is a μm, the main particle size of the core material particles is b μm, and the hardness of the core material is y.
(JIS-K2530, unit dmm) is 0.01exp
(23a-b/b)≦y≦5exp (60a-b/b) Particularly preferably, the relational expression 0.03exp (27a-b/b)≦y≦3exp (47a-b/b) [where y is 0.5 to 75, and ab/b is 0.04 to 0.35. ] It has been found that a pressure-fixing capsule toner with stable performance can be obtained by controlling it to satisfy. That is, when we conducted experiments using core materials with various hardnesses (y dmm) and varying the ratio of core material particles to shell materials (i.e., the thickness of the capsule toner shell), we found that the above equation A range of capsule toners have been found to exhibit stable performance. However, in order to form a shell, from a practical standpoint, a-b generally needs to be 0.01 μm or more, preferably 0.02 μm or more. Particle size distribution control of core material particles and capsule toner involves controlling the main particle size, which means the particle size that accounts for the largest number of particles within the particle size distribution, and the particle size distribution width of individual particles from the main particle size. It depends. The number of particles of a certain particle size is measured using a particle analyzer. That is, an optically magnified image of the particle group to be measured is converted into a video signal by a television camera, this image information is sent to a threshold circuit, converted into binary image information, and further sent to a counting circuit. The counting circuit measures the particle diameter and number of particles using the television scanning line and points obtained by subdividing the scanning line. Examples of particle analyzers include LUZEX 450 manufactured by Nippon Regulator Co., Ltd. When manufacturing capsule toner by manufacturing core material particles and then coating them with a shell material, the core material particles are classified in advance within the range of the main particle size ±3 μm, and then the shell material particles are coated. It is particularly preferable to classify the capsule toner after it is completed so that 70% (number) or more of the capsule toner has a main particle size of ±3 μm. However, if the particle size distribution can be set within a preferable range by appropriately determining the manufacturing conditions, there may be cases in which there is no need for classification by strictly defining the manufacturing conditions. JISK2530 is the standard for expressing the hardness of the core material.
Use the stated penetration. This is because the needle has a certain shape.
It is expressed in 0.1 mm increments as the depth of penetration under a constant load at a constant temperature in a constant time, and is measured using a penetrometer, which is a type of material testing machine. In the above relational expression, if the value of (a-b)/b deviates from the specified range with respect to the hardness of the core material, the chargeability and fluidity of the capsule toner will deteriorate; Aggregation causes decreased storage stability and durability. On the other hand, if it deviates to a larger extent, the pressure fixing properties will be extremely poor even if the chargeability and fluidity can be maintained. Next, in the present invention, as the pressure fixing component used for the core material, the material conventionally used for the core material of pressure fixing capsule toner is appropriately used. or those that exhibit tackiness at room temperature and pressure, such as soft material tackifiers, may be used alone or in combination. In short, any material that exhibits pressure fixing properties can be used; for example, Japanese Patent Publication No. 44-9880, Japanese Patent Application Laid-open No. 48-7503
No. 48-78931, No. 49-17739, No. 52-
Many of those described in No. 108134 and No. 48-75033 can be used. Particularly preferred are higher fatty acids (stearic acid, palmitic acid, lauric acid, etc.), polyolefins (low molecular weight polyethylene, low molecular weight polypropylene, oxidized polyethylene, polytetrafluoroethylene, etc.), low molecular weight polystyrene, epoxy resins, polyester resins ( (acid value 10 or less), polyamide resin, styrene-butadiene copolymer (monomer ratio 5-30:95-70), ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-vinyl acetate copolymer , polyvinylpyrrolidone, methyl vinyl ether-maleic anhydride copolymer, maleic acid-modified phenolic resin, phenol-modified terpene resin, and the like. In addition, various resins can be used as the outer shell material, including those that are insulating and have good film-forming ability, those that have good positive or negative chargeability, and those that have good fluidity and non-agglomeration. Particularly preferred are those that do not inhibit the pressure fixing properties of the core material. for example,
Polystyrene, poly-p-chlorostyrene, polyvinyltoluene, styrene-butadiene copolymer, styrene-acrylic acid copolymer, styrene-
Polymers or copolymers of styrene or its substituted products such as anhydrous maleic copolymers, polyester resins,
Acrylic resin, xylene resin, polyamide resin, ionomer resin, furan resin, ketone resin, terpene resin, rosin, rosin-modified pentaerythritol ester, natural resin-modified phenolic resin, natural resin-modified maleic acid resin, coumaron indene resin, alicyclic resin Group hydrocarbon resins, petroleum resins, cellulose acetate phthalate, starch graft polymers, polyvinyl butyral, polyvinyl alcohol, and the like can be used alone or in combination. In particular, styrene resins, polyester resins, ionomer resins, cellulose acetate phthalate, starch graft polymers, polyvinyl butyral, and the like having an average molecular weight of 1500 or more are preferred. If the affinity and adhesion between the core material particles and the shell material are poor, an intermediate adhesive layer may be provided. Further, an appropriate amount of a charge control agent such as a metal-containing dye or nigrosine conventionally used in toners may be added to the insulating material for the outer shell. Furthermore, charge control agent fine particles are mixed with the toner (external addition).
