JPS6260945A - Air-fuel ratio controller for engine - Google Patents

Air-fuel ratio controller for engine

Info

Publication number
JPS6260945A
JPS6260945A JP20121385A JP20121385A JPS6260945A JP S6260945 A JPS6260945 A JP S6260945A JP 20121385 A JP20121385 A JP 20121385A JP 20121385 A JP20121385 A JP 20121385A JP S6260945 A JPS6260945 A JP S6260945A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
feedback control
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20121385A
Other languages
Japanese (ja)
Other versions
JPH0830435B2 (en
Inventor
Toshio Nishikawa
西川 俊雄
Kiyotaka Mamiya
清孝 間宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60201213A priority Critical patent/JPH0830435B2/en
Publication of JPS6260945A publication Critical patent/JPS6260945A/en
Publication of JPH0830435B2 publication Critical patent/JPH0830435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the generation of engine miss fire due to overlean state by setting an aimed air-fuel ratio to the lean side in comparison with a prescribed value and carrying out feedback control when the air-fuel ratio deflects to the lean side, while suspending the feedback control when the air-fuel ratio deflects to the rich side. CONSTITUTION:A control unit 30 sets the aimed air-fuel ratio corresponding to the operation state, and compares said aimed air-fuel ratio with the output voltage of an air-fuel ratio sensor 20, and feedback-controls the fuel injection quantity of a fuel injection valve 8. Though the air-fuel ratio is feedback- controlled in the operation region in which the aimed air-fuel ratio is set in the vicinity of the theoretical air-fuel ratio, no bad influence is given to the operation of an engine. Further, though fuel is increased in the lean state in comparison with the aimed air-fuel ratio in the region in which the aimed air- fuel ratio is set to the lean side from a prescribed value, the reduction of fuel through feedback control is not carried out, in a little rich state in comparison with the aimed air-fuel ratio, and the deflection to the lean side of the air-fuel ratio is prevented. Therefore, the engine stall due to the overlean state is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、運転状態により目標空燃比を変えてフィード
バック制御を行なうようにしたエンジンの空燃比制御装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine air-fuel ratio control device that performs feedback control by changing a target air-fuel ratio depending on operating conditions.

(従来技術) 従来、特開昭58−59330号公報に示されるように
、排気ガス中の酸素濃度を検出して空燃比に対応した信
号(例えば空燃比に比例した信号)を出力する空燃比セ
ンサを用いるとともに、運転状態に応じた目標空燃比を
設定し、上記空燃比センサの出力と目標空燃比に対応し
た値とを比較して燃料供給量を制御するようにした空燃
比のフィードバック制御装置がある。この装置において
は上記空燃比セーンサで空燃比を広範囲に検出できるよ
うにし、運転状態によって目標空燃比を変えることによ
り、空燃比を種々の運転状態に適合するように制御して
おり、従って目標空燃比は、理論空燃比付近に設定され
る時とリーン側に設定される時とがある。
(Prior Art) Conventionally, as shown in Japanese Unexamined Patent Publication No. 58-59330, an air-fuel ratio system detects the oxygen concentration in exhaust gas and outputs a signal corresponding to the air-fuel ratio (for example, a signal proportional to the air-fuel ratio). Air-fuel ratio feedback control that uses a sensor, sets a target air-fuel ratio according to the operating state, and controls the fuel supply amount by comparing the output of the air-fuel ratio sensor with a value corresponding to the target air-fuel ratio. There is a device. In this device, the air-fuel ratio can be detected over a wide range with the air-fuel ratio sensor, and by changing the target air-fuel ratio depending on the operating condition, the air-fuel ratio is controlled to suit various operating conditions. The fuel ratio is sometimes set near the stoichiometric air-fuel ratio and sometimes set on the lean side.

