JPS6260471B2 - - Google Patents

Info

Publication number
JPS6260471B2
JPS6260471B2 JP61040090A JP4009086A JPS6260471B2 JP S6260471 B2 JPS6260471 B2 JP S6260471B2 JP 61040090 A JP61040090 A JP 61040090A JP 4009086 A JP4009086 A JP 4009086A JP S6260471 B2 JPS6260471 B2 JP S6260471B2
Authority
JP
Japan
Prior art keywords
hydrogen
light
titanium dioxide
energy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61040090A
Other languages
Japanese (ja)
Other versions
JPS62199788A (en
Inventor
Hiroshi Taoda
Susumu Minowa
Kyoshi Hayakawa
Masato Tazawa
Hiromi Yamakita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61040090A priority Critical patent/JPS62199788A/en
Publication of JPS62199788A publication Critical patent/JPS62199788A/en
Publication of JPS6260471B2 publication Critical patent/JPS6260471B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 (a) 産業上の利用分野 本発明はエネルギー利用技術に関するものであ
り、詳しく言えば、光エネルギーを利用してエチ
ルアルコールの水溶液から高エネルギーでクリー
ンな燃料である水素を製造する方法に関するもの
である。
[Detailed Description of the Invention] (a) Industrial Application Field The present invention relates to energy utilization technology, and more specifically, hydrogen, which is a high-energy, clean fuel, is produced from an aqueous solution of ethyl alcohol using light energy. The present invention relates to a method for manufacturing.

(b) 従来の技術 昭和48年の石油シヨツク以来、石油代替エネル
ギーの開発が進められ、バイオマスの発酵による
アルコールの製造や、クリーンな高エネルギー燃
料である水素の製造に力が入れられている。例え
ば、ブラジルではイモ類のマジヨカなどを栽培し
発酵してアルコールを製造し、ガソリンにアルコ
ールを混ぜたガソホールを既に実用化して自動車
を走らせている。しかし、バイオマスを発酵させ
てアルコールを製造する場合、純粋なアルコール
が得られないので蒸留を行わなければならない
が、蒸留には多量のエネルギーが必要とされる。
一方、水素は燃焼生成物が水だけであるため、化
石燃料のように大気汚染を引き起こさず、電力と
同じようにクリーンである。また、水素は200〜
300℃の低温から2000℃の高温まで自由な温度が
得られ、アンモニア合成の原料でもあり、燃料電
池やロケツトの燃料にも使われる。最近では、水
素を還元剤とする直接製鉄や水素自動車、水素貯
蔵合金を用いたヒートポンプなどの研究が進めら
れている。したがつて、もし、アルコール水溶液
から簡単に水素を発生できれば、蒸留などの必要
がなく、高エネルギーで無公害な水素を燃料とし
て直接手に入れることができる。最近、アルコー
ルの水溶液に半導体粉末を分散させて光を照射す
ると水素が発生することが発見され、現在、この
触媒の研究が進められている。しかし、これまで
の研究では水素を発生させるために二酸化チタン
に高価な白金やパラジウムなどの貴金属を担持さ
せたり、ケイ素の表面を白金及びポリピロールな
どで修飾したような触媒を用いなければならなか
つた(例えば、T.Sakata、T.Kawai、Chem.
Phys.Letters.80、341(1981)、Y.Taniguchi、H.
Yoneyama、H.Tamura、Chemistry Letters、
1983、269)。また、硫化カドミウムを用いた媒は
毒性が強く、そのうえ光溶解などの劣化を起こ
し、使いものにならなかつた(例えば、T.
Sakata、エネルギー・資源、4320(1983))。し
かも、二酸化チタンを用いた場合には、そのバン
ドギヤツプが大きいため波長の短い光でなければ
反応が起こらず、太陽光のように長波長光が多く
エネルギーの低い光ではエネルギーの利用効率が
悪いという欠点があつた。
(b) Conventional technology Since the opening of oil shocks in 1971, the development of energy alternatives to petroleum has been progressing, with emphasis on the production of alcohol through fermentation of biomass and the production of hydrogen, a clean, high-energy fuel. For example, in Brazil, the potato variety majiyoka is cultivated and fermented to produce alcohol, and gasohol, which is a mixture of gasoline and alcohol, has already been put to practical use to run cars. However, when producing alcohol by fermenting biomass, distillation must be performed because pure alcohol cannot be obtained, and distillation requires a large amount of energy.
On the other hand, since the only combustion product of hydrogen is water, it does not pollute the air like fossil fuels and is as clean as electricity. Also, hydrogen is 200~
It can be used at any temperature from as low as 300°C to as high as 2000°C, and is also used as a raw material for ammonia synthesis and as fuel for fuel cells and rockets. Recently, research has been progressing on direct steel manufacturing using hydrogen as a reducing agent, hydrogen automobiles, and heat pumps using hydrogen storage alloys. Therefore, if hydrogen could be easily generated from an aqueous alcohol solution, there would be no need for distillation, and high-energy, non-polluting hydrogen could be directly obtained as a fuel. Recently, it was discovered that hydrogen is generated when semiconductor powder is dispersed in an aqueous alcohol solution and irradiated with light, and research on this catalyst is currently underway. However, in previous research, in order to generate hydrogen, it was necessary to support titanium dioxide with expensive noble metals such as platinum or palladium, or to use catalysts such as silicon whose surface was modified with platinum or polypyrrole. (For example, T.Sakata, T.Kawai, Chem.
Phys. Letters. 80 , 341 (1981), Y. Taniguchi, H.
Yoneyama, H. Tamura, Chemistry Letters,
1983 , 269). In addition, media using cadmium sulfide were highly toxic and caused deterioration such as photolysis, making them useless (for example, T.
Sakata, Energy and Resources, 4320 (1983)). Furthermore, when titanium dioxide is used, its large bandgap causes a reaction to occur only when light has short wavelengths, and it is said that energy use efficiency is poor when using light with a lot of long wavelengths and low energy, such as sunlight. There were flaws.

