JPS6260956B2 - - Google Patents

Info

Publication number
JPS6260956B2
JPS6260956B2 JP5667081A JP5667081A JPS6260956B2 JP S6260956 B2 JPS6260956 B2 JP S6260956B2 JP 5667081 A JP5667081 A JP 5667081A JP 5667081 A JP5667081 A JP 5667081A JP S6260956 B2 JPS6260956 B2 JP S6260956B2
Authority
JP
Japan
Prior art keywords
waste liquid
decomposition
tank
dithionic acid
decomposition tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5667081A
Other languages
Japanese (ja)
Other versions
JPS57171490A (en
Inventor
Kenji Kida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP5667081A priority Critical patent/JPS57171490A/en
Publication of JPS57171490A publication Critical patent/JPS57171490A/en
Publication of JPS6260956B2 publication Critical patent/JPS6260956B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 この発明は廃液中のジチオン酸の除去方法に関
し、とりわけ排煙を湿式脱硫処理する際に排出さ
れる処理廃液や、排煙を乾式脱硝処理しついで湿
式脱硫処理する際に排出される処理液に含まれる
ジチオン酸を除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing dithionic acid from waste liquid, and in particular, to a method for removing dithionic acid from waste liquid, particularly when treating waste liquid discharged when flue gas is subjected to wet desulfurization treatment, and when flue gas is subjected to dry denitrification treatment and wet desulfurization treatment. The present invention relates to a method for removing dithionic acid contained in a processing liquid discharged into a process.

現在、排煙脱硫処理としては、多くのプロセス
が実用化されており、排煙中のイオウ酸化物
(SOx)は、吸収液により主として硫酸カルシウ
ムまたは硫酸ナトリウムとして回収されている。
この場合SOxはまず酸性亜硫酸イオン(HSO
として処理液に吸収され、ついでこれの空気酸化
により上記カルシウムまたはナトリウム塩として
回収される。ところでHSO の空気酸化に伴つて
ジチオン酸が副生する。ジチオン酸は非常に安定
な物質であり、そのためKMnO4によるCOD分析
方法(JISK0102)では、理論COD値の20〜30%
程度しか検出されず、またこの物質のCOD値は
酸化時間により変動すると言われている。したが
つて廃液のCOD成分の1つであるジチオン酸
は、一般的なCOD除去手段である凝集沈殿法、
オゾン酸化法、活性炭吸着法、紫外線照射分解法
などでは十分に除去できず、これらに代つて、イ
オン交換樹脂による吸着除去、電解酸化法による
SO2− への分解、逆浸透膜による濃縮分離、濃縮
した濃縮液の蒸発乾固などが実用化されつつあ
る。しかしこれらの方法では濃縮または再生廃液
の処理が必要となり、その手段として、蒸発濃縮
ないしは湿式燃焼、親水性の溶媒との混合による
液中への析出、酸素存在下での加温、粒状物質と
の混合後ロータリーキルンによる加熱などの方法
が検討されている。このように上記方法による湿
式脱硫廃液中のジチオン酸の除去は、大規模な装
置を必要とし、いきおいコスト高をまねいてい
た。
Currently, many processes are in practical use as flue gas desulfurization treatment, and sulfur oxides (SOx) in flue gas are recovered mainly as calcium sulfate or sodium sulfate using an absorption liquid.
In this case, SOx first becomes acidic sulfite ion (HSO - 3 )
The calcium or sodium salt is then recovered as the calcium or sodium salt by air oxidation. By the way, dithionic acid is produced as a by-product during the air oxidation of HSO - 3 . Dithionic acid is a very stable substance, so the COD analysis method using KMnO 4 (JISK0102) shows a difference of 20 to 30% of the theoretical COD value.
The COD value of this substance is said to vary depending on the oxidation time. Therefore, dithionic acid, which is one of the COD components of waste liquid, can be removed using the coagulation-precipitation method, which is a common COD removal method.
Ozone oxidation method, activated carbon adsorption method, ultraviolet irradiation decomposition method, etc. are not able to remove the water sufficiently.
Decomposition into SO 2-4 , concentration separation using a reverse osmosis membrane, and evaporation of the concentrated liquid to dryness are being put into practical use. However, these methods require treatment of the concentrated or regenerated waste liquid, and methods for this include evaporative concentration or wet combustion, precipitation in the liquid by mixing with a hydrophilic solvent, heating in the presence of oxygen, and treatment of particulate matter. Methods such as heating in a rotary kiln after mixing are being considered. As described above, the removal of dithionic acid from the wet desulfurization waste liquid by the above-mentioned method requires large-scale equipment, which leads to high costs.