ところで、この種の従来の装置では、目標空燃比が理論
空燃比付近に設定されているかリーン側に設定されるか
に拘らず、空燃比センサにより検出される空燃比が目標
空燃比よりもリッチ状態となれば燃料を減量し、目標空
燃比よりもリーン状態となれば燃料を増量する制御を繰
返し、従って空燃比は目標空燃比を中心にして多少振れ
動くように制御されている。しかし、経済走行等のため
目標空燃比がリーン側の着火可能な限界付近に設定され
ているとき、空燃比がこれよりリーン側に振れると失火
を生じる可能性があり、リーン側に振れる頻度が高くな
る程失火が生じ易くなる。従ってこの時には、フィード
バック制御によって空燃比が目標空燃比よりリーン側に
振れることをできるだけ抑i、lJ したいという要求
がある。
By the way, in this type of conventional device, the air-fuel ratio detected by the air-fuel ratio sensor is richer than the target air-fuel ratio, regardless of whether the target air-fuel ratio is set near the stoichiometric air-fuel ratio or on the lean side. When the condition is reached, the amount of fuel is decreased, and when the condition is leaner than the target air-fuel ratio, the amount of fuel is increased. Therefore, the air-fuel ratio is controlled to fluctuate somewhat around the target air-fuel ratio. However, when the target air-fuel ratio is set near the lean ignition limit for economical driving, etc., if the air-fuel ratio swings leaner than this, misfires may occur, and the frequency of swings towards the lean side may increase. The higher the temperature, the more likely misfires will occur. Therefore, at this time, there is a demand to suppress the air-fuel ratio i, lJ from swinging to the lean side from the target air-fuel ratio as much as possible through feedback control.

(発明の目的) 本発明はこのような事情に鑑み、目標空燃比がリーン側
に設定される運転域で、フィードバック制御によるオー
バリーンを抑制して失火を防止することのできるエンジ
ンの空燃比制御装置を提供するものである。
(Object of the Invention) In view of the above circumstances, the present invention provides an engine air-fuel ratio control device that is capable of suppressing overlean due to feedback control and preventing misfires in an operating range where the target air-fuel ratio is set to the lean side. It provides:

(発明の構成) 本発明は、排気ガス中の酸素濃度を検出して空燃比に対
応した信号を出力する空燃比センサと、この空燃比セン
サの出力と運転状態に応じて設定された目標空燃比に対
応する値とを比較して燃料供給量あるいは空気量の少な
くとも一方を制御するフィードバック制御手段とを備え
たエンジンの空燃比制御装置において、上記フィードバ
ック制御手段に、上記目標空燃比が理論空燃比付近に設
定されたときにこの目標空燃比を中心に空燃比の変動に
応じて燃料供給量あるいは空気量の少なくとも一方を増
減させるようにフィードバック制御を行なう第1の制御
手段と、目標空燃比が所定値よりリーン側に設定された
ときに、空燃比が目標空燃比よりリーン状態になるとフ
ィードバック制御を行ない、目標空燃比よりリッチ状態
となるとフィードバック制御を停止する第2の制御手段
とを設けたものである。
(Structure of the Invention) The present invention includes an air-fuel ratio sensor that detects the oxygen concentration in exhaust gas and outputs a signal corresponding to the air-fuel ratio, and a target air-fuel ratio sensor that detects the oxygen concentration in exhaust gas and outputs a signal corresponding to the air-fuel ratio. In the engine air-fuel ratio control device, the engine air-fuel ratio control device includes feedback control means for controlling at least one of the fuel supply amount or the air amount by comparing the value corresponding to the fuel ratio with a value corresponding to the fuel ratio. a first control means that performs feedback control to increase or decrease at least one of the fuel supply amount or the air amount in accordance with fluctuations in the air-fuel ratio around the target air-fuel ratio when the fuel ratio is set near the target air-fuel ratio; and a second control means that performs feedback control when the air-fuel ratio becomes leaner than the target air-fuel ratio and stops the feedback control when the air-fuel ratio becomes richer than the target air-fuel ratio when is set leaner than a predetermined value. It is something that

つまり、目標空燃比が所定値よりリーン側に設定された
とき、それ以上にリーンな状態となれば燃料を増量して
空燃比をリッチ方向に制御するが、目標空燃比より多少
リッチな状態になればフィードバック制御による燃料の
減量を行なわず、空燃比のリーン方向への振れを避ける
ようにしたものである。
In other words, when the target air-fuel ratio is set to a leaner side than a predetermined value, if the condition becomes leaner than that, the amount of fuel is increased and the air-fuel ratio is controlled in the rich direction, but if the condition becomes leaner than the predetermined value, the air-fuel ratio is controlled to be richer. In this case, the fuel consumption is not reduced by feedback control, and the air-fuel ratio is prevented from swinging in the lean direction.

