JPS6260882A - Structure for preventing caustic cracking of steel material - Google Patents

Structure for preventing caustic cracking of steel material

Info

Publication number
JPS6260882A
JPS6260882A JP60201295A JP20129585A JPS6260882A JP S6260882 A JPS6260882 A JP S6260882A JP 60201295 A JP60201295 A JP 60201295A JP 20129585 A JP20129585 A JP 20129585A JP S6260882 A JPS6260882 A JP S6260882A
Authority
JP
Japan
Prior art keywords
steel material
weight
steel
galvanic
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60201295A
Other languages
Japanese (ja)
Inventor
Kazutoshi Shimogoori
下郡 一利
Kazuo Fujiwara
藤原 和雄
Kiyoshi Sugie
杉江 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60201295A priority Critical patent/JPS6260882A/en
Publication of JPS6260882A publication Critical patent/JPS6260882A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the caustic cracking of a steel material without generation of H2 and remarkable elution loss of an electrode member by specifying the composition and surface area of an alloy steel of a cathode member for a galvanic anode system which is brought into electrical-contact with the steel material. CONSTITUTION:The cathode member 2 for a galvanic anode system contg., by weight, 15.0-65.0% Ni, 16.0-30.0% Cr as required, 0.005-10.0% of >=1 kind among Mo, Cu, N, Ti, Nb, W, B, V, Ca, Ce, Mg and Mn as required and the balance iron is used. The member 2 is formed so that >=80% of the surface area of the steel material 1 to be protected is occupied by the member and the member 2 is electrically bonded to the steel material 1 by a galvanic bonding means such as bolt-nut joint. Consequently, the corrosion potential of the steel material 1 is transferred to the potential nobler than the critical corrosion potential for preventing the caustic cracking of the steel material 1 and the corrosion rate can be decreased.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、苛性ソーダ環境下で使用される鋼材の応力
腐食割れを防止するための苛性割れ防止構造に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a caustic cracking prevention structure for preventing stress corrosion cracking of steel materials used in a caustic soda environment.

〈従来技術〉 炭素鋼や低合金鋼等の鋼材は、アルカリ水溶前1(−、
−4(、1,1,、、H’  l−77y*  +jl
  *琳r  −m  )+  講壇 ピー、  −h
  f、 、−1けると、粒界型の腐食割れを生じるこ
とが従来より知られている。このため、鋼材をアルカリ
水溶液環境下で使用する場合は、腐食割れの影響を可及
的に排除すべく、腐食割れの臨界温度(略60℃)より
低い温度下に置く必要が生じる。
<Prior art> Steel materials such as carbon steel and low alloy steel are treated with 1 (-,
-4(,1,1,,,H' l-77y* +jl
*Rin r -m) + pulpit p, -h
It has been known that when f, , -1, intergranular corrosion cracking occurs. For this reason, when steel materials are used in an alkaline aqueous solution environment, it is necessary to place the steel material at a temperature lower than the critical temperature for corrosion cracking (approximately 60° C.) in order to eliminate the influence of corrosion cracking as much as possible.

ところが、例えば蒸気タービン発電用の機材は、高温高
圧(略300℃、70kg/Cm2)の水蒸気に曝され
るものであり、水蒸気中に不純物として含まれるナトリ
ウムがタービンブレードとタービン軸との接合部などに
侵入して苛性ソーダとして析出し、この苛性ソーダがタ
ービン駆動時に発生する強大な応力に基づき当該鋼材部
分に苛性割れを起こすとされているのが問題となってお
り、かかる問題の解決の手段が近年特に要望されている
However, equipment for steam turbine power generation, for example, is exposed to high temperature and high pressure (approximately 300°C, 70 kg/Cm2) water vapor, and sodium contained as an impurity in the water vapor may be present at the joint between the turbine blades and the turbine shaft. The problem is that this caustic soda is said to cause caustic cracking in the steel parts due to the huge stress generated when the turbine is driven, and there is no way to solve this problem. It has been particularly requested in recent years.

