JPS626102B2 - - Google Patents

Info

Publication number
JPS626102B2
JPS626102B2 JP54165334A JP16533479A JPS626102B2 JP S626102 B2 JPS626102 B2 JP S626102B2 JP 54165334 A JP54165334 A JP 54165334A JP 16533479 A JP16533479 A JP 16533479A JP S626102 B2 JPS626102 B2 JP S626102B2
Authority
JP
Japan
Prior art keywords
valve
egr
pressure
throttle
intake pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54165334A
Other languages
Japanese (ja)
Other versions
JPS5688950A (en
Inventor
Mikio Minora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP16533479A priority Critical patent/JPS5688950A/en
Publication of JPS5688950A publication Critical patent/JPS5688950A/en
Publication of JPS626102B2 publication Critical patent/JPS626102B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/39Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/64Systems for actuating EGR valves the EGR valve being operated together with an intake air throttle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves

Description

【発明の詳細な説明】 この発明は内燃機関のスロツトル弁下流の吸気
管内へ排気ガスを再循環させる装置において、排
気ガス再循環量のエンジン吸気量に対する割合
(EGR率)を制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for controlling the ratio of the amount of exhaust gas recirculated to the engine intake amount (EGR rate) in a device for recirculating exhaust gas into the intake pipe downstream of the throttle valve of an internal combustion engine.

近年、エレクトロニツクコンピユータの性能、
信頼性が向上し、自動車に塔載されるようになつ
てきたので、EGR量をコンピユータによつて制
御されるアクチユエータで制御する試みがある
が、アクチユエータの動きがEGR量と一義的に
対応する必要があり、従つて、アクチユエータの
制御範囲は非常に広いものとなつていた。例え
ば、EGR率をエンジン回転数1000rpmで3%か
ら3000rpmで10%の範囲で制御するにはEGR量
は最小から最大まで10倍の範囲で変化し、アクチ
ユエータもこれに応じた広い制御範囲を要求さ
れ、アクチユエータの製作が困難であつた。ま
た、吸気管圧力が小さい所でのエンジン運転で
は、既燃ガスが吸気管に吹き返す量が多いこと
や、一般に軽負荷域であり、EGRガスを入れる
ことによるエンジントルクの乱れを少くしたいこ
とによりEGR率を小さくする方が良いと言われ
ている。この発明は、上記にかんがみ、アクチユ
エータによりEGR率を制御することにより、ア
クチユエータの守備範囲を狭くでき、車両のサー
ジング度を感知するサージメーターを含むフイー
ドバツク系においてはより速く応答が可能となる
手段を提供することが第1の目的である。第2の
目的は、吸気管圧力が小さいところでは、吸気管
圧力が小さくなる程EGR率が小さくなる排気ガ
ス再循環量制御装置を提供することである。
In recent years, the performance of electronic computers,
As reliability has improved and it has come to be installed in automobiles, there are attempts to control the amount of EGR using an actuator controlled by a computer, but the movement of the actuator uniquely corresponds to the amount of EGR. Therefore, the control range of the actuator has become very wide. For example, in order to control the EGR rate within the range of 3% at engine speed 1000rpm to 10% at 3000rpm, the EGR amount changes over a range of 10 times from minimum to maximum, and the actuator also requires a correspondingly wide control range. Therefore, it was difficult to manufacture the actuator. In addition, when the engine is operated in a place where the intake pipe pressure is low, there is a large amount of burned gas blown back into the intake pipe, and it is generally a light load range and it is necessary to reduce disturbances in engine torque due to the introduction of EGR gas. It is said that it is better to reduce the EGR rate. In view of the above, the present invention provides means for controlling the EGR rate with the actuator, thereby narrowing the range of protection of the actuator, and enabling faster response in a feedback system including a surge meter that senses the degree of surging of the vehicle. The first purpose is to provide. A second object is to provide an exhaust gas recirculation amount control device in which the EGR rate decreases as the intake pipe pressure decreases in locations where the intake pipe pressure is low.

次に図面の実施例に基づいてこの発明の詳細を
説明する。
Next, details of the present invention will be explained based on embodiments shown in the drawings.