It can also be used as In the capsule toner of the present invention, dyes, pigments, etc. conventionally used as colorants for toners can be used, if necessary, and may be added to one or both of the core particle and the outer shell. Furthermore, if it is desired to obtain a magnetic toner, magnetic fine particles may be added to the toner. The magnetic substance may be any material that exhibits magnetism or can be magnetized, such as iron,
Conventionally known magnetic materials can be used, such as fine metal powders such as manganese, nickel, cobalt, and chromium, various ferrites, alloys and compounds of manganese, and other ferromagnetic alloys. These magnetic fine particles may be added to either the core material particles or the shell material, but in the case of obtaining an insulating toner, it is preferable to add them to the core material particles. The image obtained with the capsule toner of the present invention is fixed by passing between a pair of pressure-loaded rollers, but auxiliary heating may be performed. The applied pressure is generally about 10-30 kg/cm.
Regarding the pressure fixing device, Japanese Patent Publication No. 44-12797,
U.S. Patent No. 3269626, U.S. Patent No. 3612682, U.S. Patent No.
It is described in No. 3655282, No. 3731358, etc. The present invention will be specifically explained below using examples.
Parts in the examples are parts by weight. Examples 1 to 3 Polyethylene oxide (density 0.99,
100 parts of carbon black (penetration: 0.5) and 10 parts of carbon black were thoroughly kneaded at about 150°C for 30 minutes using a roll mill. This material was made into a fine powder using a pulverizer such as a cutter mill or a jet mill. The main particle size of the fine powder core material particles was 14.5 μm. This powder was classified so that 90% or more of the particles had a diameter of 14.5±3 μm. Next, the particles were sufficiently dispersed in a 10% cyclohexane solution of the styrene-butadiene copolymer and dried using a spray dryer to obtain a capsule toner containing the styrene-butadiene copolymer as grain. The main particle size of this capsule toner is 15.2μ
It was hot. 10 parts of this capsule toner was mixed with 90 parts of iron powder carrier (manufactured by Nippon Steel Powder Co., Ltd., trade name: EFV200/300) to prepare a developer. This developer was put into the developing device of a dry type electronic copying machine (manufactured by Canon, product name NP-5000), and the fixing device was connected to the fixing roller (upper and lower rollers with a total pressure of 460 kg).
Continuous copying was performed by replacing the book's chrome-plated rigid roller. As a result, a clear image with good fixability and no fog was obtained. Furthermore, continuous copying was continued and 30,000 copies were made, and copies were obtained that were comparable in image quality and fixability to the initial images. The fixability test result was 5th to 6th grade. The fixability was evaluated according to the dye fastness test method against friction (JIS-L0849-1971). That is, using a friction tester, the toner fixing surface and a white cotton cloth for friction were rubbed against each other according to a prescribed method (drying test), and the degree of coloring of the white cotton cloth for friction was compared with the gray scale for contamination. The fixability was evaluated using grades. In the above example, fixability and durability were tested by varying the thickness of the grain. The results were as shown in Examples 2 and 3 and Comparative Examples 1 and 2 in Table 1. Examples 4 to 6 The same procedure as in Example 1 was repeated except that the core material was low molecular weight polyethylene (penetration 3.5) (trade name: AC-6, manufactured by Allied Chemical). The main particle size of the core material particles was 16.0 μm, and the pressure fixability and durability were tested with various grain thicknesses. The results were as shown in Examples 4 to 6 and Comparative Example 3 in Table 1. Examples 7 to 9 The same procedure as in Example 1 was repeated except that the core material was polyethylene (penetration 7.5) (trade name: AC-617, manufactured by Allied Chemical). The main particle size of the core material particles is 18.0μm, and the results of testing the pressure fixability and durability with various grain thicknesses are shown in Table-
The results were as in Examples 7 to 9 and Comparative Example 4 in No. 1. However, some cooling operation was required during pulverization of the core material. Examples 10 and 11 A urea formaldehyde initial condensate was prepared in the following manner. Mix 20 parts of urea and 55 parts of 37% formalin to 10%
Add ethanolamine to adjust pH to 8.0 and heat to 70°C.
Stirring was carried out at a temperature of 25 hours to obtain a transparent urea-formaldehyde initial condensate with a slightly increased viscosity. 24 parts of this initial condensate was dissolved in 180 parts of water, and while stirring, ethylene-vinyl acetate copolymer (manufactured by Allied Chemical Co., Ltd., AC-430, penetration
A warm 60% toluene solution of 75) was emulsified and dispersed. Next, add citric acid to this system in 2 to 3 parts, and
The pH was adjusted to around 3.5, stirring was continued for about 6 hours while maintaining the temperature at 45 to 50°C, and the mixture was left to stand overnight. The obtained precipitate was thoroughly washed with water and dried to obtain core material particles.
Most of the toluene contained in the core had already been lost during the long-term encapsulation process, and the core had essentially become a solid core. Penetration degree 75, main grain size
It was 13μ. Next, a grain material layer of styrene-butadiene copolymer was provided on the capsule particles in the same manner as in Example 1, and the same fixability and durability tests were conducted. The results are shown in Table-1.