(c) 発明の目的 本発明は上記の点に鑑み、毒性の心配がなく、
太陽光のようなエネルギーの低い光を用いても安
定的に、しかも、経済的にエチルアルコール水溶
液から水素を発生させることを目的とするもので
ある。
(c) Purpose of the invention In view of the above points, the present invention is free from toxicity concerns.
The purpose of this method is to stably and economically generate hydrogen from an aqueous solution of ethyl alcohol even when using low-energy light such as sunlight.

(d) 発明の構成 本発明者らは上記の目的を達成するため、鋭意
研究を行つた結果、二酸化チタンの粉末とケイ素
の粉末を混合し、エチルアルコールの水溶液に分
散させて光を照射すれば水素が発生するというこ
とを見出した。本発明に使用される二酸化チタン
とケイ素は市販の試薬をそのまま用いても良い
が、真空中や水素気流中で加熱したりして部分的
に還元して用いる方が性能が良い。また、二酸化
チタンはアナターゼよりもルチルの構造のものが
好ましい。二酸化チタンとケイ素の粉末はエチル
アルコールの水溶液に別々に加えても良いが、乳
鉢で良くすり合わせて密着させてから加えた方が
性能が良い。また、二酸化チタンの粉末の表面に
部分的にケイ素を化学蒸着や物理蒸着、スパツタ
リングなどでコーテイングしたり、その反対に、
ケイ素の粉末の表面に部分的に二酸化チタンをコ
ーテイングして用いても良い。粉末の粒子の大き
さは、溶液に良く分散させるためにも、光や溶液
との反応を容易に行わせるためにも小さい方が良
い。この反応を行わせるための容器は、エチルア
ルコールや水と反応せず、透明で光を通すもので
あれば、ガラス、石英、プラスチツクスなど、材
質は何でも良い。二酸化チタン及びケイ素の粉末
は撹拌棒や撹拌子によつて撹拌して溶液に分散し
て光を照射しても良いし、容器の底面に広げて下
から光を照射しても良い。あるいは、容器の光の
照射面の内側にハケなどで塗つて使用しても良
い。本発明に用いられる二酸化チタンとケイ素の
割合は重量比で0.1〜10が好ましい。また、本発
明に用いられる光源としては、水銀ランプ、キセ
ノンランプ、ハロゲンランプ、白熱灯、太陽など
が挙げられ、長波長光が多くエネルギーの低い太
陽光でも充分、水素を発生できる。光を照射する
際は、溶液をチツ素や不活性ガスで暴気して溶存
空気を除いてから行うことが望ましい。本発明に
使用される溶液はエチルアルコールを含んだ水溶
液であり、エチルアルコールと水を含んでいれば
良く、アルコールをしぼる前の発酵液でも良い。
エチルアルコール単独あるいは水単独では、エネ
ルギーの低い太陽光のような光を照射してもほと
んど水素が発生しない。従来の方法では水素がメ
タンや二酸化炭素、一酸化炭素との混合物で得ら
れていたが、本発明による方法では高い純度の水
素が得られるという特長を持つ。なお、溶液の方
ではギ酸が生成する。
(d) Structure of the Invention In order to achieve the above object, the present inventors conducted intensive research and found that titanium dioxide powder and silicon powder were mixed, dispersed in an aqueous solution of ethyl alcohol, and irradiated with light. It was discovered that hydrogen is generated when Commercially available reagents for titanium dioxide and silicon used in the present invention may be used as they are, but performance is better if they are partially reduced by heating in a vacuum or in a hydrogen stream. Further, titanium dioxide having a rutile structure is more preferable than anatase structure. Titanium dioxide and silicon powders can be added separately to an aqueous solution of ethyl alcohol, but performance is better if they are thoroughly rubbed together in a mortar to make them stick together before adding. In addition, silicon can be partially coated on the surface of titanium dioxide powder by chemical vapor deposition, physical vapor deposition, sputtering, etc., or vice versa.