(実施例) 第1図は本発明装置の一実施例を示し、この図において
、11はエンジン10のシリンダ、12はシリンダ11
内の燃焼室、13は吸気通路、14は排気通路である。
(Embodiment) FIG. 1 shows an embodiment of the apparatus of the present invention. In this figure, 11 is a cylinder of an engine 10, and 12 is a cylinder 11.
13 is an intake passage, and 14 is an exhaust passage.

上記吸気通路13には、上流側から順にエアクリーナ1
5、エアフローメータ16、スロットル弁17および燃
料噴射弁18が配設されている。また排気通路14には
排気浄化装置1つの上流に空燃比センサ20が設けられ
ている。このほかに燃料噴gA量の制御に必要な検出要
素として、エンジンのクランク角変化によってエンジン
回転数を検出する回転数センサ21、エンジンの負荷に
相当する吸気負圧を検出する圧力センサ22、吸気温を
検出する吸気温センサ23、エンジンの冷却水温を検出
する水温センサ24が配備されている。
In the intake passage 13, an air cleaner 1 is installed in order from the upstream side.
5, an air flow meter 16, a throttle valve 17, and a fuel injection valve 18 are provided. Furthermore, an air-fuel ratio sensor 20 is provided in the exhaust passage 14 upstream of one exhaust purification device. In addition, as detection elements necessary for controlling the amount of fuel injection gA, there is a rotation speed sensor 21 that detects the engine rotation speed based on changes in the engine crank angle, a pressure sensor 22 that detects the intake negative pressure corresponding to the engine load, and an intake pressure sensor 22 that detects the intake negative pressure corresponding to the engine load. An intake temperature sensor 23 that detects the air temperature and a water temperature sensor 24 that detects the engine cooling water temperature are provided.

上記空燃比センサ20は排気ガス中の酸素濃度を検出す
ることによって空燃比を検出し、空燃比に対応した信号
を出力するもので、例えば第2図に示すように、空燃比
(△/F)に比例した出力電圧を発生するようになって
いる。
The air-fuel ratio sensor 20 detects the air-fuel ratio by detecting the oxygen concentration in the exhaust gas, and outputs a signal corresponding to the air-fuel ratio. For example, as shown in FIG. ) is designed to generate an output voltage proportional to

30は制御ユニットであって、CPtJ31、メモリ3
2、入力部33および燃料噴射弁18の駆動回路34等
を備え、上記エアフローメータ16と各センサ20〜2
4とからの検出信号を入力し、燃料噴射弁18に駆動信
号を出力するようにしており、この駆動信号は噴射パル
スによって与えられ、この噴射パルスのパルス幅によっ
て燃料噴射量(燃料供給量)が制御されるようになって
いる。
30 is a control unit, CPtJ31, memory 3
2, includes an input section 33 and a drive circuit 34 for the fuel injection valve 18, and includes the air flow meter 16 and each sensor 20 to 2.
4 and outputs a drive signal to the fuel injection valve 18. This drive signal is given by an injection pulse, and the fuel injection amount (fuel supply amount) is determined by the pulse width of this injection pulse. is now under control.

上記制御ユニット30は、運転状態に応じた目標空燃比
を設定して、上記空燃比センサ20の出力電圧と目標空
燃比とを比較し、それに基いて燃料噴射量を制御するフ
ィードバック制御手段を構成し、特に本発明では、後に
詳述するような制御を行なうことにより、目標空燃比が
理論空燃比付近に設定されたときの制御を行なう第1の
制御手段と、目標空燃比が所定空燃比よりリーン側に設
定されたときの制御を行なう第2の制御手段とを含んで
いる。第2図中に示したように、第1の制御手段による
制御範囲と第2の制御手段による制御範囲との境界とな
る所定空燃比Y1は理論空燃比(λ=1)よりもかなり
リーン側に設定され、例えば△/F=18に設定されて
いる。またこの第2図中には、上記所定空燃比Y1より
もリーン側(例えばA / F = 20 >とされる
リーン運転時の目標空燃比Ytとこれに対応する目的電
圧Vt、およびこのことに空燃比がリッチ側へずれる方
向の許容範囲(Y−は許容限度)に対応した出力電圧変
動許容範囲αとその下限値(Vt−α)を示しており、
これらについては後にフローチャート中で説明する。
The control unit 30 constitutes a feedback control means that sets a target air-fuel ratio according to the operating state, compares the output voltage of the air-fuel ratio sensor 20 with the target air-fuel ratio, and controls the fuel injection amount based on the output voltage of the air-fuel ratio sensor 20. However, in particular, in the present invention, the first control means performs control when the target air-fuel ratio is set near the stoichiometric air-fuel ratio by performing control as will be described in detail later; and second control means for performing control when set to a leaner side. As shown in FIG. 2, the predetermined air-fuel ratio Y1, which is the boundary between the control range by the first control means and the control range by the second control means, is considerably leaner than the stoichiometric air-fuel ratio (λ=1). For example, Δ/F=18. In addition, in FIG. 2, the target air-fuel ratio Yt and the corresponding target voltage Vt during lean operation where the predetermined air-fuel ratio Y1 is leaner (for example, A / F = 20 >), and the target voltage Vt corresponding to this are also shown. It shows the output voltage fluctuation permissible range α and its lower limit value (Vt-α) corresponding to the permissible range in the direction in which the air-fuel ratio shifts to the rich side (Y- is the permissible limit),
These will be explained later in the flowchart.

