JPS6261009B2 - - Google Patents

Info

Publication number
JPS6261009B2
JPS6261009B2 JP6607380A JP6607380A JPS6261009B2 JP S6261009 B2 JPS6261009 B2 JP S6261009B2 JP 6607380 A JP6607380 A JP 6607380A JP 6607380 A JP6607380 A JP 6607380A JP S6261009 B2 JPS6261009 B2 JP S6261009B2
Authority
JP
Japan
Prior art keywords
catalyst
palladium
arsenic
reaction
cyclohexanetriol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6607380A
Other languages
Japanese (ja)
Other versions
JPS56161338A (en
Inventor
Takao Maki
Kenji Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP6607380A priority Critical patent/JPS56161338A/en
Priority to US06/213,900 priority patent/US4319054A/en
Priority to EP80107874A priority patent/EP0031530B1/en
Priority to DE8080107874T priority patent/DE3067213D1/en
Publication of JPS56161338A publication Critical patent/JPS56161338A/en
Publication of JPS6261009B2 publication Critical patent/JPS6261009B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は1,2,3−シクロヘキサントリオー
ルを脱水素してピロガロールを製造する方法に関
するものである。 さらに本発明者らは1,2,3−シクロヘキサ
ントリオールを、不活性気流中、パラジウムなど
の白金族金属触媒の存在下に脱水素してピロガロ
ールを得る方法を見出し、出願した(特願昭54−
161097)。本発明者はひきつづき、ピロガロール
の収率をさらに高めるべく努力を続けた結果、新
規な触媒系を見出し、本発明に到達したものであ
る。 本発明方法の特徴は、1,2,3−シクロヘキ
サントリオールの脱水素反応に、触媒としてパラ
ジウムならびに金、銀、ヒ素およびセレンより選
ばれる少くとも一種を使用することにあり、高い
ピロガロール収率が得られる。 以下、本発明を詳細に説明する。 触媒としてはパラジウムに金、銀、ヒ素、セレ
ンのいずれかを添加したものが用いられ、その添
加量は添加すべき元素の種類により最適添加量に
若干の差は存在するが、パラジウムに対し原子比
で2〜200%、より好ましくは5〜50%である。 触媒は担体に担持して使用されるのが好まし
い。担体としては活性炭、シリカ、アルミナ等の
多孔質で表面積の大きいものを使用するのが好ま
しいが、なかでも活性炭が特に好適である。 触媒を調製するには、通常、パラジウムならび
に金、銀、ヒ素およびセレンより選ばれる少くと
も一種の適当な化合物、例えば、塩化パラジウ
ム、硝酸パラジウム、塩化金酸、酢酸銀、ヒ酸、
セレン酸等の溶液を別途にあるいは混合して調製
し、これを担体に含浸、噴霧等適当な手段で担持
させたのち、公知の方法、例えば、水素気流中で
加熱するなどの方法で還元して行なうことができ
る。あるいは、一旦パラジウムのみを担持した触
媒を調製し、還元後、さらに金、銀、ヒ素または
セレンを担持し再還元を行なつて触媒を調製する
ことも可能である。パラジウムの担持量は1〜30
重量%程度とすることが好ましい。 本発明方法においては、触媒に、さらにアルカ
リ金属化合物を添加したものを使用することによ
り、活性を増大させ、なおかつピロガロールの収
率を一層向上させることができる。アルカリ金属
化合物としては、ナトリウム、カリウム、ルビジ
ウム、セシウムなどの硫酸塩、炭酸塩、塩化物、
有機酸塩などが例示される。これらのアルカリ金
属化合物を担体に担持するには、浸漬法、蒸発乾
固法などの通常の方法で行なうことが可能であ
り、パラジウムおよび金、銀、ヒ素、セレンの添
加元素と、アルカリ金属化合物とを担持する順序
については特に制限されない。アルカリ金属化合
物の担持量は、特に限定されるものではないが、
通常は触媒全重量に対して0.3〜30重量%、好ま
しくは1〜10重量%の範囲内で適宜選択される。 本発明方法による1,2,3−シクロヘキサン
トリオールの脱水素反応は、窒素、二酸化炭素、
水蒸気、メタン等の反応に関与しない不活性な気
体の流通下に行なうのが好ましい。反応は液相で
も気相でも行ないうる。しかしながら、反応生成
物からの触媒の分離などの点からみて気相で行な
うことが好ましい。反応温度は50〜500℃、好ま
しくは150〜350℃程度が好適である。圧力は若干
の加圧下としても反応は進行するが、常圧ないし
は減圧で反応を行なうのがより好ましい。 本発明方法において得られたピロガロールは、
カテコール等の副生物から、蒸留、晶析等の分離
手段で精製分離取得することができる。 次に本発明を実施例により更に具体的に説明す
る。 実施例 1 塩化パラジウム2.5gを濃塩酸6mlに溶解し、
これに塩化金酸0.931gを加え、水を加えて全量
を15mlとした水溶液にヤシガラ活性炭5gを減圧
下に浸漬し、一夜放置したのち70℃に加熱乾固し
た。このものにさらに10%硫酸カリウム水溶液を
一時間浸漬させたのち蒸発乾固し、窒素気流中
100℃で1時間加熱したのち、水素気流中400℃で
還元し、硫酸カリウム2.5wt%を含むパラジウ
ム・金/活性炭触媒を調製した。 この触媒0.5mlをガラス管に充填し、300℃に加
熱しながら、窒素ガスをGHSV5000hr-1で流通さ
せた。 ここに1,2,3−シクロヘキサントリオール
の10wt%水溶液をLHSV2.7hr-1で流通させ、常
圧で連続的に脱水素反応を行なつた。生成物を氷
水で冷却し、気液分離後、ガスクロマトグラフイ
および高速液体クロマトグラフイにより分析を行
なつた。反応開始後1時間時点での1,2,3−
シクロヘキサントリオールの転化率およびピロガ
ロールの選択率は各々86.8%および71.4%であつ
た。 実施例 2〜4 〈パラジウム−銀触媒の調製〉 塩化パラジウム2.5gを濃塩酸6mlに溶解し、
水を加えて全量を15mlとした溶液にヤシガラ活性
炭5gを減圧下に浸漬し、一昼夜放置後70℃に加
熱乾固した。ついで窒素気流中150℃に1時間保
つたのち、水素気流中400℃で3時間パラジウム
を還元した。 一方、硝酸銀0.243gを水15mlに溶解し、この
溶液に上記のパラジウムを担持した触媒を浸漬
し、同様に乾固、乾燥したのち、実施例1と同様
の方法で2.5wt%の硫酸カリウムを担持させた。
次いで水素気流中400℃で3時間還元を行ない、
パラジウム〜銀〜硫酸カリウム触媒を得た。 〈パラジウム−ヒ素触媒の調製〉 塩化パラジウム2.5gを濃塩酸6mlに溶解し、
これにヒ酸0.301gを加え、水を添加して全量を
15mlに希釈し、以下実施例1と同様に乾固、硫酸
カリウムの担持および還元を経てパラジウム〜ヒ
素〜硫酸カリウム触媒を得た。 〈パラジウム−セレン触媒の調製〉 ヒ酸の代わりにセレン酸(40wt%水溶液)
0.819gを使用したこと以外はパラジウム−ヒ素
触媒の調製と同様の方法により、パラジウム〜セ
レン〜硫酸カリウム触媒を調製した。 以上の触媒を使用し、実施例1と同一の条件で