最近、ジチオン酸イオンを、Al3+またはSO2−
と錯体化合物を形成させることにより、除去する
方法が提案されている。この方法は設備費、運転
費の点で従来の方法より大巾に有利であるが、こ
の場合、PAC必要量は、Al2O3としてS2O2−
SO2− 濃度の和の半分であつて、極めて多量を要
し、またPHは11以上でなければならないため、汚
泥生成量の点でも問題があつた。
Recently, dithionate ions have been converted into Al 3+ or SO 2− 4
A method of removal has been proposed by forming a complex compound with. This method is significantly more advantageous than the conventional method in terms of equipment costs and operating costs, but in this case , the required amount of PAC is S 2 O 2-6 as Al 2 O 3 ,
Since this requires an extremely large amount, which is half of the sum of the SO 2-4 concentrations, and the pH must be 11 or higher, there was also a problem in terms of the amount of sludge produced.

本発明者は、上記のような実情に鑑み、廃液中
のジチオン酸の生成分解について、イオウ酸化菌
や硝化菌を含む下水処理汚泥、し尿処理汚泥を用
いて、検討を行つた。その結果、好気的処理法に
おいて廃液中のジチオン酸イオン(S2O2− )を分
解するにはチオ硫酸イオン(S2O2− )が必須であ
ることが判明した。しかしこの場合、S2O2− をほ
ぼ完全に分解するのに必要なS2O の量は、
〔S2O2− 〕/〔S2O2− 〕モル比として0.7以上と

めて高くなり、その上生物酸化により生じた
SO2− の中和にも高い費用を要するため、この方
法は未だ満足なものとはいえなかつた。そこで本
発明者は、S2O2− の分解率を低下させることな
く、S2O2− 必要量を低減する方法について研究を
重ねた結果、複数の分解槽を直列に配し、各槽に
それぞれS2O2− を分けて供給することにより、
S2O2− 必要量を〔S2O2− 〕/〔S2O2− 〕モル
比=約
0.2に低減することができるという知見を得、こ
の発明を完成した。
In view of the above-mentioned circumstances, the present inventors investigated the production and decomposition of dithionic acid in waste liquid using sewage treatment sludge and human waste treatment sludge containing sulfur-oxidizing bacteria and nitrifying bacteria. As a result , it was found that thiosulfate ions (S 2 O 2-3 ) are essential for decomposing dithionate ions (S 2 O 2-6 ) in the waste liquid in the aerobic treatment method. However, in this case, the amount of S 2 O- 3 required to almost completely decompose S 2 O 2-6 is
[S 2 O 2- 3 ]/[S 2 O 2- 6 ] molar ratio is extremely high at 0.7 or more.
Since neutralization of SO 2-4 also requires high costs, this method has not yet been satisfactory. Therefore, as a result of repeated research on a method for reducing the required amount of S 2 O 2-3 without reducing the decomposition rate of S 2 O 2-6 , the present inventor arranged multiple decomposition tanks in series, By separately supplying S 2 O 2-3 to each tank ,
The required amount of S 2 O 2-3 is determined by the molar ratio of [S 2 O 2- 3 ]/[S 2 O 2- 6 ] = approx.
This invention was completed based on the knowledge that it can be reduced to 0.2.

すなわち、この発明によるジチオン酸の除去方
法は、廃液中のジチオン酸を生物学的に分解する
に当り、複数の分解槽を直列に配設し、S2O2−
含む廃液を各分解槽に順次流通するとともに、
S2O2− を各分解槽にそれぞれ分けて供給すること
を特徴とするものである。
That is, in the method for removing dithionic acid according to the present invention, in biologically decomposing dithionic acid in a waste liquid, a plurality of decomposition tanks are arranged in series, and the waste liquid containing S 2 O 2-6 is decomposed in each decomposition tank . As well as being distributed sequentially to the tanks,
This method is characterized in that S 2 O 2-3 is separately supplied to each decomposition tank.