The surface of silicon powder may be partially coated with titanium dioxide. The smaller the particle size of the powder, the better for better dispersion in the solution and for easier reaction with light and solution. The container for carrying out this reaction may be made of any material, such as glass, quartz, or plastic, as long as it does not react with ethyl alcohol or water and is transparent and allows light to pass through. The powders of titanium dioxide and silicon may be stirred with a stirring bar or stirrer, dispersed in a solution, and then irradiated with light, or they may be spread on the bottom of a container and irradiated with light from below. Alternatively, it may be applied by brushing onto the inside of the light-irradiated surface of the container. The weight ratio of titanium dioxide and silicon used in the present invention is preferably 0.1 to 10. Further, examples of the light source used in the present invention include a mercury lamp, a xenon lamp, a halogen lamp, an incandescent lamp, the sun, etc. Even sunlight, which has a large amount of long wavelength light and low energy, can sufficiently generate hydrogen. When irradiating with light, it is preferable to aerate the solution with nitrogen or an inert gas to remove dissolved air. The solution used in the present invention is an aqueous solution containing ethyl alcohol, as long as it contains ethyl alcohol and water, and may be a fermentation liquid before squeezing out the alcohol.
Ethyl alcohol or water alone produces almost no hydrogen even when exposed to low-energy light such as sunlight. In conventional methods, hydrogen was obtained as a mixture with methane, carbon dioxide, and carbon monoxide, but the method according to the present invention has the advantage of obtaining highly pure hydrogen. Note that formic acid is produced in the solution.

(e) 発明の実施例 以下、本発明の代表的な実施例を示す。(e) Examples of the invention Hereinafter, typical examples of the present invention will be shown.

実施例 1 エチルアルコール200mlと水200mlを400mlの石
英容器に入れ、アルゴンガスで充分暴気した。二
酸化チタン(ルチル)の粉末とp型ケイ素の粉末
を混ぜて真空中で加熱して還元した後、その1g
を先の石英容器に加えた。そして、撹拌しながら
100Wの高圧水銀灯の約1mW/cm2の強度の光を
照射し、発生してきた気体をガスクロマトグラフ
を用いて分析した。その結果、1時間当たり4μ
molの水素の発生が見られた。
Example 1 200 ml of ethyl alcohol and 200 ml of water were placed in a 400 ml quartz container and sufficiently aerated with argon gas. After mixing titanium dioxide (rutile) powder and p-type silicon powder and reducing them by heating in a vacuum, 1 g
was added to the quartz container. And while stirring
Light with an intensity of approximately 1 mW/cm 2 from a 100 W high-pressure mercury lamp was irradiated, and the gas generated was analyzed using a gas chromatograph. As a result, 4μ per hour
Generation of mol of hydrogen was observed.