上記制御ユニット30による制御の具体例を、第3図の
フローチャートによって説明する。この具体例では、空
燃比センサ20の出力と目標電圧とに基いてフィードバ
ック制御により燃料噴射量を補正するとともに、運転状
態の区分毎に、例えば複数回のフィードバック制御によ
る補正値の平均値を求め、これを学習値としてメモリ3
2のマツプに記憶させておき、この学習値をフィードバ
ック制御に反映させ、つまりフィードバック制御による
補正値と上記学習値とを併用して燃料噴射量を制御して
いる。
A specific example of control by the control unit 30 will be explained with reference to the flowchart in FIG. 3. In this specific example, the fuel injection amount is corrected by feedback control based on the output of the air-fuel ratio sensor 20 and the target voltage, and the average value of correction values obtained by, for example, multiple feedback controls is calculated for each operating state category. , store this as a learning value in memory 3
This learned value is reflected in the feedback control, that is, the correction value by the feedback control and the learned value are used together to control the fuel injection amount.

このフローチャートにおいては、先ずステップS1でシ
ステムを初期化してから、ステップS2でエンジン回転
数、吸気負圧、水温、吸気温、空燃比センサ出力、エア
フローメータ出力を入力する。次にステップS3で、エ
ンジン回転数とエアフローメータ出力とにより基本噴射
パルス幅Tpを算出し、ステップS4でエンジン回転数
と基本噴射パルス幅Tpとにより目標空燃比Ytを算出
する。この場合、上記基本噴射パルス幅Toおよび目標
空燃比Ytは、エンジン回転数とエアフローメータ出力
、あるいはエンジン回転数と基本噴射パルス幅Tpとで
調べられる運転状態に応じた値を予めマツプとしてメモ
リ32に記憶させておき、これに基づいて求めるように
すればよい。続いてステップS5で、第2図に示す空燃
比センサ20の出力特性に基づいて目標空燃比Ytに対
応した目標電圧Vtを求める。
In this flowchart, the system is first initialized in step S1, and then the engine speed, intake negative pressure, water temperature, intake air temperature, air-fuel ratio sensor output, and air flow meter output are input in step S2. Next, in step S3, a basic injection pulse width Tp is calculated based on the engine speed and the air flow meter output, and in step S4, a target air-fuel ratio Yt is calculated based on the engine speed and the basic injection pulse width Tp. In this case, the basic injection pulse width To and the target air-fuel ratio Yt are stored in the memory 32 by using a map in advance of values according to the operating state that can be determined from the engine speed and the air flow meter output, or the engine speed and the basic injection pulse width Tp. It is only necessary to memorize it and calculate it based on this. Subsequently, in step S5, a target voltage Vt corresponding to the target air-fuel ratio Yt is determined based on the output characteristics of the air-fuel ratio sensor 20 shown in FIG.

次にステップS6で、冷却水温や運転状態がフィードバ
ック制御を行なうべき条件となったか否かを調べ、その
判定結果がNoであれば、ステップS7で後記学習値C
sおよびフィードバック制御用の補正値OfをOとして
から、後記ステップS 1aに移る。
Next, in step S6, it is checked whether or not the cooling water temperature and the operating state have become conditions for performing feedback control. If the determination result is No, in step S7, the learned value C
After setting s and the correction value Of for feedback control to O, the process moves to step S 1a described later.