後述する比較例2に示すように〔S2O2− 〕/
〔S2O2− 〕モル比=0.1によつてS2O2− 分解率=

60%が達成されるので、各分解槽へのS2O2− 添加
量を、槽入口におけるS2O2− 濃度に対し、上記モ
ル比で0.1とし、分解槽の第n番目におけるS2O2−
の分解率およびS2O2− の累計添加量を算出する
と、つぎのようになる。
As shown in Comparative Example 2 described later , [ S2O2-3 ] /
[S 2 O 2-6 ] S 2 O 2-6 decomposition rate = by molar ratio = 0.1
about
Since 60% is achieved, the amount of S 2 O 2-3 added to each decomposition tank is set to the above molar ratio of 0.1 to the S 2 O 2-6 concentration at the tank inlet , and the S2O2-6 _ _
The decomposition rate and the cumulative addition amount of S 2 O 2-3 are calculated as follows.

S2O2− 分解率=X−X/X=1−0.4n ここでnが大きい場合(たとえば実施例1およ
び2では4つの分解槽が用いられているので、n
=4の場合)、0.4nは無視できるぐらい微小値に
なるので、上記累計添加量は 0.1X01/1−0.4=0.167X0 で近似することができる。
S 2 O 2-6 decomposition rate = X 0 -X o /X 0 = 1-0.4 n Here, if n is large (for example, in Examples 1 and 2, four decomposition tanks are used, so n
= 4), 0.4 n is a negligibly small value, so the above cumulative addition amount can be approximated as 0.1X 0 1/1 - 0.4 = 0.167X 0 .

(式中、X0は排水中のS2O2− のモル濃度、Xo
はn番目の分解槽におけるS2O2− のモル濃度、Yn
はn番目の分解槽におけるS2O2− のモル添加量を
それぞれ意味する。) つぎにこの発明の実施例と、従来技術を示す比
較例を挙げる。
(In the formula, X 0 is the molar concentration of S 2 O 2-6 in the wastewater ,
is the molar concentration of S 2 O 2-6 in the n-th decomposition tank, Yn
respectively mean the molar amount of S 2 O 2-3 added in the n-th decomposition tank. ) Next, examples of the present invention and comparative examples showing the prior art will be given.

比較例 1 第1図に示す浸水床方式によるジチオン酸の
好気的生物分解装置において、種汚泥としてイオ
ウ酸化菌と硝化菌を含む下水処理汚泥を充填した
容積1の分解槽1に、350mg/のS2O2− を含
む供試廃液を0.55/日の流量で供給し、これと
は別にチオ硫酸ナトリウムをS2O2− としてS2O2−
に対し260ml/添加した。こうしてPH=7、温
度30℃にてS2O2− の生物分解を行ない、処理液中
のS2O2− の濃度を測定した。
Comparative Example 1 In the aerobic biodegradation device for dithionic acid using the submerged bed method shown in Fig. 1, 350 mg/ml was added to the decomposition tank 1 with a volume of 1 filled with sewage treatment sludge containing sulfur-oxidizing bacteria and nitrifying bacteria as seed sludge. A test waste liquid containing S 2 O 2-6 was supplied at a flow rate of 0.55/day, and separately , sodium thiosulfate was converted into S 2 O 2-3 and S 2 O 2-6
260 ml/was added. In this way, S 2 O 2-6 was biodegraded at pH=7 and temperature of 30° C., and the concentration of S 2 O 2-6 in the treated solution was measured.

また、S2O2− のS2O2− 分解に及ぼす影響を調べ
るために、S2O2− の添加を停止し、上記と同じよ
うに濃度測定を行なつた。
Furthermore, in order to investigate the influence of S 2 O 2-3 on the decomposition of S 2 O 2-6 , the addition of S 2 O 2-3 was stopped and the concentration was measured in the same manner as above .