ところで、苛性割れは一種の電気化学現象であり、第1
図に示すように鋼材の陽分極曲線における活性溶解と不
働態との遷移領域に対応する電位範囲(−0、8V V
s SCE 〜−1、2V Vs 5CE)にのみ生ず
ることが知られている。したかって、鋼材の苛性割れを
防止するにはその遷移領域に対応する電位範囲よりも卑
あるいは責な電位に分極することが肝要である。
By the way, caustic cracking is a type of electrochemical phenomenon, and the first
As shown in the figure, the potential range (-0, 8V V
It is known that this occurs only when s SCE ~-1, 2V Vs 5CE). Therefore, in order to prevent caustic cracking of steel materials, it is important to polarize the steel material to a more base or negative potential than the potential range corresponding to the transition region.

そこで、かかる分極を行なうための手段としては、従来
より当該鋼材に外部から強制的に電流を通じて分極を起
こさせる外部電源方式や、保護すべき鋼材の電位と所定
の電位差を有する金属を当該鋼材と電気的に接触させて
分極する流電方式などが知られている。ここで、流電方
式は保護すべき鋼材の電位を接触する金属に対して陽極
電位とするか陰極電位とするかによって流電アノード方
式または流電カソード方式に分けている。
Conventionally, methods for achieving such polarization include an external power supply method in which the steel material is forcibly polarized by passing an electric current through it from the outside, and a metal that has a predetermined potential difference with the potential of the steel material to be protected. A galvanic method that polarizes by making electrical contact is known. Here, the galvanic method is divided into a galvanic anode method and a galvanic cathode method depending on whether the electric potential of the steel material to be protected is an anode potential or a cathode potential with respect to the metal in contact.

〈発明が解決しようとする問題点〉 しかしながら、外部電源方式による苛性割れ防止の手法
は、保護すべき鋼材の近傍に対極及び照合電極を取り付
け、各電極間を環境水溶液により液絡するとともに、常
時特定の電極密度で通電しておくことが必要であるので
、例えば前述した蒸気タービンの機材のように保護すべ
き鋼材が回転運転連動を行なうものであったり、鋼材表
面が局所的に濡れているtものであったりするような使
用環境Fにおいては、通電を行なうことが極めて困難で
あり採用し難いものである。
<Problems to be solved by the invention> However, the method of preventing caustic cracking using an external power supply method is to attach a counter electrode and a reference electrode near the steel material to be protected, create a liquid junction between each electrode with an environmental aqueous solution, and constantly Since it is necessary to conduct electricity at a specific electrode density, for example, if the steel material to be protected is linked to rotational operation, such as the steam turbine equipment mentioned above, or if the surface of the steel material is locally wet. In the usage environment F, where there are many types of devices, it is extremely difficult to conduct electricity and it is difficult to adopt the device.

一方 流電方式による手法は保護すべき鋼材とこの鋼材
に対して所定の電位差を有する金属を電気的に接合する
ものであるので、外部電源方式による手法のような問題
点は回避されるが、流電方式のうちFL電カソード方式
の場合は、苛性割れ環境下において保護すべき鋼材の表
面に水素発生反応が生じ易く、この結果その鋼材が水素
吸蔵による脆、化を伴うことや、鋼材に接合される金属
としてのアノード電極部材が亜鉛系あるいはアルミニウ
ム系材質のものに限定されるので、苛性割れ環境下では
電極部材の溶失が著しく進展し易く取り替えるための手
間がかかることなどの問題があり、採用し難い。
On the other hand, the galvanic current method electrically joins the steel material to be protected and a metal that has a predetermined potential difference with respect to the steel material, so it avoids the problems of the external power method method, but Among the galvanic current methods, in the case of the FL cathode method, hydrogen generation reactions are likely to occur on the surface of the steel material to be protected in a caustic cracking environment, resulting in the steel material becoming brittle and brittle due to hydrogen absorption, and causing damage to the steel material. Since the anode electrode member used as the metal to be joined is limited to zinc-based or aluminum-based materials, there are problems such as the electrode member being extremely prone to melting down in a caustic cracking environment and requiring much effort to replace it. Yes, it is difficult to hire.