第1図において、エンジン1の排気管2から配
管3、EGR制御弁4、通路5、およびEGR弁6
を通つてスロツトル弁7の下流の吸気管8に通じ
るEGR通路が形成されている。EGR弁6はリン
ク9によつてスロツトル弁7と連結されている。
バキユームモジユレータ10は通路5と吸気管8
との圧力差△Pを感知するダイヤフラム11とダ
イヤフラム11によつて開閉される弁12および
圧力差△Pが小さくなると弁12を開く方向にダ
イヤフラムを押すバネ13から成る。EGR制御
弁4はダイヤフラム14に固定されていて、ダイ
ヤフラム室15内の圧力および、ダイヤフラム室
15内にあつて、EGR制御弁4を閉じる方向に
ダイヤフラム14を押すバネ16の力とによつて
駆動される。可変絞り17、絞り18、弁12を
通つて吸気管8に通ずる通路が形成されていて、
可変絞り17と絞り18との間の通路はダイヤフ
ラム室15につながつている。可変絞り17は環
状絞り17aとその中をステツプモーター20に
よつて軸方向に駆動されるニードル弁17bから
成る。可変絞り17の上流は、気化器ベンチユリ
部21の上流のほぼ大気圧に開放されている。車
両の駆動輪22は、エンジン1からトルクセンサ
ー23とトルク伝達シヤフト24を介して駆動さ
れる。コンピユータ25は、スロツトル弁7の開
度、吸気管8の圧力およびトルクセンサー23か
らのトルク変動等を表わす電気信号を入力し、ス
テツプモーター20を駆動する電気信号を出力す
る。19は吸気管8の圧力を電圧に変換するトラ
ンスデユーサである。
In FIG. 1, an exhaust pipe 2 of an engine 1 is connected to a pipe 3, an EGR control valve 4, a passage 5, and an EGR valve 6.
An EGR passage is formed which passes through the throttle valve 7 and communicates with the intake pipe 8 downstream of the throttle valve 7. The EGR valve 6 is connected to the throttle valve 7 by a link 9.
The vacuum modulator 10 has a passage 5 and an intake pipe 8.
It consists of a diaphragm 11 that senses the pressure difference ΔP, a valve 12 that is opened and closed by the diaphragm 11, and a spring 13 that pushes the diaphragm in a direction that opens the valve 12 when the pressure difference ΔP becomes small. The EGR control valve 4 is fixed to the diaphragm 14 and is driven by the pressure within the diaphragm chamber 15 and the force of a spring 16 located within the diaphragm chamber 15 that pushes the diaphragm 14 in the direction of closing the EGR control valve 4. be done. A passage is formed that passes through the variable throttle 17, the throttle 18, and the valve 12 and leads to the intake pipe 8.
The passage between the variable throttle 17 and the throttle 18 is connected to the diaphragm chamber 15. The variable throttle 17 consists of an annular throttle 17a and a needle valve 17b driven axially therein by a step motor 20. The upstream side of the variable throttle 17 is open to approximately atmospheric pressure upstream of the carburetor bench lily section 21. Drive wheels 22 of the vehicle are driven by the engine 1 via a torque sensor 23 and a torque transmission shaft 24 . The computer 25 receives electrical signals representing the opening of the throttle valve 7, the pressure of the intake pipe 8, torque fluctuations from the torque sensor 23, etc., and outputs electrical signals for driving the step motor 20. 19 is a transducer that converts the pressure in the intake pipe 8 into voltage.

第2図の実施例は、第1図と異なつて、可変絞
り17の上流がスロツトル弁7の上流でベンチユ
リ部21の下流の吸気通路26中に開口するポー
ト27につながつている。
The embodiment of FIG. 2 differs from that of FIG. 1 in that the upstream side of the variable throttle 17 is connected to a port 27 that opens into the intake passage 26 upstream of the throttle valve 7 and downstream of the vent lily portion 21.

第3図の実施例は、可変絞り17が第1図と同
じく、ベンチユリ部21の上流のほぼ大気圧に開
口しているが、可変絞り17と絞り18とを連通
する通路が絞り28を介して第2図と同じ位置の
ポート27に連通されている。
In the embodiment shown in FIG. 3, the variable throttle 17 is opened to almost atmospheric pressure upstream of the bench lily portion 21, as in FIG. The port 27 is connected to the port 27 at the same position as in FIG.