1,2,3−シクロヘキサントリオールの脱水素
反応を行なつて得られた結果を表−1に示す。
The present invention relates to a method for producing pyrogallol by dehydrogenating 1,2,3-cyclohexanetriol. Furthermore, the present inventors discovered a method for obtaining pyrogallol by dehydrogenating 1,2,3-cyclohexanetriol in the presence of a platinum group metal catalyst such as palladium in an inert gas stream, and filed an application (Japanese Patent Application No. −
161097). The present inventor continued to make efforts to further increase the yield of pyrogallol, and as a result, discovered a new catalyst system and arrived at the present invention. A feature of the method of the present invention is that palladium and at least one selected from gold, silver, arsenic, and selenium are used as catalysts in the dehydrogenation reaction of 1,2,3-cyclohexanetriol, and a high yield of pyrogallol is achieved. can get. The present invention will be explained in detail below. The catalyst used is palladium with gold, silver, arsenic, or selenium added, and although there are slight differences in the optimum amount depending on the type of element to be added, The ratio is 2 to 200%, more preferably 5 to 50%. The catalyst is preferably used supported on a carrier. As the carrier, it is preferable to use a carrier that is porous and has a large surface area, such as activated carbon, silica, alumina, etc. Among them, activated carbon is particularly suitable. To prepare the catalyst, palladium and at least one suitable compound selected from gold, silver, arsenic and selenium, such as palladium chloride, palladium nitrate, chloroauric acid, silver acetate, arsenic acid,
A solution of selenic acid or the like is prepared separately or mixed, and the solution is impregnated onto a carrier by an appropriate means such as spraying, and then reduced by a known method such as heating in a hydrogen stream. can be done. Alternatively, it is also possible to prepare a catalyst by first preparing a catalyst on which only palladium is supported, and after reduction, further supporting gold, silver, arsenic, or selenium and performing re-reduction. The amount of palladium supported is 1 to 30
It is preferable to set it to about % by weight. In the method of the present invention, by using a catalyst to which an alkali metal compound is added, the activity can be increased and the yield of pyrogallol can be further improved. Alkali metal compounds include sulfates, carbonates, chlorides of sodium, potassium, rubidium, cesium, etc.
Examples include organic acid salts. These alkali metal compounds can be supported on a carrier by conventional methods such as immersion method and evaporation drying method. There is no particular restriction on the order in which they are carried. The amount of alkali metal compound supported is not particularly limited, but
It is usually selected as appropriate within the range of 0.3 to 30% by weight, preferably 1 to 10% by weight based on the total weight of the catalyst. In the dehydrogenation reaction of 1,2,3-cyclohexanetriol according to the method of the present invention, nitrogen, carbon dioxide,
It is preferable to carry out the reaction under the flow of an inert gas that does not participate in the reaction, such as water vapor or methane. The reaction can be carried out in liquid or gas phase. However, from the viewpoint of separation of the catalyst from the reaction product, it is preferable to carry out the reaction in a gas phase. The reaction temperature is suitably 50 to 500°C, preferably about 150 to 350°C. Although the reaction proceeds even under slightly increased pressure, it is more preferable to carry out the reaction under normal pressure or reduced pressure. Pyrogallol obtained by the method of the present invention is