く問題点を解決するための手段〉 この発明は上記問題点に着目してなされたものであり、
 FtZ7ノード式用カソード電極部材として、第1の
発明の場合15.0〜65.0重陽%のニッケルを含有
し、残部を鉄及び不可避的不純物とした合金鋼を用い、
第2の発明の場合6.0〜65.0東着%のニッケル、
16.0〜30,0屯j五%のクロームをそれぞれ含有
し、残部を鉄及び不可避的不純物とした合金鋼を用い、
第3の発明は、6.0〜65.0重量%のニッケル。
Means for Solving the Problems This invention has been made by focusing on the above problems,
As the cathode electrode member for the FtZ 7-node type, in the case of the first invention, an alloy steel containing nickel of 15.0 to 65.0% by weight, with the balance being iron and unavoidable impurities,
In the case of the second invention, 6.0 to 65.0% nickel,
Using alloy steel containing 16.0 to 30,0 tons of 5% chromium, the balance being iron and unavoidable impurities,
The third invention is 6.0 to 65.0% by weight of nickel.

16.0〜30.01ffi%のクロームをそれぞれ含
有し、かつ、モリブデン、銅、窒素、チタン。
Each contains 16.0 to 30.01 ffi% chromium, and molybdenum, copper, nitrogen, and titanium.

ニオブニウム、タングステン、ホウ素、バナジウム、カ
ルシウム、セリウム、マグネシウム、マンガンなどのう
ち少なくとも1種を0.005〜10.0重量%で含有
し、残部を鉄及び不可避的不純物とした合金鋼を用いる
ようにし、他方、保護すべき鋼材の表面積の少なくとも
80%を占める表面積を有′するようにカソード電極部
材を形成し、さらに、この方ソード電極部材を鋼材に対
しボルトナツト接合等の流電接合手段を介して電気的に
接合するようにしたことを特徴とするものである。
An alloy steel containing 0.005 to 10.0% by weight of at least one of niobium, tungsten, boron, vanadium, calcium, cerium, magnesium, manganese, etc., with the balance being iron and unavoidable impurities is used. On the other hand, the cathode electrode member is formed to have a surface area that accounts for at least 80% of the surface area of the steel material to be protected, and the cathode electrode member is further bonded to the steel material by galvanic bonding means such as bolt-nut bonding. It is characterized in that it is electrically connected.

く作用〉 カソード電極部材とそでニッケルを含有した鋼、あるい
はニッケル及びクロームを含有した鋼を用いると、保護
すべき鋼材の腐食電位が−0,8V  Vs  SCE
よりも責な電位に移行し、かつ、腐食速度も小さくなる
Effect> If steel containing nickel or steel containing nickel and chromium is used for the cathode electrode member and sleeve, the corrosion potential of the steel material to be protected will be -0.8V Vs SCE
The potential changes to a more negative one, and the corrosion rate also decreases.

〈実施例〉 第2図に示すように、保護すべき鋼材の苛性ソーダ水溶
液環境下での腐食電位を責に移行させるカソード電極部
材の材質は、ニッケル(Ni )を含有した鋼(実線で
連ねた折線fL1参照)、並びにN1−Cr(クローム
)を含有した鋼(破線で連ねた折線文、参照)が好適で
あり、また、含有されたNi及びCrの含有量が多い鋼
はど腐食電位は賢に移行することが理解できる。さらに
、同図から理解できることは、苛性割れ防止の臨界腐食
電位である−0.8V  Vs  SCEよりも責な腐
食電位にする合金組成は、N−i含有鋼の場合。
<Example> As shown in Fig. 2, the material of the cathode electrode member, which transfers the corrosion potential of the steel material to be protected in an aqueous caustic soda solution environment, is steel containing nickel (Ni) (shown as a solid line). Steels containing N1-Cr (see broken line fL1) and N1-Cr (chromium) (see broken lines connected by broken lines) are preferable, and the corrosion potential of steel with a high content of Ni and Cr is I can understand how to move wisely. Furthermore, what can be understood from the same figure is that the alloy composition that makes the corrosion potential more critical than -0.8V Vs SCE, which is the critical corrosion potential for preventing caustic cracking, is in the case of Ni-containing steel.