先ず、第1図についてその作用を説明する。ス
ロツトル弁を通つてエンジン1に吸入される吸入
空気量GAはスロツトル弁7の開口面積AAと、そ
の上流圧力P1と下流の吸気管8の圧力PBとの圧
力差で決まる。エンジン1に吸入されるEGR量
EはEGR弁6の開口面積AEとその前後差圧△
Pとで決まる。バキユームモジユレータ10は
EGR弁6の前後差圧△Pを感知して、もし、△
Pが小さくなると弁12を開け、ダイヤフラム室
15に吸気管8からの負圧を多く供給し、EGR
制御弁4を開け、△Pを大きくしようとする。逆
に△Pが大きくなると弁12を閉じてダイヤフラ
ム室15は可変絞り17を介して大気圧に通じて
いることからEGR制御弁4を閉じて△Pを小さ
くする。かくして、バキユームモジユレータ10
はEGR弁6の前後差圧△Pを一定値に保つ。ス
ロツトル弁7の開口面積AAとEGR弁16の開口
面積AEとの比はリンク9によつて一定に保たれ
ると仮定すると、 GA∝AA1BE∝AE√△ 従つて、GEとGAとの比は ただし、Cは定数である。ここでP1はほぼ大気
圧とするとEGR率は吸気管8の圧力PBのみに依
存することがわかる。ここで可変絞り17、固定
絞り18、弁12を介して吸気管8に流れる空気
通路の各部圧力を考えてみる。可変絞り17の開
口面積をA2、絞り18を含む弁12の開口面積
をA1、可変絞り17の上流の圧力をP0とする
と、可変絞り17と絞り18との間の通路の圧力
すなわちダイヤフラム室15の圧力Pは第4図の
ように表わされる。ただし、横軸はA1とA2との
比A1/A2がとつてある。すなわち、弁12がと
じてA1=0となると圧力PはPaと等しくなり、
弁12が開いてA1がA2に比べて十分大きくなる
とPはPBに十分近づく。従来は、可変絞り17
のかわりに固定絞りを有し、上流を大気圧に開放
していたものがあつて、式(1)を可能な限り満たす
ため、絞り18を含む弁12の全開時の開口面積
A′1とA2との比を3以上にとつて、即ち第4図に
よればP0とPBとの圧力差の90%以上を利用して
成り、第5図にその特性を示すものがあつた。第
5図は横軸に吸気管圧力PBをとり、エンジン回
転数を一定にしたときのEGR率特性を示したも
のである。
First, the operation will be explained with reference to FIG. The amount of intake air GA taken into the engine 1 through the throttle valve is determined by the opening area A A of the throttle valve 7 and the pressure difference between the pressure P 1 upstream thereof and the pressure P B of the intake pipe 8 downstream. The EGR amount G E taken into the engine 1 is the opening area A E of the EGR valve 6 and the differential pressure △ before and after it.
It is determined by P. Vacuum modulator 10 is
By sensing the differential pressure △P across the EGR valve 6, if △
When P becomes smaller, the valve 12 is opened to supply more negative pressure from the intake pipe 8 to the diaphragm chamber 15, and the EGR
The control valve 4 is opened to try to increase ΔP. Conversely, when ΔP increases, the valve 12 is closed, and since the diaphragm chamber 15 communicates with atmospheric pressure via the variable throttle 17, the EGR control valve 4 is closed to decrease ΔP. Thus, the vacuum modulator 10
maintains the differential pressure △P across the EGR valve 6 at a constant value. Assuming that the ratio between the opening area A A of the throttle valve 7 and the opening area A E of the EGR valve 16 is kept constant by the link 9, G A ∝A A1 - B G E ∝A E √ △ Therefore, the ratio between G E and G A is However, C is a constant. Here, assuming that P 1 is approximately atmospheric pressure, it can be seen that the EGR rate depends only on the pressure P B of the intake pipe 8. Here, let us consider the pressure at each part of the air passageway that flows into the intake pipe 8 via the variable throttle 17, fixed throttle 18, and valve 12. Assuming that the opening area of the variable throttle 17 is A 2 , the opening area of the valve 12 including the throttle 18 is A 1 , and the pressure upstream of the variable throttle 17 is P 0 , the pressure in the passage between the variable throttle 17 and the throttle 18 is The pressure P in the diaphragm chamber 15 is expressed as shown in FIG. However, the ratio A 1 /A 2 of A 1 and A 2 is set on the horizontal axis. That is, when the valve 12 is closed and A 1 =0, the pressure P becomes equal to Pa,
When the valve 12 opens and A 1 becomes sufficiently large compared to A 2 , P becomes sufficiently close to P B . Conventionally, variable aperture 17
Instead, there is one that has a fixed throttle and opens the upstream to atmospheric pressure, and in order to satisfy formula (1) as much as possible, the opening area of the valve 12 including the throttle 18 when fully open is
The ratio of A' 1 and A 2 is set to 3 or more, that is, according to Fig. 4, more than 90% of the pressure difference between P 0 and P B is utilized, and its characteristics are shown in Fig. 5. Something was warm. FIG. 5 shows the EGR rate characteristics when the horizontal axis represents the intake pipe pressure P B and the engine speed is kept constant.