【表】【table】

【表】 実施例12〜33,比較例7〜18 実施例1〜11及び比較例1〜6に於いて、穀物
質を酢酸フタル酸セルロース(和光純薬製試薬)
(アセトン溶液として使用)及びスチレン―無水
マレイン酸―ブチルアクリレート共重合体(モノ
マー比50/15/35wt%)(大同工業製、スチライ
トX−4)(メチルエチルケトン溶液として使
用)に替え、他は同様に行なつたところ結果はス
チレン―ブタジエン共重合体の場合とほぼ同様で
あつた。 実施例34,比較例19,20 芯物質としてエチレン―酢ビ共重合体(アライ
ドケミカル社製、AC401、針入度4.0)を使用
し、穀物質としてスチレン―ブタジエン共重合体
(モノマー比15/85wt%)(メチルエチルケトン
溶液として使用)を用い、実施例1と同様の方法
で穀物質の厚みを変えてカプセルトナーを作り現
像剤とした。結果は表2の如く比較例に対し明ら
かに優れた品質であつた。
[Table] Examples 12 to 33, Comparative Examples 7 to 18 In Examples 1 to 11 and Comparative Examples 1 to 6, cellulose acetate phthalate (reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used as the grain material.
(Used as an acetone solution) and styrene-maleic anhydride-butyl acrylate copolymer (monomer ratio 50/15/35wt%) (Daido Kogyo, Stylite The results were almost the same as those for styrene-butadiene copolymer. Example 34, Comparative Examples 19 and 20 Ethylene-vinyl acetate copolymer (manufactured by Allied Chemical Co., Ltd., AC401, penetration 4.0) was used as the core material, and styrene-butadiene copolymer (monomer ratio 15/15) was used as the grain material. 85 wt%) (used as a methyl ethyl ketone solution), a capsule toner was prepared by changing the thickness of the grain in the same manner as in Example 1, and used as a developer. As shown in Table 2, the results were clearly superior in quality to the comparative example.

【表】【table】

Claims (1)