15、o毛1%以−ヒのNiを含有していることが必要
であり、N i −Cr含有鋼の場合、16.0重量%
以L・のCr及び6.0毛量%以−LのNiを含有して
いることが必要であるとゆう点であり、これら両温にお
いて腐食電位は責にするNiの添加効果は同様であって
Niの含有量が65.0重量%をこえると飽和現象があ
られれるという点である。
15. It is necessary that the steel contains 1% or more of Ni, and in the case of steel containing Ni-Cr, it is 16.0% by weight.
The point is that it is necessary to contain Cr of less than 6.0% by weight and Ni of 6.0% by weight or more, and the effect of adding Ni is the same at both temperatures, as it reduces the corrosion potential. However, if the Ni content exceeds 65.0% by weight, a saturation phenomenon occurs.

また、Ni−Cr含有鋼については、後述するようにモ
リブデン(Mo)、銅(Cu) 、窒素(N)、チタン
(Ti)、ニオブニウム(Nb)、タングステン(W)
、ホウ素(B)、バナジウム(V)、カルシウム(Ca
)、セリウム(Ce)、マグネシウム(Me)、の各元
素のうち少なくとも1種を10.0重量%以下で含有し
た場合には苛性割れの効果に影響を与えない。
In addition, for Ni-Cr containing steel, molybdenum (Mo), copper (Cu), nitrogen (N), titanium (Ti), niobium (Nb), and tungsten (W) are used as described below.
, boron (B), vanadium (V), calcium (Ca
), cerium (Ce), and magnesium (Me) in an amount of 10.0% by weight or less does not affect the caustic cracking effect.

以上の点に鑑みこの発明に係るカソード電極部材として
用いられるNi含有鋼及びN i −Cr含有鋼の組成
は以下の通りである。
In view of the above points, the compositions of the Ni-containing steel and the Ni-Cr-containing steel used as the cathode electrode member according to the present invention are as follows.

■Ni含有鋼: Niは苛性割れ防止に有効な元素であ
るが、15.oi量%未満ではその期待された効果が得
られず、また、65.0重埴%を越えて含有するとその
効果が飽和し、それ以1−の添加はNiが高価であるた
め不経済である。よって、Ni含有量は15.0〜65
.0重量%とじた。
■Ni-containing steel: Ni is an effective element for preventing caustic cracking, but 15. If the content is less than 65.0% by weight, the expected effect cannot be obtained, and if the content exceeds 65.0% by weight, the effect is saturated, and further addition of 1- is uneconomical because Ni is expensive. be. Therefore, the Ni content is 15.0 to 65
.. 0% by weight.

すNi−Cr含有′!S: りCrはNiと同時添加した場合のみ、苛性割れ防止に
有効となる元素であるが、16.0重量未満ではその期
待された効果が得られず、また、第1表に示すように3
0.0重量%を越えて含有すると熱間加工性が著しく劣
化し板状電極部材の製造が困難となる。よって、Cr含
有量は16.0〜30.0重量%とした。
Contains Ni-Cr! S: Cr is an element that is effective in preventing caustic cracking only when added simultaneously with Ni, but if the weight is less than 16.0%, the expected effect cannot be obtained, and as shown in Table 1. 3
If the content exceeds 0.0% by weight, hot workability will be significantly deteriorated, making it difficult to manufacture plate-shaped electrode members. Therefore, the Cr content was set to 16.0 to 30.0% by weight.

2)Niは苛性割れ防止に有効な元素で、Crと同時添
加の場合、苛性割れに対して複合効果があるが、6.0
重量%未満ではその期待された効果が得られず、また、
65.0重量%を越えて含有するとその効果が飽和し、
それ以上の添加はNiが効果であるため不経済である。
2) Ni is an effective element for preventing caustic cracking, and when added simultaneously with Cr, it has a combined effect on caustic cracking, but 6.0
If it is less than % by weight, the expected effect cannot be obtained, and
When the content exceeds 65.0% by weight, the effect is saturated,
Adding more than that is uneconomical because Ni is effective.