ここで、可変絞り17の開口面積A2を大きく
していつた場合を考えると、絞り18を含む弁1
2の全開時の面積A′1は絞り18によつて決めら
れていて、A2が大きくなりA′1/A2が3よりも小
さくなつてくると、圧力Pのとり得る範囲は例え
ば第4図の斜線の領域に限定されてくる。その結
果、EGR率が第6図に示される曲線aから曲線
cの方向に移動する。ここで曲線aは従来の
A′1/A2が3程度、曲線cはA′1/A2が3より小
さい時の特性を示す。すなわち、EGR率のピー
クの位置がだんだん吸気管圧力PBの小さい方に
ずれてくる。なぜならば、圧力Pのとりうる範囲
の下限が上つてきて、ダイヤフラム14をもち上
げてEGR制御弁4を開く限界の吸気管圧力PB
小さくなつてくるからである。同時に曲線cは曲
線aに比べて吸気管圧力PBが小さいところでも
減少ぎみとなつているが、この理由は、可変絞り
17の面積A2を大きくすると一般にA2,A1を通
つて吸気管8に流入する空気流量が多くなり、従
つて、同一の圧力Pを保つためにも弁12は開き
ぎみになり、レギユレート時のバネ13の長さが
伸びた状態で使用されるため、EGR弁の前後差
圧△Pがより小さく制御されるからと考えられ
る。すなわち、可変絞り17の面積A2を変える
ことにより、EGR率は第6図に示すように変化
するのである。
Here, if we consider the case where the opening area A2 of the variable diaphragm 17 is increased, the valve 1 including the diaphragm 18
The area A' 1 when the valve 2 is fully open is determined by the throttle 18, and as A 2 increases and A' 1 /A 2 becomes smaller than 3, the possible range of the pressure P becomes, for example, It is limited to the shaded area in Figure 4. As a result, the EGR rate moves from curve a to curve c shown in FIG. Here, curve a is the conventional
A′ 1 /A 2 is about 3, and curve c shows the characteristics when A′ 1 /A 2 is smaller than 3. That is, the position of the peak of the EGR rate gradually shifts to the side where the intake pipe pressure P B is smaller. This is because the lower limit of the range of pressure P increases, and the limit intake pipe pressure P B that lifts the diaphragm 14 and opens the EGR control valve 4 becomes smaller. At the same time, curve c tends to decrease compared to curve a even when the intake pipe pressure P B is small. The reason for this is that when the area A 2 of the variable throttle 17 is increased, the intake air is The flow rate of air flowing into the pipe 8 increases, and therefore, in order to maintain the same pressure P, the valve 12 is slightly opened, and the length of the spring 13 during regulation is used in an extended state, so the EGR This is thought to be because the differential pressure ΔP across the valve is controlled to be smaller. That is, by changing the area A2 of the variable aperture 17, the EGR rate changes as shown in FIG.