ステップS6での判定結果がYESとなれば、ステップ
S8で学習済みか否かを調べ、つまり現在の運転状態に
対応する学習値用のマツプの記憶領域に学習値O3が既
に記憶されているか否かを調べる。この学習値O5を求
める処理についてはフローチャートで示していないが、
例えば、同一の運転状態区分内で後述のステップ812
〜S 14による処理が複数回繰返されたときに補正値
Cfの平均値を求め、これを学習値として学習値用のマ
ツプに記憶させるようにすればよい。上記ステップS8
での判定結果がNoのときは、学習値CSを求めるまで
の初期的段階の処理として、ステップS9で学習値CS
を0としてから、後述のステップS12〜S 14によ
るフィードバック制御を行なう。こうして当実施例では
、学習値C8を求める初期的段階の処理を終えてから、
次に述べるような本発明の要部となる処理を行なうよう
にしている。
If the determination result in step S6 is YES, it is checked in step S8 whether learning has been completed, that is, whether the learning value O3 has already been stored in the storage area of the learning value map corresponding to the current driving state. Find out. Although the process of calculating this learning value O5 is not shown in the flowchart,
For example, in the same operating state classification, step 812 described below
The average value of the correction values Cf may be calculated when the processing in steps S14 to S14 is repeated a plurality of times, and this may be stored as a learning value in the learning value map. Above step S8
If the determination result in step S9 is No, the learning value CS is
is set to 0, and then feedback control is performed in steps S12 to S14, which will be described later. In this way, in this embodiment, after completing the initial stage processing for determining the learning value C8,
The following processing, which is the main part of the present invention, is performed.

ステップS8での判定結果がYESとなると、ステップ
S 1oで運転状態に対応する学習値C8をマツプより
読出してから′、ステップS11で目標空燃比が所定空
燃比(実施例では18)以上か否かを調べる。そしてこ
・の判定結果がNOであれば、第1の制御手段の処理と
して、空燃比センサ20の出力電圧VSと目標電圧との
差が正か負かにより、実際の空燃比が目標空燃比よりも
リーン状態かリッチ状態かを調べ(ステップ512)、
リーン状態であれば、フィードバック制御用の補正値C
fを一定値ΔCだけ増加させ(ステップ513)、リッ
チ状態であれば上記補正1iacfを一定値ΔCだけ減
少させる(ステップ$14)。つまり為目標空燃比を中
心に空燃比のずれに応じて上記補正値Cfを増減させる
フィードバック制御を行なう。
If the determination result in step S8 is YES, the learning value C8 corresponding to the operating state is read out from the map in step S1o, and then the process proceeds to step S11 to determine whether the target air-fuel ratio is equal to or higher than the predetermined air-fuel ratio (18 in the embodiment). Find out. If the determination result is NO, the first control means processes to determine whether the difference between the output voltage VS of the air-fuel ratio sensor 20 and the target voltage is positive or negative, so that the actual air-fuel ratio becomes the target air-fuel ratio. Check whether the state is lean or rich (step 512);
If it is in a lean state, the correction value C for feedback control
f is increased by a constant value ΔC (step 513), and if the condition is rich, the correction 1iacf is decreased by a constant value ΔC (step $14). In other words, feedback control is performed to increase or decrease the correction value Cf based on the deviation of the air-fuel ratio around the target air-fuel ratio.

それからステップS18に移る。Then, the process moves to step S18.

一方、ステップS11での判定結果がYESであれば、
第2の制御手段の処理として、上記出力電圧Vsと目標
電圧Vtとの差が正か負かの判定(ステップ515)に
基づき、実際の空燃比が目標空燃比よりリーン状態であ
ればステップS13に移って上記補正値Cfを増加させ
るフィードバック制御を行ない、目標空燃比よりリッチ
状態であればフィードバック制御を停止し、つまり上記
補正値Cfを変化させない。但しこの場合に当実施例で
は、空燃比が過渡にリッチ側にずれることを防止するた
め、前述の第2図中に示したように上記出力電圧Vsが
目標電圧Vtより低くなる1ll(目標空燃比よりリッ
チ側)に許容範囲を設定し、この許容閣囲内でフィード
バック制御を停止している。つまり、ステップStsで
リッチ状態と判定したときさらにステップS16で出力
電圧VSと許容範囲下限電圧(Vt−α)との差を調べ
、これに基いて許容範囲であればそのままステップ81
8に移り、許容範囲よりリッチ側になれば、上記補正値
Cfを一定値ΔCだけ減少くステップ517)させてか
らステップ31aに移る。
On the other hand, if the determination result in step S11 is YES,
As a process of the second control means, based on the determination whether the difference between the output voltage Vs and the target voltage Vt is positive or negative (step 515), if the actual air-fuel ratio is leaner than the target air-fuel ratio, step S13 Then, feedback control is performed to increase the correction value Cf, and if the air-fuel ratio is richer than the target air-fuel ratio, the feedback control is stopped, that is, the correction value Cf is not changed. However, in this case, in this embodiment, in order to prevent the air-fuel ratio from shifting transiently to the rich side, the output voltage Vs is lower than the target voltage Vt, as shown in FIG. A permissible range is set on the richer side than the fuel ratio), and feedback control is stopped within this permissible range. That is, when the rich state is determined in step Sts, the difference between the output voltage VS and the lower limit voltage of the allowable range (Vt-α) is further checked in step S16, and based on this, if it is within the allowable range, the step 81 is continued.
8, if the value is on the richer side than the allowable range, the correction value Cf is decreased by a constant value ΔC (step 517), and then the process moves to step 31a.

ステップS18では、基本噴射パルス幅Toと、水温や
吸気温等の諸条件に応じた補正係数Cと、フィードバッ
ク制御用の補正値Cfと、学習値O5とに基づき、最終
噴射パルス幅7iを[Ti=Tpxcx (1+Of+
C8)]と演算し、次にステップS19でこの最終噴射
パルス幅T1の噴射パルスを出力し、燃料噴射子を制御
する。
In step S18, the final injection pulse width 7i is set to [[ Ti=Tpxcx (1+Of+
C8)], and then in step S19, an injection pulse having the final injection pulse width T1 is output to control the fuel injector.

このような制御によると、第4図に示すように、目標空
燃比Ytが理論空燃比付近に設定される運転域へとリー
ン側に設定される運転域Bとにより、空燃比の変動の仕
方が異なる。すなわち、前者の運転域Aでは、前記のス
テップ812〜S14による第1の制御手段としての処
理が行なわれることにより、目標電圧Vtよりリッチ状
態になればり一ン状態になるまで燃料が増量され、リー
ン状態になればリッチ状態になるまで燃料が減量される
処理が繰返されるため、実際の空燃比は目標空燃比Yt
を中心に振れ動く。この場合、理論空燃比付近ではこの
ような空燃比の1lJt[lがエンジンの作動に悪影響
を及ぼすことがなく、かつ平均的には目標空燃比Ytと
なるように空燃比が制御される。
According to such control, as shown in FIG. 4, the way the air-fuel ratio changes is determined by the operating range B in which the target air-fuel ratio Yt is set near the stoichiometric air-fuel ratio and the operating range B in which the target air-fuel ratio is set on the lean side. are different. That is, in the former operating range A, by performing the processing as the first control means in steps 812 to S14 described above, when the state becomes richer than the target voltage Vt, the amount of fuel is increased until the state becomes one full. Once the lean state is reached, the process of reducing the amount of fuel is repeated until the rich state is reached, so the actual air-fuel ratio is equal to the target air-fuel ratio Yt.
It swings around. In this case, near the stoichiometric air-fuel ratio, the air-fuel ratio of 1lJt[l does not adversely affect the operation of the engine, and the air-fuel ratio is controlled so that the target air-fuel ratio Yt is achieved on average.

一方、後者の運転域Bでは、前記のステップS召を経て
行なわれる第2の制御手段としての処理により、目標空
燃比Ytよりリーン状態となったときには燃料が増1さ
れるが、目標空燃比Ytより多少リッチ状態となったと
きはフィードバック制御による燃料の減量が行なわれず
、空燃比のリーン側への娠れが避けられる。従って、こ
のような目標空燃比Ytがリーン側に設定される運転域
Bでは、空燃比が目標空燃比Yt以上にリーン状態とな
ることが極力抑制され、オーバリーンによる失火が防止
される。
On the other hand, in the latter operating range B, the fuel is increased by 1 when the state becomes leaner than the target air-fuel ratio Yt, but the fuel is increased by 1 when the state becomes leaner than the target air-fuel ratio Yt. When the state is slightly richer than Yt, the amount of fuel is not reduced by feedback control, and the air-fuel ratio is prevented from leaning towards the lean side. Therefore, in the operating range B in which the target air-fuel ratio Yt is set to the lean side, the air-fuel ratio is prevented from becoming leaner than the target air-fuel ratio Yt, and misfires due to over-lean are prevented.

また、実施例のように上記運転!l!!Bで目標空燃比
Ytよりリッチ側に許容範囲以上に空燃比がずれたとき
燃料を減量させるようにすれば、空燃比が目標空燃比Y
tから大きくずれることはない。
Also, operate the above as in the example! l! ! At B, if the fuel is reduced when the air-fuel ratio deviates richer than the target air-fuel ratio Yt by more than the allowable range, the air-fuel ratio becomes the target air-fuel ratio Yt.
There is no significant deviation from t.

ざらに、前述の学習値Csを制御に反映させるようにす
れば、運転状態の変化に対して空燃比制御の応答性が高
められるとともに、フィードバック制御停止時の空燃比
のずれを抑制することができる。
In general, if the above-mentioned learned value Cs is reflected in the control, the responsiveness of the air-fuel ratio control to changes in the operating state can be improved, and it is possible to suppress deviations in the air-fuel ratio when the feedback control is stopped. can.

なお、上記実施例では燃料供給量を制御しているが、気
化器を用いたエンジン等では、例えば吸気通路にスロッ
トル弁をバイパスするバイパス通路を設けてその流量を
制御することにより、吸入空気予を上記実施例に準じて
制gD1″るようにしてもよい。
In addition, although the fuel supply amount is controlled in the above embodiment, in an engine using a carburetor, for example, a bypass passage that bypasses a throttle valve is provided in the intake passage and the flow rate of the bypass passage is controlled. may be controlled gD1'' according to the above embodiment.

(発明の効果) 以上のように本発明は、運転状態に応じた目標空燃比を
設定して空燃比のフィードバック制御を行なう場合に、
目標空燃比が所定値よりもリーン側に設定されたとき、
その付近で空燃比がリーン側にずれればフィードバック
制御を行なうが、すッチ側にずれたときはフィードバッ
ク制御を停止するようにしているため、オーバリーンに
よる失火の発生を防止することができるものである。
(Effects of the Invention) As described above, the present invention provides the following advantages when performing feedback control of the air-fuel ratio by setting a target air-fuel ratio according to the operating state.
When the target air-fuel ratio is set to leaner than the predetermined value,
If the air-fuel ratio shifts to the lean side in the vicinity, feedback control is performed, but if it shifts to the switch side, feedback control is stopped, which prevents misfires due to over-lean. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置の概略図、第2図は空燃
比センサの出力特性を示す説明図、第3図は制御のフロ
ーチャート、第4図は目標空燃比が理論空燃比付近に設
定されたときとリーン側に設定されたときとにおける空
燃比変動を示す説明図である。 18・・・燃料噴射弁、20・・・空燃比センサ、30
・・・制御ユニット(第1の制御手段および第2の制御
手段を備えたフィードバック制御手段)。 特許出願人    マ ツ ダ 株式会社代 理 人 
   弁理士   小谷悦司同      弁理士  
 長1)正 向      弁理士   板谷東大 第  2  図
Fig. 1 is a schematic diagram of a device according to an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the output characteristics of the air-fuel ratio sensor, Fig. 3 is a control flowchart, and Fig. 4 shows that the target air-fuel ratio is near the stoichiometric air-fuel ratio. FIG. 4 is an explanatory diagram showing air-fuel ratio fluctuations when set to the lean side and when set to the lean side. 18...Fuel injection valve, 20...Air-fuel ratio sensor, 30
...control unit (feedback control means including first control means and second control means). Patent applicant Mazda Co., Ltd. Agent
Patent Attorney Etsushi Kotani Patent Attorney
Long 1) Masamukai Patent Attorney Itaya University of Tokyo Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、排気ガス中の酸素濃度を検出して空燃比に対応した
信号を出力する空燃比センサと、この空燃比センサの出
力と運転状態に応じて設定された目標空燃比に対応する
値とを比較して燃料供給量あるいは空気量の少なくとも
一方を制御するフィードバック制御手段とを備えたエン
ジンの空燃比制御装置において、上記フィードバック制
御手段に、上記目標空燃比が理論空燃比付近に設定され
たときにこの目標空燃比を中心に空燃比の変動に応じて
燃料供給量あるいは空気量の少なくとも一方を増減させ
るようにフィードバック制御を行なう第1の制御手段と
、目標空燃比が所定値よりリーン側に設定されたときに
、空燃比が目標空燃比よりリーン状態になるとフィード
バック制御を行ない、目標空燃比よりリッチ状態となる
とフィードバック制御を停止する第2の制御手段とを設
けたことを特徴とするエンジンの空燃比制御装置。
1. An air-fuel ratio sensor that detects the oxygen concentration in exhaust gas and outputs a signal corresponding to the air-fuel ratio, and a value corresponding to the target air-fuel ratio set according to the output of this air-fuel ratio sensor and the operating state. In an engine air-fuel ratio control device comprising a feedback control means for controlling at least one of a fuel supply amount or an air amount by comparison, when the target air-fuel ratio is set in the vicinity of the stoichiometric air-fuel ratio in the feedback control means. a first control means that performs feedback control to increase or decrease at least one of the fuel supply amount or the air amount in accordance with fluctuations in the air-fuel ratio around the target air-fuel ratio; An engine characterized in that it is provided with a second control means that performs feedback control when the air-fuel ratio becomes leaner than the target air-fuel ratio, and stops the feedback control when the air-fuel ratio becomes richer than the target air-fuel ratio. air-fuel ratio control device.
JP60201213A 1985-09-11 1985-09-11 Engine air-fuel ratio control device Expired - Lifetime JPH0830435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60201213A JPH0830435B2 (en) 1985-09-11 1985-09-11 Engine air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60201213A JPH0830435B2 (en) 1985-09-11 1985-09-11 Engine air-fuel ratio control device

Publications (2)

Publication Number Publication Date
JPS6260945A true JPS6260945A (en) 1987-03-17
JPH0830435B2 JPH0830435B2 (en) 1996-03-27

Family

ID=16437220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60201213A Expired - Lifetime JPH0830435B2 (en) 1985-09-11 1985-09-11 Engine air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPH0830435B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617118A (en) * 1992-06-30 1994-01-25 Fuji Denshi Kogyo Kk Induction hardening device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233329A (en) * 1984-05-07 1985-11-20 Toyota Motor Corp Air-fuel ratio controlling apparatus for internal-combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233329A (en) * 1984-05-07 1985-11-20 Toyota Motor Corp Air-fuel ratio controlling apparatus for internal-combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617118A (en) * 1992-06-30 1994-01-25 Fuji Denshi Kogyo Kk Induction hardening device

Also Published As

Publication number Publication date
JPH0830435B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
JPS58192947A (en) Controlling method of internal-combustion engine
JP2554854B2 (en) Learning control method for automobile engine
JPH01240744A (en) Activation discriminating method for exhaust component concentration detector in internal combustion engine
JPS6260945A (en) Air-fuel ratio controller for engine
JPS6232338B2 (en)
JPH07107376B2 (en) Learning control method for automobile engine
US4773377A (en) Engine air fuel ratio control system
JP3453815B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPS6342103B2 (en)
JP2630371B2 (en) Air-fuel ratio feedback control method for an internal combustion engine
JPH07259609A (en) Air-fuel ratio controller of internal combustion engine
JPS60233329A (en) Air-fuel ratio controlling apparatus for internal-combustion engine
JPS6146435A (en) Air fuel ratio controller
JPH0641732B2 (en) Air-fuel ratio controller for engine
JPH0528366Y2 (en)
JP2685176B2 (en) Engine air-fuel ratio control device
JPH0610735A (en) Air-fuel ratio correcting method for internal combustion engine
JPH05214993A (en) Air-fuel ratio learning control device for internal combustion engine
JPH03229942A (en) Air-fuel ratio learning control device for electronically controlled fuel injection type internal combustion engine
JPH0432939B2 (en)
JPH04237847A (en) Air-fuel ratio learning controller for internal combustion engine
JPS631731A (en) Fuel control device for electronic fuel injection type engine
JPS61129444A (en) Air fuel ratio feedback control for electronic control engine
JPH09324682A (en) Air-fuel ratio learning control device of engine
JPH0747941B2 (en) Air-fuel ratio controller for two-cycle internal combustion engine