【特許請求の範囲】 1 圧力定着性芯物質粒子が被膜性物質で被覆さ
れている圧力定着性カプセルトナーに於て、カプ
セルトナーの主体粒度をaμm、芯物質粒子の主
体粒度をbμm、芯物質の硬さをy(JIS−
K2530、単位dmm)とすると、該カプセルトナー
は、0.01exp(23a−b/b)≦y≦5exp(60a−b/
b) の関係式[式中、yは0.5〜75であり、a−b/bは 0.04〜0.35である]を満足することを特徴とする
圧力定着性カプセルトナー。 2 圧力定着性芯物質粒子を被膜性物質で被覆し
て圧力定着性カプセルトナーを製造する方法に於
て、硬さy(JIS−K2530、単位dmm)を有する
芯物質から芯物質粒子を生成し、生成された芯物
質粒子を分級して主体粒度bμmを有する芯物質
粒子を調製し、調製された芯物質粒子を被膜性物
質で被覆して下記関係式、0.01exp(23a−b/b)≦ y≦5exp(60a−b/b) [式中、aはカプセルトナーの主体粒度aμm
を示し、yは0.5〜75であり、a−b/bは0.04〜0.35 である。] を満足するカプセルトナーを形成することを特
徴とする圧力定着性カプセルトナーの製造方法。
[Scope of Claims] 1. In a pressure fixable capsule toner in which pressure fixable core material particles are covered with a film material, the main particle size of the capsule toner is a μm, the main particle size of the core material particles is b μm, and the core material The hardness of y (JIS-
K2530, unit dmm), the capsule toner is 0.01exp (23a-b/b)≦y≦5exp (60a-b/
b) A pressure-fixable capsule toner, characterized in that it satisfies the following relational expression: where y is 0.5 to 75, and a-b/b is 0.04 to 0.35. 2. In a method for producing a pressure fixable capsule toner by coating pressure fixable core material particles with a coating material, the core material particles are produced from a core material having a hardness y (JIS-K2530, unit dmm). , the generated core material particles are classified to prepare core material particles having a main particle size b μm, and the prepared core material particles are coated with a coating material to form the following relational expression, 0.01exp (23a-b/b) ≦y≦5exp(60a-b/b) [where a is the main particle size of the capsule toner aμm
, y is 0.5 to 75, and a-b/b is 0.04 to 0.35. ] A method for producing a pressure-fixable capsule toner, characterized by forming a capsule toner that satisfies the following.
JP7369579A 1979-06-12 1979-06-12 Pressure fixable capsuled toner Granted JPS55164834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7369579A JPS55164834A (en) 1979-06-12 1979-06-12 Pressure fixable capsuled toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7369579A JPS55164834A (en) 1979-06-12 1979-06-12 Pressure fixable capsuled toner

Publications (2)

Publication Number Publication Date
JPS55164834A JPS55164834A (en) 1980-12-22
JPS6261142B2 true JPS6261142B2 (en) 1987-12-19

Family

ID=13525603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7369579A Granted JPS55164834A (en) 1979-06-12 1979-06-12 Pressure fixable capsuled toner

Country Status (1)

Country Link
JP (1) JPS55164834A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538493A (en) * 1976-07-13 1978-01-25 Toshiba Corp Nuclear suppressing device
JPS5466844A (en) * 1977-11-08 1979-05-29 Mita Industrial Co Ltd Compound magnetic developer for electrophotography
JPS5924413A (en) * 1982-08-02 1984-02-08 Alps Electric Co Ltd Manufacture of magnetic head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538493A (en) * 1976-07-13 1978-01-25 Toshiba Corp Nuclear suppressing device
JPS5466844A (en) * 1977-11-08 1979-05-29 Mita Industrial Co Ltd Compound magnetic developer for electrophotography
JPS5924413A (en) * 1982-08-02 1984-02-08 Alps Electric Co Ltd Manufacture of magnetic head

Also Published As

Publication number Publication date
JPS55164834A (en) 1980-12-22

Similar Documents

Publication Publication Date Title
US4450221A (en) Encapsulated lyophilic magnetic particle and resin toner
US4259426A (en) Pressure fixable microcapsule toner and electrostatic image developing method
JPS6332182B2 (en)
US4555467A (en) Developer having improved flow characteristics and a process for producing same
US4265994A (en) Pressure fixable capsule toner
US4599289A (en) Pressure-fixable encapsulated toner
US4206247A (en) Electrophotographic process
US4517273A (en) Pressure fixable capsule toner
JPS6261142B2 (en)
JPS59102252A (en) Toner for electrostatic charged image development
JPS6261140B2 (en)
JPS6342780B2 (en)
JPS5926019B2 (en) Pressure fixing capsule toner
JPS6033269B2 (en) Pressure fixing capsule toner
JPS59187347A (en) Magnetic toner
JPS6026218B2 (en) Pressure fixing capsule toner
JPS63240557A (en) Powder toner
JPS6033266B2 (en) Pressure fixing capsule toner
JPS6027977B2 (en) Pressure fixing capsule toner
JP2003302784A (en) Magnetic toner
JPS59200276A (en) Color developing method
JPS604950A (en) Toner
JPS6029110B2 (en) Pressure fixing toner
JPS59170854A (en) Developer for developing electrostatic latent image
JPS598823B2 (en) Developer manufacturing method