これらの測定結果を第2図に示す。同図からわ
かるように、S2O2− を添加しない場合はS2O2−
分解は全くなされないが、S2O2− の添加によつ
て、約12日の稼動後、廃液中のS2O2− は完全に分
解された。よつてS2O2− の分解にはS2O2− が必須
である。
The results of these measurements are shown in FIG. As can be seen from the figure, when S 2 O 2-3 is not added, S 2 O 2-6 is not decomposed at all , but with the addition of S 2 O 2-3 , after about 12 days of operation , , S 2 O 2-6 in the waste liquid was completely decomposed. Therefore , S 2 O 2-3 is essential for the decomposition of S 2 O 2-6 .

比較例 2 比較例1と同じ操作で、分解槽容積負荷1.7Kg
S2O2− /m3・日でS2O2− の分解に及ぼすS2O2−
の影
響について調べた。結果を第3図に示す。同図か
らわかるように、 〔S2O2− 〕/〔S2O2− 〕モル比=0.1 ではS2O2− 分解率=60%であつたが、モル比を上
げると分解率は向上し、モル比=0.7以上では分
解率=100%を達成した。
Comparative example 2 Same operation as comparative example 1, decomposition tank volume load 1.7Kg
Effect of S 2 O 2- 6 on the decomposition of S 2 O 2- 6 at S 2 O 2- 6 /m 3 ·day
We investigated the influence of 3 . The results are shown in Figure 3. As can be seen from the figure, when the [S 2 O 2- 3 ]/[S 2 O 2- 6 ] molar ratio = 0.1, the S 2 O 2- 6 decomposition rate was 60%, but when the molar ratio was increased, The decomposition rate improved, and at a molar ratio of 0.7 or higher, a decomposition rate of 100% was achieved.

実施例 1 第1図に示すジチオン酸の好気的生物分解槽を
4つ用意して直列に配設し、第4図に示す多段直
列型のジチオン酸分解装置を構成した。同装置の
1段目の分解槽11に、350mg/のS2O2− を含
む供試廃液を8/日の流量で供給して各槽に順
次流通し、これに対し、各段の分解槽11,1
2,13,14にチオ硫酸ナトリウムをS2O2−
してそれぞれ25mg/、10mg/、5mg/およ
び2mg/添加した。こうしてPH=7、温度30℃
にてS2O2− の生物分解を行つたところ、4段目の
分解槽14から出た処理液のS2O2− 濃度は約20
mg/となり、S2O2− として42mgすなわち
〔S2O2− 〕/〔S2O2− 〕モル比=0.2において約9
5
%のジチオン酸分解率が達成された。
Example 1 Four aerobic biodecomposition tanks for dithionic acid shown in FIG. 1 were prepared and arranged in series to construct a multistage series dithionic acid decomposition apparatus shown in FIG. 4. A test waste liquid containing 350 mg/ day of S 2 O 2-6 was supplied to the first stage decomposition tank 11 of the same equipment at a flow rate of 8 days, and was distributed sequentially to each tank. Decomposition tank 11,1
25 mg/, 10 mg/, 5 mg/ , and 2 mg/of sodium thiosulfate were added as S 2 O 2-3 to Nos. 2, 13, and 14, respectively. Thus PH=7, temperature 30℃
When S 2 O 2-6 was biodegraded in the 4th stage decomposition tank 14, the concentration of S 2 O 2-6 in the treated liquid from the fourth stage decomposition tank 14 was approximately 20
mg/, and 42 mg as S 2 O 2-3 , that is, about 9 at [S 2 O 2- 3 ]/[S 2 O 2- 6 ] molar ratio = 0.2.
Five
% dithionic acid decomposition rate was achieved.

実施例 2 第5図に示すように、直列に配された容積5.7
の複数の分解槽21,22,23,24と、こ
れ後流側に配された脱窒槽25と、さらにその後
流側に配された再曝気槽26とからなる廃液処理
装置を構成した。供試廃液として、200mg/の
S2O2− と330mg/のNH −Nを含む排煙脱硝脱
硫廃液、1段目の分解槽21に55/日の流量で
供給して各槽に順次流通し、これに対し、各段の
分解槽に21,22,23,24にチオ硫酸ナト
リウムをS2O2− として15mg/、10mg/、3
mg/および1mg/添加した。そして分解槽2
1,22,23,24において温度=30℃、PH=
7.7にてNH −Nの硝化およびS2O2− の分解を同時
に行つて、S2O2− の添加量による影響を調べた。
その結果再曝気槽26から出た処理液のS2O2−
度は10mg/、NH 濃度は0.2mg/以下であつ
た。このように〔S2O2− 〕/〔S2O2− 〕モル比=
約0.21のS2O2− 添加により、95%のジチオン酸分
解率が達成された。なお、比較例2ではジチオン
酸分解率100%を得るには〔S2O2− 〕/〔S2O2−