It can be purified and separated from by-products such as catechol by separation means such as distillation and crystallization. Next, the present invention will be explained in more detail with reference to Examples. Example 1 2.5 g of palladium chloride was dissolved in 6 ml of concentrated hydrochloric acid,
To this was added 0.931 g of chloroauric acid, and water was added to make a total volume of 15 ml. In the aqueous solution, 5 g of coconut shell activated carbon was immersed under reduced pressure, left overnight, and then heated to dryness at 70°C. This material was further immersed in a 10% potassium sulfate aqueous solution for one hour, then evaporated to dryness, and then placed in a nitrogen stream.
After heating at 100°C for 1 hour, the mixture was reduced at 400°C in a hydrogen stream to prepare a palladium/gold/activated carbon catalyst containing 2.5% by weight of potassium sulfate. A glass tube was filled with 0.5 ml of this catalyst, and nitrogen gas was passed through the tube at a GHSV of 5000 hr -1 while heating the tube to 300°C. A 10 wt % aqueous solution of 1,2,3-cyclohexanetriol was passed through the reactor at a LHSV of 2.7 hr -1 to carry out a continuous dehydrogenation reaction at normal pressure. The product was cooled with ice water, separated into gas and liquid, and then analyzed by gas chromatography and high performance liquid chromatography. 1,2,3- at 1 hour after the start of the reaction
The conversion rate of cyclohexanetriol and the selectivity of pyrogallol were 86.8% and 71.4%, respectively. Examples 2 to 4 <Preparation of palladium-silver catalyst> 2.5 g of palladium chloride was dissolved in 6 ml of concentrated hydrochloric acid,
5 g of coconut shell activated carbon was immersed under reduced pressure in a solution made up to 15 ml by adding water, and after being left overnight, it was heated to dryness at 70°C. The mixture was then kept at 150°C in a nitrogen stream for 1 hour, and then the palladium was reduced at 400°C in a hydrogen stream for 3 hours. On the other hand, 0.243 g of silver nitrate was dissolved in 15 ml of water, the above-mentioned palladium-supported catalyst was immersed in this solution, dried, and then 2.5 wt% potassium sulfate was added in the same manner as in Example 1. carried it.
Next, reduction was performed at 400°C for 3 hours in a hydrogen stream,
A palladium-silver-potassium sulfate catalyst was obtained. <Preparation of palladium-arsenic catalyst> Dissolve 2.5 g of palladium chloride in 6 ml of concentrated hydrochloric acid,
Add 0.301g of arsenic acid to this and add water to make up the entire amount.
The mixture was diluted to 15 ml, dried to dryness, supported on potassium sulfate, and reduced in the same manner as in Example 1 to obtain a palladium-arsenic-potassium sulfate catalyst. <Preparation of palladium-selenium catalyst> Selenic acid (40wt% aqueous solution) instead of arsenic acid
A palladium-selenium-potassium sulfate catalyst was prepared in the same manner as the palladium-arsenic catalyst except that 0.819 g was used. Table 1 shows the results obtained by dehydrogenating 1,2,3-cyclohexanetriol using the above catalyst under the same conditions as in Example 1.