車両の乗りごこちはエンジン1から車輪にトル
クを伝達するトルク伝達シヤフト24に取りつけ
られたトルクメーター23によつて感知されるト
ルク変動率と密接な関係があることが知られてい
て、エンジン1が理輪空燃比より薄い状態で運転
される場合は、EGRは多ければ多いほど良く、
他方EGRを増すとトルク変動率が大きくなつて
のりごこちが悪くなるので、トルク変動率を感知
してEGR量を修正するフイードバツクシステム
が既に公知の技術として確立されている。故に、
トルクセンサ23からコンピユータ25に入り、
ステツプモーター20を駆動する電気回路につい
ては詳述を省く。ステツプモーター20は電気的
なステツプ入力によつてローターを軸のまわりに
ステツプ的に決められた角度づつ回転させ、ロー
ターに固定されているネジをまわして、ニードル
弁17bを軸方向に進退させる構成を有するもの
であるが、ステツプモーターに関しては公知であ
るため説明を省く。また、電気信号によつて絞り
度合を変化させる機構は例えば電磁弁の開閉時間
比率を変える方式等、他にも存在するが、本発明
の主眼からはずれるので説明を省く。スロツトル
弁7の開度および吸気管圧力をコンピユータに入
力するのはアイドル時、急加減速時を感知してト
ルクセンサ23とステツプモーター20とによる
フイードバツク制御を補正するためのものであ
る。
It is known that the riding comfort of a vehicle is closely related to the torque fluctuation rate sensed by the torque meter 23 attached to the torque transmission shaft 24 that transmits torque from the engine 1 to the wheels. When operating at a lean air-fuel ratio, the more EGR the better.
On the other hand, if the EGR is increased, the torque fluctuation rate increases and the riding comfort deteriorates, so a feedback system that senses the torque fluctuation rate and corrects the EGR amount has already been established as a known technology. Therefore,
Enters the computer 25 from the torque sensor 23,
A detailed description of the electric circuit that drives the step motor 20 will be omitted. The step motor 20 is configured to rotate the rotor around the axis by a predetermined angle stepwise by an electric step input, and to move the needle valve 17b forward and backward in the axial direction by turning a screw fixed to the rotor. However, since the step motor is well known, the explanation thereof will be omitted. Furthermore, there are other mechanisms for changing the degree of aperture based on electrical signals, such as a method for changing the opening/closing time ratio of a solenoid valve, but these are out of the scope of the present invention and will not be explained here. The opening degree of the throttle valve 7 and the intake pipe pressure are input into the computer in order to detect the idle state and sudden acceleration/deceleration and correct the feedback control by the torque sensor 23 and the step motor 20.

次に第2図について説明する。可変絞り17は
第1図のように大気に開放されなく、スロツトル
弁7の上流側の吸気通路内に通じているので、第
1図のようにベンチユリ部21を通らないで、可
変絞り17、弁12を通つて吸気管8に流入する
空気流がないため空燃比計量システムをみださな
い利点はあるがEGR率制御としては第1図と本
質的に同じである。
Next, FIG. 2 will be explained. The variable throttle 17 is not open to the atmosphere as shown in FIG. 1, but communicates with the intake passage on the upstream side of the throttle valve 7. Therefore, the variable throttle 17 is not opened to the atmosphere as shown in FIG. Since there is no air flow flowing into the intake pipe 8 through the valve 12, there is an advantage that the air-fuel ratio metering system is not obstructed, but the EGR rate control is essentially the same as in FIG. 1.

第1図で可変絞り17の開口面積A2を大きく
すると第6図の曲線aからcに移ることを説明し
たが、cの状態において可変絞り17の上流の圧
力を大気圧から減少させていくとaの方にもどる
ことが知られている。すなわち、ポート27の位
置をスロツトル弁7の上流でスロツトル弁7の開
度が大きくなるとその負圧が大きくなる場所に設
けることによつて第6図のEGR率特性をエンジ
ン回転数によつて変化させることができるのであ
るが、EGR率の変化と可変絞り17との関係は
本質的に第1図のものと同じである。また第3図
においては、アクチユエータを全閉全開すること
によつて2種類のEGR率特性が得られる。
In Fig. 1, we explained that when the opening area A2 of the variable diaphragm 17 is increased, the curve shifts from curve a to c in Fig. 6, but in state c, the pressure upstream of the variable diaphragm 17 is decreased from atmospheric pressure. It is known that it returns to the direction of and a. That is, by locating the port 27 upstream of the throttle valve 7 at a location where the negative pressure increases as the opening degree of the throttle valve 7 increases, the EGR rate characteristics shown in FIG. 6 can be changed depending on the engine speed. However, the relationship between the change in the EGR rate and the variable throttle 17 is essentially the same as that shown in FIG. Further, in FIG. 3, two types of EGR rate characteristics are obtained by fully closing and fully opening the actuator.