実施例 2 エチルアルコール50mlと水50mlを100mlのパイ
レツクス製のフラスコに入れ、チツ素ガスで充分
暴気した。二酸化チタン(ルチル)の粉末を真空
中で加熱して還元した後、0.5gを乳鉢に入れ、
p型ケイ素の粉末0.05gとn型ケイ素の粉末0.05
gを加えてよくすりつぶし、混合して先のフラス
コに加えた。そして、撹拌しながら、100Wの高
圧水銀灯の約0.1mW/cm2の光を照射し、発生し
たきた気体をガスクロマトグラフを用いて分析し
た。その結果、1時間当たり、5μmolの水素の
発生が見られた。
Example 2 50 ml of ethyl alcohol and 50 ml of water were placed in a 100 ml Pyrex flask and thoroughly aerated with nitrogen gas. After reducing titanium dioxide (rutile) powder by heating it in a vacuum, put 0.5g into a mortar,
0.05g of p-type silicon powder and 0.05g of n-type silicon powder
g was added, ground well, mixed, and added to the flask. Then, while stirring, light of about 0.1 mW/cm 2 from a 100 W high-pressure mercury lamp was irradiated, and the generated gas was analyzed using a gas chromatograph. As a result, it was observed that 5 μmol of hydrogen was generated per hour.

実施例 3 二酸化チタン(ルチル)の粉末を真空中で加熱
して還元した後、0.2gを乳鉢に入れ、ケイ素粉
末0.4gを加えてよくすりつぶし、混合して実施
例2と同様にしてフラスコに加え、光を照射し
た。その結果、1時間当たり4μmolの水素の発
生が見られた。
Example 3 After reducing titanium dioxide (rutile) powder by heating in a vacuum, 0.2 g was placed in a mortar, 0.4 g of silicon powder was added, ground well, mixed, and placed in a flask in the same manner as in Example 2. In addition, light was irradiated. As a result, generation of 4 μmol of hydrogen per hour was observed.

実施例 4 二酸化チタン(ルチル)を粉末を真空中で加熱
して還元した後、0.3gを乳鉢に入れ、ケイ素粉
末0.3gを加えてよくすりつぶし、混合して実施
例2と同様にしてフラスコに加え、光を照射し
た。その結果、1時間当たり7μmolの水素の発
生が見られた。発生の水素の純度は95%以上であ
り、光照射開始後200時間以上経過してもその発
生速度が変わらず、触媒の劣化が見られなかつ
た。なお、溶液側ではギ酸の生成が認められた。
Example 4 After reducing titanium dioxide (rutile) by heating the powder in a vacuum, put 0.3 g in a mortar, add 0.3 g of silicon powder, grind well, mix, and place in a flask in the same manner as in Example 2. In addition, light was irradiated. As a result, generation of 7 μmol of hydrogen per hour was observed. The purity of the generated hydrogen was over 95%, the rate of generation did not change even after more than 200 hours had passed after the start of light irradiation, and no deterioration of the catalyst was observed. In addition, formation of formic acid was observed on the solution side.

比較例 1 二酸化チタン(ルチル)の粉末を真空中で加熱
して還元した後、0.6gを乳鉢に入れ、よくすり
つぶした後、実施例1及び実施例2と同様にして
光の照射を行つたところ、水素の発生が見られな
かつた。
Comparative Example 1 After heating titanium dioxide (rutile) powder in a vacuum to reduce it, 0.6 g was placed in a mortar and ground well, and then irradiated with light in the same manner as in Examples 1 and 2. However, no hydrogen generation was observed.

比較例 2 ケイ素粉末0.6gを乳鉢に入れ、よくすりつぶ
した後、実施例1及び実施例2と同様にして光の
照射を行つたところ、水素の発生がほとんど見ら
れなかつた。
Comparative Example 2 After 0.6 g of silicon powder was placed in a mortar and ground well, light irradiation was performed in the same manner as in Examples 1 and 2, and almost no hydrogen generation was observed.