【表】 比較例 1 塩化金酸を使用しなかつたこと以外は実施例1
と同様に触媒を調製し、得られたパラジウム〜硫
酸カリウム触媒を使用して実施例1と同一条件で
1,2,3−シクロヘキサントリオールの脱水素
反応を行なつたところ、1,2,3−シクロヘキ
サントリオールの転化率は51.1%、ピロガロール
の選択率は59.2%であつた。
[Table] Comparative Example 1 Example 1 except that chloroauric acid was not used
A catalyst was prepared in the same manner as above, and the dehydrogenation reaction of 1,2,3-cyclohexanetriol was carried out under the same conditions as in Example 1 using the obtained palladium-potassium sulfate catalyst. -The conversion rate of cyclohexanetriol was 51.1%, and the selectivity of pyrogallol was 59.2%.

Claims (1)

【特許請求の範囲】[Claims] 1 1,2,3−シクロヘキサントリオールを触
媒の存在下に脱水素してピロガロールを製造する
方法において、パラジウムならびに金、銀、ヒ素
およびセレンより選ばれる少くとも一種を触媒と
して使用することを特徴とするピロガロールの製
造法。
1. A method for producing pyrogallol by dehydrogenating 1,2,3-cyclohexanetriol in the presence of a catalyst, characterized in that at least one member selected from palladium and gold, silver, arsenic and selenium is used as a catalyst. A method for producing pyrogallol.
JP6607380A 1979-12-12 1980-05-19 Preparation of pyrogallol Granted JPS56161338A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6607380A JPS56161338A (en) 1980-05-19 1980-05-19 Preparation of pyrogallol
US06/213,900 US4319054A (en) 1979-12-12 1980-12-08 Process for producing pyrogallol
EP80107874A EP0031530B1 (en) 1979-12-12 1980-12-12 Process for producing pyrogallol
DE8080107874T DE3067213D1 (en) 1979-12-12 1980-12-12 Process for producing pyrogallol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6607380A JPS56161338A (en) 1980-05-19 1980-05-19 Preparation of pyrogallol

Publications (2)

Publication Number Publication Date
JPS56161338A JPS56161338A (en) 1981-12-11
JPS6261009B2 true JPS6261009B2 (en) 1987-12-18

Family

ID=13305294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6607380A Granted JPS56161338A (en) 1979-12-12 1980-05-19 Preparation of pyrogallol

Country Status (1)

Country Link
JP (1) JPS56161338A (en)

Also Published As

Publication number Publication date
JPS56161338A (en) 1981-12-11

Similar Documents

Publication Publication Date Title
US4780552A (en) Preparation of furan by decarbonylation of furfural
JP3046865B2 (en) Method for producing chloroform from carbon tetrachloride and catalyst composition used therefor
JPH069656B2 (en) Supported catalyst for producing hydroxydiphenyl and method for producing the same
JPS6261009B2 (en)
JPH07324080A (en) Preparation of ethylene oxide
JP2000506886A (en) Production of acetaldehyde
JP3266332B2 (en) Method for producing hydroxydiphenyls
EA007065B1 (en) Method for producing toluol derivatives
JPS6113689B2 (en)
EP0031530B1 (en) Process for producing pyrogallol
JPS5867636A (en) Production of plyhydric phenol
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPS6261010B2 (en)
JPH11511176A (en) Method for producing 1,4-butenediol
JPS6261008B2 (en)
JP4095724B2 (en) Method for activating copper-containing catalyst and method for producing tetrahydro-2H-pyran-2-one and / or 3,4-dihydro-2H-pyran
SU535279A1 (en) The method of producing hydroquinone
JPS6138628A (en) Improvement in capacity of silver supported catalyst
JPS5833850B2 (en) Production method of allyl acetate
JP4136318B2 (en) Method for producing 1,3-difluoroacetone
JPH0247972B2 (en)
JPS6140226A (en) Production of cycloolefin
JPS5825655B2 (en) Isomerization method of diacetoxybutene
JPS606629A (en) Production of formaldehyde
SU828657A1 (en) Process for preparing pyrocatechol