この発明によれば、可変絞り17の面積A2
変化させるのみでEGR率は第6図のように基本
特性を示す曲線bを中心にして増減を行なうこと
ができ、a,b,c共回転数にあまり影響されな
いことが知られているので、トルクセンサ23、
コンピユータ25、ステツプモータ20、可変絞
り17によつて構成されるEGRフイードバツク
システムに組込まれることによつてエンジン運転
負荷が急激に変化してもすばやく応答できる。
又、アクチユエータの動く範囲がせまくてよいの
で、従来のように精度を確保する必要がない等の
利点がある。また、EGR率がピーク値のときの
吸気管圧力より小さい吸気管圧力では、第6図に
示すように、吸気管圧力が小さい程EGR率が低
下するというエンジン運転に好ましい制御特性が
得られる。
According to this invention, by simply changing the area A2 of the variable aperture 17, the EGR rate can be increased or decreased around the curve b showing the basic characteristics as shown in FIG. Since it is known that it is not affected much by the rotation speed, the torque sensor 23,
By being incorporated into the EGR feedback system composed of the computer 25, step motor 20, and variable throttle 17, it is possible to quickly respond even if the engine operating load changes suddenly.
Further, since the range of movement of the actuator can be narrow, there is an advantage that there is no need to ensure accuracy as in the conventional case. Furthermore, when the intake pipe pressure is lower than the intake pipe pressure when the EGR rate is at its peak value, as shown in FIG. 6, a desirable control characteristic for engine operation is obtained in which the EGR rate decreases as the intake pipe pressure decreases.

第3図の例においては、可変絞りを全閉全開す
ることによつて異なつたEGR率特性が得られる
ので簡単なEGR率補正にも使用可能である。
In the example shown in FIG. 3, different EGR rate characteristics can be obtained by fully closing and fully opening the variable diaphragm, so it can also be used for simple EGR rate correction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す構成図、第2
図は他の実施例、第3図はさらに他の実施例、第
4図は圧力PとA1/A2との関係を示す線図、第
5図は従来の構成におけるEGR率と吸気管圧力
Bとの関係を示す線図、第6図は第1図の実施
例のEGR率の変化と吸気管圧力PBとの関係を示
す線図である。 1…エンジン、2…排気管、4…EGR制御
弁、6…EGR弁、7…スロツトル弁、8…吸気
管、9…リンク、10…バキユームモジユレー
タ、12…弁、14…ダイヤフラム、15…ダイ
ヤフラム室、17…可変絞り、19…圧力一電圧
トランスデユーサ、20…ステツプモータ、23
…トルクセンサ、25…コンピユータ、26…吸
気通路、27…ポート。
Fig. 1 is a configuration diagram showing an embodiment of this invention;
The figure shows another embodiment, Fig. 3 shows a further another embodiment, Fig. 4 shows a diagram showing the relationship between pressure P and A 1 /A 2 , and Fig. 5 shows the EGR rate and intake pipe in the conventional configuration. FIG. 6 is a diagram showing the relationship between the change in the EGR rate and the intake pipe pressure P B in the embodiment shown in FIG. 1. 1... Engine, 2... Exhaust pipe, 4... EGR control valve, 6... EGR valve, 7... Throttle valve, 8... Intake pipe, 9... Link, 10... Vacuum modulator, 12... Valve, 14... Diaphragm, 15...Diaphragm chamber, 17...Variable throttle, 19...Pressure-voltage transducer, 20...Step motor, 23
...Torque sensor, 25...Computer, 26...Intake passage, 27...Port.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンの排気管からEGR制御弁、EGR弁
を通つてスロツトル弁下流の吸気管につながる
EGRガス通路が構成され、スロツトル弁とEGR
弁とは連動して開閉し、EGR弁の前後差圧を感
知することによつて開閉されかつ該差圧が大きい
程とじる方向に作動する弁を備えたバキユームモ
ジユレータと、スロツトル弁上流あるいは大気か
ら可変絞りと前記バキユームモジユレータの弁を
通つて吸気管に連通する通路とを有し、前記可変
絞りとバキユームモジユレータの弁との間の圧力
がEGR制御弁を駆動するダイヤフラム室に伝え
られる構成を有し、前記ダイヤフラム室に伝えら
れる圧力が小さい程前記EGR制御弁が大きく開
くよう定められており、かつ前記可変絞りの開口
面積を機関の運転状態に応じて変化させてEGR
率を制御するようにした排気ガス再循環量制御装
置。
1 Connects from the engine exhaust pipe to the intake pipe downstream of the throttle valve through the EGR control valve and EGR valve.
The EGR gas passage consists of a throttle valve and an EGR
A vacuum modulator is equipped with a valve that opens and closes in conjunction with the EGR valve, and is opened and closed by sensing the differential pressure across the EGR valve, and operates in the direction of closing as the differential pressure increases, and a valve upstream of the throttle valve. Alternatively, it has a passage communicating from the atmosphere to the intake pipe through a variable throttle and the valve of the vacuum modulator, and the pressure between the variable throttle and the valve of the vacuum modulator drives the EGR control valve. The EGR control valve has a configuration in which the pressure is transmitted to a diaphragm chamber, and the smaller the pressure transmitted to the diaphragm chamber, the wider the EGR control valve opens, and the opening area of the variable throttle is changed according to the operating state of the engine. Let EGR
Exhaust gas recirculation rate control device.
JP16533479A 1979-12-18 1979-12-18 Controlling apparatus for recirculation amount of exhaust gas Granted JPS5688950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16533479A JPS5688950A (en) 1979-12-18 1979-12-18 Controlling apparatus for recirculation amount of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16533479A JPS5688950A (en) 1979-12-18 1979-12-18 Controlling apparatus for recirculation amount of exhaust gas