モル比が0.7以上となるようにS2O2− を添加する必
要があつた。
Example 2 As shown in Figure 5, volumes 5.7
A waste liquid treatment device was constructed which consisted of a plurality of decomposition tanks 21, 22, 23, 24, a denitrification tank 25 disposed on the downstream side thereof, and a re-aeration tank 26 disposed further on the downstream side. As sample waste liquid, 200mg/
The flue gas denitrification and desulfurization waste liquid containing S 2 O 2-6 and 330 mg /N of NH + 4 -N is supplied to the first-stage decomposition tank 21 at a flow rate of 55/day, and is sequentially distributed to each tank. , 15 mg/, 10 mg/, 3 of sodium thiosulfate as S 2 O 2-3 in 21, 22, 23, 24 in each stage of the decomposition tank.
mg/ and 1 mg/ were added. And decomposition tank 2
At 1, 22, 23, 24, temperature = 30℃, PH =
In 7.7, nitrification of NH + 4 -N and decomposition of S 2 O 2- 6 were carried out simultaneously, and the influence of the amount of S 2 O 2- 3 added was investigated.
As a result, the S 2 O 2-6 concentration of the treated liquid discharged from the reaeration tank 26 was 10 mg/and the NH + 4 concentration was 0.2 mg/ or less. In this way, [S 2 O 2- 3 ]/[S 2 O 2- 6 ] molar ratio =
A dithionic acid decomposition rate of 95% was achieved with an addition of about 0.21 S 2 O 2-3 . In addition, in Comparative Example 2, in order to obtain a dithionic acid decomposition rate of 100% , [ S2O2-3 ] / [ S2O2-6 ]
]
It was necessary to add S 2 O 2-3 so that the molar ratio was 0.7 or more .

分解槽24と脱窒槽25の間に、硫黄を含む窒
素化合物を除去するための除去槽を設置する場合
もあり、この場合にもジチオン酸の分解率はまつ
たく影響を受けなかつた。
In some cases, a removal tank for removing nitrogen compounds containing sulfur was installed between the decomposition tank 24 and the denitrification tank 25, and in this case, the decomposition rate of dithionic acid was not affected at all.