よって、Ni含有量は6.0〜65.0重量%とした。Therefore, the Ni content was set to 6.0 to 65.0% by weight.

3)MOlCu、N、Ti、Nb、W、B、V、(’、
2 rp  Mp  の〒圭1士一般i介轢 強度の向
」二および熱間前り性の改善に有効であるが、1種また
は2種以上でl O、OqT u%を越えて含有すると
苛性割れ防IF効果が劣化する。よって、これらの元素
の含有量は1o、oBq%以下とした。
3) MOlCu, N, Ti, Nb, W, B, V, (',
It is effective in improving the strength and hot bending properties of 2 rp Mp, but if one or more of them is contained in excess of lO, OqT u%, it becomes caustic. The crack prevention IF effect deteriorates. Therefore, the content of these elements was set to 10,0Bq% or less.

次にカソード電極部材と保護すべき鋼材との電気的接続
を図るための流電接合手段についてのべる。接合は後述
するように1両者の電気的接続を実現し得る手段、例え
ばカソード電極部材の溶射、肉感溶接、板の爆着、溶接
やボルトナツト接合による締め付は等のいずれでもよい
が、接合させる際のカソード電極部材の大きさは保護す
べき鋼材の使用環境に曝される表面積に対して8.0以
上の表面積が必要で、これ以下の大きさでは苛性割れ防
止効果かはとんんと期待できない。
Next, the galvanic bonding means for electrically connecting the cathode electrode member and the steel material to be protected will be described. As will be described later, the joining can be done by any means that can realize electrical connection between the two, such as thermal spraying of the cathode electrode member, tactile welding, explosion bonding of plates, welding, bolt-nut joining, etc. The size of the cathode electrode member needs to have a surface area of 8.0 or more compared to the surface area of the steel material to be protected that is exposed to the environment in which it is used, and if the size is less than this, it will not be effective in preventing caustic cracking. I can't wait.

第1表及び第2表に、保護すべき鋼材及びカソード電極
部材の組成及び熱間加工性を示す、保護すべき鋼材は市
販鋼板(板厚2〜5mm)を用い、カソード電極部材に
ついては、市販の鋼板(板厚3mm)、溶加棒(φ3m
m)、及び粉末(100〜300g)を用いたり、ある
いは高周波炉により常法に従って50kg鋼塊を溶製し
、熱間圧延(板厚3mm)、機械加工を施したものを用
いている。
Tables 1 and 2 show the composition and hot workability of the steel material to be protected and the cathode electrode member. The steel material to be protected is a commercially available steel plate (2 to 5 mm thick), and the cathode electrode member is as follows: Commercially available steel plate (plate thickness 3mm), filler rod (φ3m
m) and powder (100 to 300 g), or a 50 kg steel ingot is melted in a high frequency furnace according to a conventional method, hot rolled (plate thickness 3 mm), and machined.

第1表に記載の熱間加工性は、熱間圧延時の鋼板の割れ
発生有無で評価した。
The hot workability shown in Table 1 was evaluated based on the presence or absence of cracks in the steel plate during hot rolling.

第3図に示すように、応力腐食割れ試験片1は保護すべ
き鋼材(例えば、厚みt : 2mm、輻W:20mm
、長さn : 190mm(7)板材を曲率10mmで
曲げて)を馬蹄形に形成し、第4図に示すように、第2
表に示す、例えば5VS304からなるカソード電極部
材2を、例えば、5vS304からなるポルト3とナツ
ト4により、試験ノ(1と電気的に接続したものを組立
て実験に供した。
As shown in FIG. 3, the stress corrosion cracking test piece 1 is made of a steel material to be protected (for example, thickness t: 2 mm, radius W: 20 mm).
, length n: 190 mm (7) A plate material is bent with a curvature of 10 mm) to form a horseshoe shape, and as shown in FIG.
The cathode electrode member 2 shown in the table, made of, for example, 5VS304, was electrically connected to test No. (1) using, for example, a port 3 and a nut 4 made of 5vS304, and subjected to an assembly experiment.