(f) 発明の効果 本発明は以上説明したように、二酸化チタンと
ケイ素の粉末をエチルアルコールの水溶液に分散
させて光を照射することによつて、クリーンな高
エネルギー燃料である水素を容易に手に入れられ
るようにしたものである。本発明の方法は高価な
貴金属を使用しないため経済的であり、本発明で
用いられる二酸化チタンとケイ素は毒性がないた
め安全であり、高純度の水素が得られ、パイレツ
クス・ガラスを透過するような低エネルギーの光
でも水素が発生することから、太陽エネルギーの
有効利用の面からも経済的効果が大きい。
(f) Effects of the Invention As explained above, the present invention makes it possible to easily produce hydrogen, which is a clean, high-energy fuel, by dispersing titanium dioxide and silicon powder in an aqueous solution of ethyl alcohol and irradiating it with light. It is made available to you. The method of the present invention is economical because it does not use expensive precious metals, the titanium dioxide and silicon used in the present invention are non-toxic and safe, and hydrogen is obtained with high purity and can pass through Pyrex glass. Since hydrogen can be generated even with low-energy light, it has great economic effects in terms of effective use of solar energy.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化チタンの粉末とケイ素の粉末を混合
し、エチルアルコールを含有する水溶液中に分散
させて光を照射することを特徴とする水素製造
法。
1. A hydrogen production method characterized by mixing titanium dioxide powder and silicon powder, dispersing the mixture in an aqueous solution containing ethyl alcohol, and irradiating the mixture with light.
JP61040090A 1986-02-25 1986-02-25 Production of hydrogen Granted JPS62199788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61040090A JPS62199788A (en) 1986-02-25 1986-02-25 Production of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040090A JPS62199788A (en) 1986-02-25 1986-02-25 Production of hydrogen

Publications (2)

Publication Number Publication Date
JPS62199788A JPS62199788A (en) 1987-09-03
JPS6260471B2 true JPS6260471B2 (en) 1987-12-16

Family

ID=12571187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040090A Granted JPS62199788A (en) 1986-02-25 1986-02-25 Production of hydrogen

Country Status (1)

Country Link
JP (1) JPS62199788A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005016816A1 (en) * 2003-08-18 2005-02-24 Sony Corporation Fuel reformer and fuel reforming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005016816A1 (en) * 2003-08-18 2005-02-24 Sony Corporation Fuel reformer and fuel reforming method

Also Published As

Publication number Publication date
JPS62199788A (en) 1987-09-03

Similar Documents

Publication Publication Date Title
CN104959158B (en) Mo2C/CdS composite photocatalyst and preparation and application thereof
CN107552033B (en) Preparation method of oxygen vacancy-containing strontium titanate photocatalyst
CN107876087B (en) preparation of methylamine lead iodine-reduced graphene oxide composite photocatalytic material and application of composite photocatalytic material in photocatalytic hydrogen production
Belessiotis et al. Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives
CN113289653A (en) g-C of load metal monoatomic3N4Method for preparing photocatalyst
CN108940308A (en) A kind of preparation of platinum cobalt composition metal photo-thermal catalyst and its application in methane carbon dioxide reformation
EP1188711A1 (en) Photocatalyst for use in the production of hydrogen from water or aqueous solutions of organic compounds
CN105771974A (en) Catalyst for producing hydrogen by catalyzing decomposition of formate at room temperature
CN116550357A (en) Preparation method and application of g-C3N4 nanosheet photocatalyst
CN111617790A (en) Nitrogen-doped carbon layer-coated cobalt manganese carbide composite material and application thereof
CN112547125B (en) CdS/NiPc photocatalyst for water photolysis and preparation method thereof
Hisatomi et al. Overall water splitting: What’s next?
CN111790369B (en) Silver-loaded black indium-based composite photothermal catalytic material for methane coupling and preparation method and application thereof
CN113398976A (en) Monoatomic catalyst for photocatalytic total hydrolysis and preparation method thereof
CN101249958B (en) Method for continuous synthesis of a great amount of high specific surface area highly-graphitized carbon nano-cage by bubbling process
JPS6260471B2 (en)
CN114011437B (en) Bi (Bi) 2 O 2 CO 3 /Mo 2 S 3 Composite photocatalyst and preparation method thereof
CN106694001B (en) A kind of photocatalysis liberation of hydrogen composite material and preparation method
CN114984952A (en) Carbon-coated copper material and preparation method and application thereof
JPH0222156B2 (en)
CN113117672A (en) Branched alkane reforming photo-thermal catalyst and preparation method and application thereof
CN111203222A (en) Cobalt-based catalyst for catalytic reforming of cellulose to produce hydrogen and preparation method thereof
CN105772031A (en) Application of amorphous transition metal boride to preparation of photocatalytical water splitting hydrogen making catalyst
CN110841688A (en) Preparation method of co-catalyst based on self-assembled carbon nitride sphere/sheet homomorphic junctions
JPH0222155B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term