Publications (2)

Publication Number Publication Date
JPS5688950A JPS5688950A (en) 1981-07-18
JPS626102B2 true JPS626102B2 (en) 1987-02-09

Family

ID=15810351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16533479A Granted JPS5688950A (en) 1979-12-18 1979-12-18 Controlling apparatus for recirculation amount of exhaust gas

Country Status (1)

Country Link
JP (1) JPS5688950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421004U (en) * 1987-07-29 1989-02-02

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322921A (en) * 1976-08-14 1978-03-02 Nissan Motor Co Ltd Exhaust recirculation controlling apparatus
JPS5332233A (en) * 1976-09-07 1978-03-27 Nissan Motor Co Ltd Exhaust gas re-circulation control means for electronically controlled fuel injection engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322921A (en) * 1976-08-14 1978-03-02 Nissan Motor Co Ltd Exhaust recirculation controlling apparatus
JPS5332233A (en) * 1976-09-07 1978-03-27 Nissan Motor Co Ltd Exhaust gas re-circulation control means for electronically controlled fuel injection engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421004U (en) * 1987-07-29 1989-02-02

Also Published As

Publication number Publication date
JPS5688950A (en) 1981-07-18

Similar Documents

Publication Publication Date Title
US4177777A (en) Exhaust gas recirculation control system
CA1046366A (en) Control apparatus for diesel engine
US4200120A (en) Area type flow rate measuring device
US4116182A (en) Variable percentage exhaust gas recirculation valve
JPS581267B2 (en) Internal combustion engine recirculation exhaust gas flow control device
US4176638A (en) EGR control system for engine equipped with fuel injection system
US4150646A (en) EGR Control system for internal combustion engines
US4163435A (en) Exhaust gas recirculation control system
US4144856A (en) Exhaust gas recirculation system
JPS6135372B2 (en)
US4222237A (en) Exhaust gas purifying apparatus for internal combustion engine
JPS626102B2 (en)
US4180033A (en) Exhaust gas recirculation control system
US4149500A (en) Control system for an exhaust gas recirculation system
US4161933A (en) Mixture control apparatus for internal combustion engines
JPS5855344B2 (en) Exhaust recirculation control device
JPH06108923A (en) Exhaust gas reflux controller
US4206731A (en) Exhaust gas recirculation for an internal combustion engine
JPS6319709B2 (en)
JPS6231656Y2 (en)
JPS626101B2 (en)
JPH0791997B2 (en) Variable nozzle control device for turbocharger
JPS58158356A (en) Fuel-antecedent electronic control carburetor
JPS63285223A (en) Supercharging pressure control device for engine with supercharger
JPH0553932B2 (en)