耐応力腐食割れ性は、150℃の脱気した3o、oi量
%の苛性ソーダ水溶液中に試験片を2週間浸漬し、その
後取出して応力腐食割れの発生有無及び割れ深さを光学
顕微鏡で詳細に調べて評価した。
Stress corrosion cracking resistance is determined by immersing a test piece in a degassed 3O, OI aqueous solution of caustic soda at 150°C for two weeks, and then taking it out to examine the presence or absence of stress corrosion cracking and the crack depth using an optical microscope. Investigated and evaluated.

第3表に本願発明の第1の発明に係るNi含有鋼の実施
例を示し、第4表に本願発明の第2の発明および第3の
発明に係るNi−Cr含有鋼の実施例を示す。
Table 3 shows examples of Ni-containing steel according to the first invention of the present invention, and Table 4 shows examples of Ni-Cr-containing steel according to the second and third inventions of the present invention. .

この第3表および第4表から明らかなように。As is clear from Tables 3 and 4.

本発明に係るカソード電極部材として、Ni含有鋼およ
びNi−Cr含有鋼を接合させて流電アノード式による
防食手段を施した炭素鋼および低合金鋼はいずれも応力
腐食割れを発生させず健全であるが、比較例は応力腐食
割れを発生させるという結果が示される。
As the cathode electrode member according to the present invention, carbon steel and low alloy steel, which are made by joining Ni-containing steel and Ni-Cr-containing steel and are subjected to anti-corrosion measures using a galvanic anode method, are both sound and do not cause stress corrosion cracking. However, the results show that stress corrosion cracking occurs in the comparative example.

第5図は保護すべき鋼材の応力腐食割れ試験片lとカソ
ード電極部材2との流電接合手段の他の実施例を示すも
のであり、テフロン被覆導線5の両端をそれぞれ応力腐
食割れ試験片1とカソード電極部材2とにスポット溶接
により接合するようにしたものである。このように、応
力腐食割れ試験片lとカソード電極部材2とは所定距離
だけ離隔するようにしてもかまわない。
FIG. 5 shows another example of galvanic bonding means for stress corrosion cracking test piece 1 of steel material to be protected and cathode electrode member 2, in which both ends of Teflon-coated conductive wire 5 are connected to stress corrosion cracking test piece 1. 1 and a cathode electrode member 2 are joined by spot welding. In this way, the stress corrosion cracking test piece 1 and the cathode electrode member 2 may be separated by a predetermined distance.

第6図は、応力腐食割れ試験片lの外表面に、カソード
電極部材2を、fILt接合手段としての溶射により付
着させようとした場合を示している。
FIG. 6 shows a case in which the cathode electrode member 2 is attached to the outer surface of the stress corrosion cracking test piece 1 by thermal spraying as fILt bonding means.

なお、溶射は第7図に示すように応力腐食割れ試験片l
の外表面の一部に行なうようにしてもかまわない。
The thermal spraying was performed on stress corrosion cracking test pieces l as shown in Figure 7.
It may be applied to a part of the outer surface.

〈発明の効果〉 第1の発明によれば、15.0〜65.0重量%のNi
を含有する合金鋼をカソード電極部材として用いる構成
したので、いかなる使用環境下であっても鋼材の苛性割
れ防止を容易かつ有効に行なうことができ、しかもカソ
ード電極部材は耐久性に優れるという効果がある。
<Effect of the invention> According to the first invention, 15.0 to 65.0% by weight of Ni
As the cathode electrode member is made of alloy steel containing be.

また、第2の発明によれば、6.0〜65.0重量%(
7)Ni、16.0〜30.0重量%ty)Crを含有
する合金鋼をカソード電極部材として用いる構成とした
ので、玉記第1の発明の効果に加え、熱間加工性に優れ
たカソード電極部材を提供できる。
Further, according to the second invention, 6.0 to 65.0% by weight (
7) Since alloy steel containing Ni and 16.0 to 30.0 wt% ty) Cr is used as the cathode electrode member, in addition to the effect of the first invention, it has excellent hot workability. A cathode electrode member can be provided.