以上の次第で、この発明によるジチオン酸の除
去方法では、複数の分解槽を直列に配設し、
S2O2− を含む廃液を各分解槽に順次流通するとと
もに、S2O2− を各分解槽にそれぞれ分けて供給す
るので、S2O2− の分解に必要なS2O2− の添加量を
大巾に低減することができ、S2O2− の除去をコス
ト的に有利になし得る。
According to the above, in the method for removing dithionic acid according to the present invention, a plurality of decomposition tanks are arranged in series,
Since the waste liquid containing S 2 O 2-6 is sequentially distributed to each decomposition tank, and S 2 O 2-3 is separately supplied to each decomposition tank, the S 2 necessary for decomposing S 2 O 2-6 is The amount of O 2-3 added can be greatly reduced, and S 2 O 2-6 can be removed cost-effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比較例で用いたジチオン酸分解装置を
示す断面図、第2図は処理時間とS2O2− の関係を
示すグラフ、第3図は〔S2O2− 〕/〔S2O2− 〕モ
ル比とS2O2− 分解率の関係を示すグラフ、第4
図、第5図はこの発明の実施例を示す工程図であ
る。
Fig. 1 is a cross-sectional view showing the dithionic acid decomposition equipment used in the comparative example, Fig. 2 is a graph showing the relationship between treatment time and S 2 O 2-6 , and Fig. 3 is a graph showing the relationship between [S 2 O 2-3 ]/ [S 2 O 2-6 ] Graph showing the relationship between molar ratio and S 2 O 2-6 decomposition rate, 4th
FIG. 5 is a process diagram showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 廃液中のジチオン酸を生物学的に分解するに
当り、複数の分解槽を直列に配設し、ジチオン酸
イオンを含む廃液を各分解槽に順次流通するとと
もに、チオ硫酸イオンを各分解槽にそれぞれ分け
て供給することを特徴とする廃液中のジチオン酸
の除去方法。 2 廃液が排煙湿式脱硫処理廃液である特許請求
の範囲第1項記載の方法。 3 廃液が、アンモニア性窒素とジチオン酸イオ
ンを含む排煙脱硝脱硫処理廃液である特許請求の
範囲第1項記載の方法。
[Scope of Claims] 1. In biologically decomposing dithionic acid in a waste liquid, a plurality of decomposition tanks are arranged in series, and the waste liquid containing dithionate ions is sequentially distributed to each decomposition tank. A method for removing dithionic acid from waste liquid, characterized by supplying sulfate ions to each decomposition tank separately. 2. The method according to claim 1, wherein the waste liquid is a flue gas wet desulfurization treatment waste liquid. 3. The method according to claim 1, wherein the waste liquid is a flue gas denitrification and desulfurization treatment waste liquid containing ammonia nitrogen and dithionate ions.
JP5667081A 1981-04-14 1981-04-14 Removal of dithionic acid from waste liquid Granted JPS57171490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5667081A JPS57171490A (en) 1981-04-14 1981-04-14 Removal of dithionic acid from waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5667081A JPS57171490A (en) 1981-04-14 1981-04-14 Removal of dithionic acid from waste liquid

Publications (2)

Publication Number Publication Date
JPS57171490A JPS57171490A (en) 1982-10-22
JPS6260956B2 true JPS6260956B2 (en) 1987-12-18

Family

ID=13033848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5667081A Granted JPS57171490A (en) 1981-04-14 1981-04-14 Removal of dithionic acid from waste liquid

Country Status (1)

Country Link
JP (1) JPS57171490A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488166B2 (en) * 2010-04-26 2014-05-14 Jfeスチール株式会社 Biological treatment method and apparatus for waste water containing sulfur-based COD components

Also Published As

Publication number Publication date
JPS57171490A (en) 1982-10-22

Similar Documents

Publication Publication Date Title
EP0808210B1 (en) Process for purifying flue gas containing nitrogen oxides
JP3103027B2 (en) Exhaust gas treatment method and apparatus using ammonia in sewage
US4968622A (en) Procedure for microbiologica transformation of sulphur containing harmful components in exhaust gases
CN107804890B (en) Treatment system and method for improving long-term adsorption performance of ammonia nitrogen adsorption material
CN1879946A (en) Biological method for simultaneously removing SO2,NOX,heavy metal and granule from gas
US3755156A (en) Method for biochemical treatment of industrial waste water
CN108137359B (en) Method for purifying hazardous substance-containing liquid and hazardous substance-containing liquid purification apparatus for carrying out the method
JPS6260956B2 (en)
JP2000279752A (en) Nitrous oxide adsorbent, adsorption tower and waste water treatment
WO2017096693A1 (en) Waste water denitrification treatment system for use in oxidation-based denitrification
JP2002028440A (en) Stack gas desulfurization process
KR100273856B1 (en) Sequencing batch reactor containing zeolite
KR100474297B1 (en) Handling process of wastewater possessing high concentration nitrogen and phosphorus and the apparatus therein
JPH11165180A (en) Method for treating scrubber drainage
JP3837757B2 (en) Method for treating selenium-containing water
JP2008093602A (en) Waste water treatment method and waste water treatment equipment
JP2554687B2 (en) Biological nitrogen removal method
SU644736A1 (en) Method of purifying waste water from amines
JPS59173199A (en) Biological treatment of waste water containing dithionic acid and ammonia
JPH1043771A (en) Denitrifying treatment and device therefor
KR830002326B1 (en) Wastewater Treatment Method
SU833565A1 (en) Method of waste water purification from thiosulfate ion
SU812341A1 (en) Method of regeneration of activated carbon
JPS586558B2 (en) Sewage treatment method
JP2002282890A (en) Treatment method and system for organic drainage