さらに、第3の発明によれば、Mo等の元素を明に係る
Ni、Crの組成以外に含有させるようにした合金鋼を
カソード電極部材として用いる構成どしたので、第2の
発明の効果に加えてさらに、熱間加工性、一般耐食性、
そして機械的強度に優れたカソード電極部材を提供でき
る。
Furthermore, according to the third invention, an alloy steel containing elements such as Mo in addition to the composition of Ni and Cr is used as the cathode electrode member, so that the effect of the second invention is achieved. In addition, hot workability, general corrosion resistance,
In addition, a cathode electrode member with excellent mechanical strength can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋼材の陽分極曲線を示すグラフ、第2図はこの
発明に係るカソード電極部材のNi含有看に対する腐食
電位を説明するグラフ、第3図は応力腐食割れ試験片の
形状を説明する斜視図、第4図はボルト、す−/ トに
よる流電接合手段を説明する斜視図、第5図はスポット
溶接による流電接合手段を説明する斜視図、第6図は全
面溶射による流電接合手段を説明する斜視図、第7図は
一部溶射による流電接合手段を説明する斜視図である。 l・・応力腐食割れ試験片、2会会力ソード電極部材。 第1図 第3図 第4図 第5図 第6図
Fig. 1 is a graph showing the positive polarization curve of steel material, Fig. 2 is a graph illustrating the corrosion potential of the cathode electrode member according to the present invention for Ni-containing specimens, and Fig. 3 is a graph illustrating the shape of the stress corrosion cracking test piece. 4 is a perspective view illustrating a galvanic joining means using bolts and bolts, FIG. 5 is a perspective view illustrating a galvanic joining means using spot welding, and FIG. 6 is a perspective view illustrating a galvanic joining means using spot welding. FIG. 7 is a perspective view illustrating a galvanic bonding means partially formed by thermal spraying. l... Stress corrosion cracking test piece, Nikai force sword electrode member. Figure 1 Figure 3 Figure 4 Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)15.0〜65.0重量%のニッケルを含有し、
残部を鉄及び不可避的不純物とする流電アノード式用カ
ソード電極部材であって、保護すべき鋼材の表面積の少
なくとも80%をしめる表面積を有する部材を、該鋼材
に対しボルトナット接合等の流電接合手段を介して電気
的に接続したことを特徴とする鋼材の苛性割れ防止構造
(1) Contains 15.0 to 65.0% by weight of nickel,
A cathode electrode member for a galvanic anode type, the remainder of which is iron and unavoidable impurities, and which has a surface area that accounts for at least 80% of the surface area of the steel material to be protected, is connected to the steel material by galvanic current such as bolt and nut joints. A structure for preventing caustic cracking of steel material, characterized in that it is electrically connected via a joining means.
(2)6.0〜65.0重量%のニッケル、16.0〜
30.0重量%のクロームをそれぞれ含有し、残部を鉄
及び不可避的不純物とする流電アノード式用カソード電
極部材であって、保護すべき鋼材の表面積の少なくとも
80%をしめる表面積を有する部材を、該鋼材に対しボ
ルトナット接合等の流電接合手段を介して電気的に接続
したことを特徴とする鋼材の苛性割れ防止構造。
(2) 6.0-65.0% nickel by weight, 16.0-65.0% by weight
A cathode electrode member for a galvanic anode type, each containing 30.0% by weight of chromium, the balance being iron and unavoidable impurities, and having a surface area that accounts for at least 80% of the surface area of the steel material to be protected. A structure for preventing caustic cracking of a steel material, characterized in that the steel material is electrically connected to the steel material via galvanic bonding means such as bolt-nut bonding.
(3)6.0〜65.0重量%のニッケル、16.0〜
30.0重量%のクロームをそれぞれ含有し、かつ、モ
リブデン、銅、窒素、チタン、ニオブニウム、タングス
テン、ホウ素、バナジウム、カルシウム、セリウム、マ
グネシウム、マンガンなどのうち少なくとも1種を0.
005〜10.0重量%で含有し、残部を鉄及び不可避
的不純物とする流電アノード式用カソード電極部材であ
って、保護すべき鋼材の表面積の少なくとも80%を占
める表面積を有する部材を、該鋼材に対しボルトナット
接合等の流電接合手段を介して電気的に接続したことを
特徴とする鋼材の苛性割れ防止構造。
(3) 6.0-65.0% nickel by weight, 16.0-65.0% by weight
Each contains 30.0% by weight of chromium, and 0.0% of at least one of molybdenum, copper, nitrogen, titanium, niobium, tungsten, boron, vanadium, calcium, cerium, magnesium, manganese, etc.
0.005 to 10.0% by weight, with the balance being iron and unavoidable impurities, a cathode electrode member for galvanic anode type, the member having a surface area occupying at least 80% of the surface area of the steel material to be protected, A structure for preventing caustic cracking of a steel material, characterized in that the steel material is electrically connected to the steel material via a galvanic joining means such as a bolt-nut joint.
JP60201295A 1985-09-11 1985-09-11 Structure for preventing caustic cracking of steel material Pending JPS6260882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60201295A JPS6260882A (en) 1985-09-11 1985-09-11 Structure for preventing caustic cracking of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60201295A JPS6260882A (en) 1985-09-11 1985-09-11 Structure for preventing caustic cracking of steel material

Publications (1)

Publication Number Publication Date
JPS6260882A true JPS6260882A (en) 1987-03-17

Family

ID=16438613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60201295A Pending JPS6260882A (en) 1985-09-11 1985-09-11 Structure for preventing caustic cracking of steel material

Country Status (1)

Country Link
JP (1) JPS6260882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503717A (en) * 2008-09-26 2012-02-09 エヴゲニエヴィッヒ ロゼン,アンドレイ Multilayer material (variant) with improved corrosion resistance and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642974B2 (en) * 1976-08-11 1981-10-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642974B2 (en) * 1976-08-11 1981-10-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503717A (en) * 2008-09-26 2012-02-09 エヴゲニエヴィッヒ ロゼン,アンドレイ Multilayer material (variant) with improved corrosion resistance and method for producing the same

Similar Documents

Publication Publication Date Title
EP1107846B1 (en) Nickel-chromium-iron welding alloy
CN101284336B (en) Argon-arc welding-braze welding composite welding method for connecting the titanium alloy and steel
CN101157164A (en) Gas coverage arc welding compound core solder wire for steel with high tension
EP0046368A1 (en) Coated electrode
CN108526692B (en) Laser filler welding process for magnesium/aluminum dissimilar metal
JP2001508589A (en) Use of iron-based alloys for making fuel cells and fuel cells
CN110732799A (en) high-strength high-toughness argon tungsten-arc welding wire for 785 MPa-grade steel for ocean engineering and application thereof
CN107447127B (en) A kind of open ocean erosion resistance copper alloy and preparation method thereof
CN100478473C (en) High temperature, solid solution, strengthened, heat-resistant titanium alloy containing rare earth
CN114260615A (en) Welding wire for welding T91-TP304H dissimilar materials and preparation method thereof
JP2622530B2 (en) Welding material for austenitic steel with excellent high-temperature strength
JPS6260882A (en) Structure for preventing caustic cracking of steel material
EP0676257A1 (en) Heat-resistant iron/steel weld material and method
KR20020081695A (en) Method for manufacturing an electrode and an electrode
US3006757A (en) Copper base brazing alloy and mixtures
CN100434553C (en) High temperature, solid solution, strengthened, heat-resistant titanium arroy
US3249429A (en) Tantalum brazing alloy
JP2515562B2 (en) Resistance welding electrode
US2789925A (en) Coated weld rods with low carbon core
CN110814577A (en) Exothermic fusion brazing welding powder suitable for copper-clad steel grounding grid in dry-wet alternating environment
EP1339896B1 (en) Method for joining a jacket part to a core part
JP4441327B2 (en) Welded joint with excellent fatigue characteristics
JPH0237830B2 (en) 9CRR1MOKOYOSETSUYOWAIYA
JP3426880B2 (en) Welding material for high strength ferritic heat resistant steel
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel