JPS6260401B2 - - Google Patents

Info

Publication number
JPS6260401B2
JPS6260401B2 JP13795783A JP13795783A JPS6260401B2 JP S6260401 B2 JPS6260401 B2 JP S6260401B2 JP 13795783 A JP13795783 A JP 13795783A JP 13795783 A JP13795783 A JP 13795783A JP S6260401 B2 JPS6260401 B2 JP S6260401B2
Authority
JP
Japan
Prior art keywords
cpe
polyethylene
molecular weight
less
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13795783A
Other languages
Japanese (ja)
Other versions
JPS6031503A (en
Inventor
Seiji Kadomatsu
Kozo Misumi
Hiroshi Oomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP13795783A priority Critical patent/JPS6031503A/en
Publication of JPS6031503A publication Critical patent/JPS6031503A/en
Publication of JPS6260401B2 publication Critical patent/JPS6260401B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は、物理的、化学的並びに電気絶縁性等
の特性を兼ね備えた成型性の良好な粉末状加硫用
塩素化ポリエチレンゴムの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing chlorinated polyethylene rubber for vulcanization in powder form, which has good moldability and has physical, chemical, and electrical insulation properties.

従来ゴム状の塩素化ポリエチレン(以下CPE
と称する)は耐熱性、耐候性、耐薬品性、耐油
性、耐燃焼性、耐オゾン性、電気絶縁性等が良好
なうえに、更にゴム状CPE自身が粉状であるこ
とにより取扱いが容易なゴム状高分子材料として
種々の用途、即ちPVCの耐衝撃性改質剤、PE,
PPの耐ストレスクラツキング改良剤、PE,PP,
ABS,AS樹脂の難燃剤、電線の被覆材、ゴム磁
石、加硫ゴム成品等に使用されてきた。いずれの
場合もその成品物性の向上のためには塩素含量が
25〜45重量%、分子量は大きい方が望ましく、通
常原料ポリエチレンのMIが10g/10分以下の
CPEが好まれている。一方、加工性の面からは
融解粘度を低くするために分子量が小さく且つそ
の分布が狭いポリエチレンを原料とすることが望
ましいが、前記の成品物性から要求と相矛盾して
いる。そのため、CPEを熱可塑性樹脂として使
用する場合には夫々の用途に応じてその分子量が
選択されてきた。しかし乍ら、CPEを加硫ゴム
成品として使用する場合には分子量が小さいと架
橋性が悪くなるという根本的な欠陥のため、分子
量の大きいCPEを使用せざるを得ず、それ故高
温度で加工する必要が生じるが、ゴム加工業界は
一般に高温で加工する方式は少く、ほとんどの場
合、低温で加工が可能なように成型時に可塑剤や
油が添加されてきた。その結果、成品の耐熱性、
耐油性等が犠性になり、折角のCPEラバーの使
用が制約されてきた。
Conventional rubber-like chlorinated polyethylene (CPE)
) has good heat resistance, weather resistance, chemical resistance, oil resistance, flame resistance, ozone resistance, electrical insulation properties, etc., and is easy to handle because the rubber-like CPE itself is in powder form. It has various uses as a rubbery polymeric material, such as impact modifier of PVC, PE,
PP stress cracking improver, PE, PP,
It has been used as a flame retardant for ABS and AS resins, coating materials for electric wires, rubber magnets, and vulcanized rubber products. In either case, the chlorine content is required to improve the physical properties of the product.
25 to 45% by weight, the higher the molecular weight, the better, and usually the MI of the raw material polyethylene is 10g/10min or less.
CPE is preferred. On the other hand, from the viewpoint of processability, it is desirable to use polyethylene with a small molecular weight and narrow distribution as a raw material in order to lower the melt viscosity, but this is inconsistent with the above-mentioned physical properties of the product. Therefore, when CPE is used as a thermoplastic resin, its molecular weight has been selected depending on the respective application. However, when using CPE as a vulcanized rubber product, there is a fundamental defect that crosslinking properties deteriorate when the molecular weight is small, so CPE with a large molecular weight must be used, and therefore it is difficult to use at high temperatures. However, in the rubber processing industry, there are generally few methods of processing at high temperatures, and in most cases, plasticizers and oils have been added during molding to enable processing at low temperatures. As a result, the heat resistance of the finished product,
The use of CPE rubber has been restricted due to oil resistance and other issues.

近年、特に自動車業界、電気業界、土木建築業
界等は耐オゾン性、耐熱性、耐油性、耐候性等の
優れた安価な加硫CPEゴム成品の使用を望んで
おり、CPEゴム成型加工業者らからはその物性
は勿論加工性の改良された粉末状加硫用CPEゴ
ムの出現が強く望まれている。
In recent years, the automobile industry, electrical industry, civil engineering and construction industry, etc. in particular have desired to use inexpensive vulcanized CPE rubber products with excellent ozone resistance, heat resistance, oil resistance, and weather resistance. Therefore, there is a strong desire for a powdered CPE rubber for vulcanization that has improved processability as well as physical properties.

そこで、本発明者らは、分子量が大きくても加
工性が良好なゴム状CPEを得るために、CPEの
流動抵抗を低下させる方法を種々研究した結果、
前記のように添加剤を加えずとも、分子量分布
(Mw/Mn)を20以上のポリエチレンを原料とす
れば分子量が大きくても(MI1g/10分以下)低
温度で加圧下に流動融解し、成型加工し易くなる
ことを発見し本発明に達した。
Therefore, in order to obtain rubber-like CPE with good processability even with a large molecular weight, the present inventors conducted various research on methods to reduce the flow resistance of CPE.
As mentioned above, even without adding additives, if polyethylene with a molecular weight distribution (Mw/Mn) of 20 or more is used as a raw material, even if the molecular weight is large (MI1g/10 minutes or less), it will fluidize and melt under pressure at low temperature. The present invention was achieved by discovering that molding becomes easier.

すなわち、本発明は、分子量分布(Mw/
Mn)が20以上で溶融粘度指数(MI)が1g/10
分以下の粉末状ポリエチレンを、その結晶の融点
付近の高温水性懸濁下に塩素ガスを用いて、塩素
を25〜45重量%含有し、残存結晶が1%以下にな
るように塩素化することを特徴とする成型加工性
の良好な粉末状加硫用塩素化ポリエチレンゴムの
製造法である。
That is, the present invention provides molecular weight distribution (Mw/
Mn) is 20 or more and melt viscosity index (MI) is 1g/10
Chlorinating powdered polyethylene containing 25 to 45% by weight of chlorine and 1% or less of residual crystals using chlorine gas under high-temperature aqueous suspension near the melting point of the crystals. This is a method for producing chlorinated polyethylene rubber for vulcanization in powder form with good molding processability.

本発明に使用するポリエチレンは、MI1g/10
分以下の高分子量ポリエチレンのうち、分子量分
布(Mw/Mn)が20以上、密度0.92以上であれば
その製法は高圧、中圧、低圧、気相、液相等のい
ずれでもよい。また密度が0.92以上であれば、エ
チレン単独、もしくは少量のプロピレン、ブテ
ン、ペンテン、アクリル酸エステル等の共重合体
であつてもよい。
The polyethylene used in the present invention has an MI of 1g/10
Among high-molecular-weight polyethylenes having a molecular weight of 20 or less, as long as the molecular weight distribution (Mw/Mn) is 20 or more and the density is 0.92 or more, the manufacturing method may be high pressure, medium pressure, low pressure, gas phase, liquid phase, etc. Further, as long as the density is 0.92 or more, ethylene alone or a copolymer of a small amount of propylene, butene, pentene, acrylic ester, etc. may be used.

MIは架橋反応性および成品の物性面から1
g/10分以下が望ましい。1g/10分をこえるも
のは架橋がおそく、引張り強度、耐油性等が低く
なり好ましくない。
MI is 1 from the viewpoint of cross-linking reactivity and physical properties of the product.
g/10 minutes or less is desirable. If it exceeds 1 g/10 minutes, crosslinking will be slow and the tensile strength, oil resistance, etc. will decrease, which is not preferable.

密度はポリエチレンの結晶と共重合体モノマー
の種類と量によつて左右されるが、0.92以下では
水性懸濁塩素化中にブロツキングを生じ易く適当
でない。
The density depends on the type and amount of polyethylene crystals and copolymer monomers, but if it is less than 0.92, blocking will easily occur during aqueous suspension chlorination and is not suitable.

本発明の最も重要な特徴は分子量分布であり、
それの巾が広い程加工性が良くなる。本発明に到
達するまでは、CPEについて分子量分布の概念
は採り上げられていなかつたし、むしろ分布は狭
い程高温での融解粘度が低くて好ましいと考えら
れていた。即ちCPEの従来の主な用途は熱可塑
性樹脂の性能改質剤であつたために押し出し機や
射出機による使用が多く高温を採り易かつたため
と考えられる。故に本発明は従来の常識を破るも
のである。その分布が広いと何故に低温での加工
性が良くなるかはその構造粘性の破壊によつて説
明されるかも知れないが、未だ解明されていな
い。尚、MIが1g/10分以下のポリエチレンで
その分子量分布が極端に広くなると低分子含量も
増加し恐らく塩素化し難くなり、またその物性も
低下すると考えられるが、その分布の上限につい
ては実用的には、好ましくは50以下で充分と考え
られる。但し、MI1g/10分以下で分布20以上の
ポリエチレンが工業化されたのは比較的新らしい
ものである。従来のポリエチレンの分子量分布と
しては、10〜15程度以下のものが殆んどである。
The most important feature of the present invention is the molecular weight distribution,
The wider the width, the better the workability. Until the present invention, the concept of molecular weight distribution had not been considered for CPE, and it was thought that the narrower the distribution, the lower the melt viscosity at high temperatures, which is preferable. In other words, the main use of CPE in the past was as a performance modifier for thermoplastic resins, and this is thought to be because it was often used in extruders and injection machines, which made it easy to reach high temperatures. Therefore, the present invention breaks the conventional wisdom. The reason why low-temperature processability improves when the distribution is wide may be explained by the destruction of the structural viscosity, but this has not yet been elucidated. In addition, if the molecular weight distribution of polyethylene with an MI of 1 g/10 min or less becomes extremely broad, the low molecular content will increase, and it will probably become difficult to chlorinate, and its physical properties will also deteriorate, but the upper limit of the distribution is practical. A value of 50 or less is considered sufficient for this purpose. However, the industrialization of polyethylene with an MI of 1 g/10 minutes or less and a distribution of 20 or more is relatively new. Most conventional polyethylenes have a molecular weight distribution of about 10 to 15 or less.

ポリエチレンの分子量分布(Mw/Mn)と
は、溶媒1,2,4−トリクロロベンゼン中0.1
重量%溶液について、135℃に於て、ゲル透過ク
ロマトグラフイにより測定されたポリスチレン基
準の重量平均分子量(Mw)および数平均分子量
(Mn)との比である。測定に用いる検出器は示差
屈折計である。
The molecular weight distribution (Mw/Mn) of polyethylene is 0.1 in the solvent 1,2,4-trichlorobenzene.
It is the ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) based on polystyrene as measured by gel permeation chromatography at 135°C for a weight percent solution. The detector used for the measurement is a differential refractometer.

本発明を実施するには、上記によつて限定され
たポリエチレンを水性懸濁下にポリエチレンの融
点付近で塩素化し、塩素含量25〜45重量%でその
残存結晶を1%以下にしなければならない。1%
をこえる結晶が残つているCPEはモジユラスは
高く、また低温でのゴム弾性が低く好ましくな
い。また残存結晶が少くても塩素含量が多くなる
と硬くなり物性上好ましくない。それ故、できる
だけ少量の塩素で結晶を壊すことがゴム状CPE
製造には必要であり、その為には、塩素化は水性
懸濁法では、できるだけポリエチレンの融点付近
の高温で行う必要がある。このような技術は既知
のものであり、MIが極めて大きいか、密度が
0.92以下で、低温でも粘着性を有し、塊状化し易
くて水性懸濁塩素化が困難な場合を除けばこの技
術は比較的容易である。
To carry out the invention, the polyethylene defined above must be chlorinated in aqueous suspension near the melting point of the polyethylene, with a chlorine content of 25 to 45% by weight and a residual crystal content of less than 1%. 1%
CPE with residual crystals exceeding 50% has a high modulus and low rubber elasticity at low temperatures, making it undesirable. Furthermore, even if there are few remaining crystals, if the chlorine content is high, it will become hard and unfavorable in terms of physical properties. Therefore, it is important to break the crystals with as little chlorine as possible in rubbery CPE.
It is necessary for production, and for this purpose, in the aqueous suspension method, chlorination must be carried out at a high temperature as close to the melting point of polyethylene as possible. Such techniques are known and have very high MI or low density.
This technique is relatively easy, except in cases where it is less than 0.92, has stickiness even at low temperatures, and is easily agglomerated, making aqueous suspension chlorination difficult.

一方、本発明に使用する分子量分布が大きいポ
リエチレンには低分子量ポリエチレンが存在す
る。それ故に、そのポリエチレンの融点付近での
塩素化は、ポリエチレン粒子の融着、塊状化が生
じ易く、その塩素化は高度の注意と技術が必要で
ある。即ち塩素化の程度に応じてその塩素化温度
を段階的に変化させる方法や必要ならば塩素化の
途中での塩素ガスの非供給条件下での熱処理工程
を含む多段後塩素化エチレンの製法(例えば特公
昭47−7896号、特公昭49−9111号、
USPNo3759888など)によつて行う必要がある。
それらについては実施例によつて詳述する。塩素
化によつて融着、塊状化が生じるとそれ以後の塩
素化反応、さらにはCPEからの塩酸水の除去、
乾燥が困難になる。本発明によつて得られる粉末
状CPEの粒度は、原料ポリエチレンの粒度によ
つて変化するが、平均0.5mm以下が望ましい。こ
のような粒度の粉末状CPEゴムは成型加工時に
も粉の移動、添加剤のブレンド工程等で取扱いが
容易で加工上好ましい。
On the other hand, the polyethylene with a large molecular weight distribution used in the present invention includes low molecular weight polyethylene. Therefore, chlorination near the melting point of polyethylene tends to cause fusion and agglomeration of polyethylene particles, and chlorination requires a high degree of care and skill. That is, a multi-stage process for producing chlorinated ethylene, including a method in which the chlorination temperature is changed in stages according to the degree of chlorination, and, if necessary, a heat treatment step under conditions in which chlorine gas is not supplied during chlorination ( For example, Special Publication No. 47-7896, Special Publication No. 49-9111,
USP No. 3759888, etc.).
These will be explained in detail with reference to Examples. When fusion and agglomeration occur due to chlorination, the subsequent chlorination reaction, furthermore, the removal of hydrochloric acid water from CPE,
Drying becomes difficult. The particle size of the powdered CPE obtained by the present invention varies depending on the particle size of the raw material polyethylene, but is preferably 0.5 mm or less on average. Powdered CPE rubber with such a particle size is easy to handle during molding, powder transfer, additive blending, etc., and is preferred for processing.

本発明の塩素化ポリエチレンは、公知の各種の
ゴム配合剤たとえば、ジクミルパーオキシドその
他のパーオキサイド系加硫剤,トリチオシアヌル
酸その他のトリアジン系加硫剤、その他各種の加
硫剤;トリアリルイソシアヌレート、ジシクロヘ
キシルアミン2−ベンゾチアゾール、その他各種
の加硫助剤;酸化マグネシウム、酸化鉛その他各
種の受酸剤;酸化チタン,カーボンブラツク,タ
ルク、その他各種の充填剤もしくは着色剤;老化
防止剤;安定剤;DOP,TOPM、その他各種の
可塑剤;ステアリン酸カルシウム、その他各種の
加工助剤等の適量を配合してゴム組成物を形成
し、常法に従つて加硫し加硫物とすることができ
る。
The chlorinated polyethylene of the present invention can be used with various known rubber compounding agents, such as dicumyl peroxide and other peroxide vulcanizing agents, trithiocyanuric acid and other triazine vulcanizing agents, and various other vulcanizing agents; Nurate, dicyclohexylamine 2-benzothiazole, and various other vulcanization aids; Magnesium oxide, lead oxide, and other various acid acceptors; Titanium oxide, carbon black, talc, and other various fillers or coloring agents; Anti-aging agents; Stabilizers: DOP, TOPM, various other plasticizers, calcium stearate, various other processing aids, etc. are blended in appropriate amounts to form a rubber composition, and the rubber composition is vulcanized according to a conventional method to form a vulcanizate. Can be done.

これらの組成物の配合方法は、当該技術分野に
おいて一般に用いられているオープンロール、ド
ライブレンダー、バンバリーミキサー、ニーダー
の如き混合機を使用して混合すればよいが、本発
明のCPEは、上記混合機を用いて混合する際
に、混合時間が短く、かつ所要動力も少なくて済
む点が本発明の特徴の一つとなつている。
These compositions may be mixed using a mixer commonly used in the technical field such as an open roll, dry blender, Banbury mixer, or kneader. One of the features of the present invention is that when mixing using a machine, the mixing time is short and less power is required.

又、本発明のCPEおよびこれらの組成物は、
一般のゴム業界および樹脂業界において通常使用
されている押出成形機、射出成形機、圧縮成形
機、カレンダー成形機の如き成形機を用いて所望
の形状物に成形しうるが、これらの成形時に、表
面肌の美しい成形物とすることができるのが本発
明の特徴でもある。このことは、例えば、ホー
ス、電線等の押出成形時に、従来のCPEより高
速で成形できるということを意味し、経済的効果
が大きい。
Moreover, the CPE of the present invention and these compositions are
It can be molded into a desired shape using molding machines such as extrusion molding machines, injection molding machines, compression molding machines, and calendar molding machines that are commonly used in the general rubber and resin industries. Another feature of the present invention is that it can be made into a molded product with a beautiful surface texture. This means that, for example, when extruding hoses, electric wires, etc., molding can be performed at a higher speed than conventional CPE, which has a large economic effect.

以下実施例によつて説明する。 This will be explained below using examples.

実施例 1 MI=0.05g/10分、Mw/Mn=30、密度=
0.955、DSC法結晶融点128℃の低圧法ポリエチレ
ンの40メツシユ以下の粉末5Kgを、100のオー
トクレーブに、イオン交換水70、湿潤剤2g、
分散剤200mlと共に込み、第1段工程として塩素
含有量20重量%迄106℃で塩素化したのち、塩素
ガスを追い出し、塩素の供給を断つた状態で128
℃で撹拌のみを1時間行つた後、同温度で塩素含
有量35重量%迄塩素化を行つた。冷却後、洗滌、
乾燥した。このCPEの粒径は平均0.1mmであつ
た。DSC測定による結晶は0ca1/gであつた。
またこのCPEのトルエン10重量%溶液粘度(23
℃)は18×103cpsであつた。通常のゴム混練用ロ
ール(直径6インチ)を40℃に加熱し、三回混練
部分を通過するだけで、この粉末状CPEはシー
ト状にまとまり、約5分で混練された。それにさ
らにカーボンを配合すると、シートに直ちに吸収
され、ロールより落下はみられなかつた。
Example 1 MI=0.05g/10min, Mw/Mn=30, density=
0.955, 5 kg of low-pressure polyethylene powder with a DSC method crystal melting point of 128°C, 40 mesh or less, was placed in a 100-liter autoclave, ion-exchanged water 70, wetting agent 2 g,
After adding 200ml of dispersant and chlorinating at 106°C to a chlorine content of 20% by weight as the first step, the chlorine gas was expelled and the chlorine was cut off at 128°C.
After stirring only for 1 hour at .degree. C., chlorination was carried out at the same temperature until the chlorine content was 35% by weight. After cooling, wash,
Dry. The average particle size of this CPE was 0.1 mm. The crystal density determined by DSC measurement was 0ca1/g.
Also, the viscosity of this CPE toluene 10% by weight solution (23
°C) was 18×10 3 cps. By heating a regular rubber kneading roll (6 inches in diameter) to 40°C and passing through the kneading section three times, this powdered CPE was gathered into a sheet and kneaded in about 5 minutes. When carbon was further added to the sheet, it was immediately absorbed into the sheet and did not fall off the roll.

また、このCPE100部(重量部、以下同じ)、
カーボン(SRF)30部の配合でカーベダイ試験
(使用機器ブラベンダー、シリンダー径19mm、
L/D10、圧縮比1、回転数30rpm、温度シリン
ダー75℃、ダイ80℃)の結果、吐出圧力20〜30
Kg/cm2で表面が平滑な成型体が得られた。
In addition, 100 parts of this CPE (parts by weight, same hereinafter),
Carved die test with 30 parts of carbon (SRF) (Equipment used: Brabender, cylinder diameter 19 mm,
L/D10, compression ratio 1, rotation speed 30rpm, temperature cylinder 75℃, die 80℃), discharge pressure 20~30
A molded product with a smooth surface was obtained at Kg/cm 2 .

また、このCPE100部に対し、カーボン
(SRF)30部と架橋剤としてジクミルパーオキサ
イド2.5部、トリアリルイソシアヌレート2.5部、
リサージ10部を加えて、40℃のロールで5分間混
練したのち、160℃、20分間熱プレスして架橋反
応を行つた。その加硫物物性は硬度70、引張強度
205Kg/cm2、伸び300%を示し、耐油性試験[JIS3
号油120℃×3日]の値は重量増加率52%で充分
架橋していることが判つた。
In addition, for 100 parts of this CPE, 30 parts of carbon (SRF), 2.5 parts of dicumyl peroxide as a crosslinking agent, 2.5 parts of triallylisocyanurate,
After adding 10 parts of Resurge and kneading with a roll at 40°C for 5 minutes, the mixture was hot pressed at 160°C for 20 minutes to perform a crosslinking reaction. The physical properties of the vulcanizate are hardness 70 and tensile strength
205Kg/cm 2 , elongation 300%, oil resistance test [JIS3
No. 1 oil at 120°C for 3 days] showed a weight increase rate of 52%, indicating sufficient crosslinking.

比較例 1 MI=6.5g/10分、Mw/Mn=5、密度=
0.956、DSC法結晶融点126℃の低圧法ポリエチレ
ンの40メツシユ以下の粉末を実施例1と同じ条件
で塩素含有量35重量%迄塩素化し粉末状(平均粒
径0.2mm)CPEを得た。このCPEのトルエン10重
量%溶液粘度(23℃)は11×103cpsで実施例1の
CPEよりも小さいにもかかわらず、実施例1と
同じ6インチロールでシート状にまとまるにはロ
ール温度が80℃以上必要であつた。
Comparative example 1 MI=6.5g/10min, Mw/Mn=5, density=
A powder of 40 mesh or less of low-pressure polyethylene having a melting point of 0.956 and a DSC crystal melting point of 126°C was chlorinated under the same conditions as in Example 1 to a chlorine content of 35% by weight to obtain powdered CPE (average particle size 0.2 mm). The toluene 10% by weight solution viscosity (23°C) of this CPE was 11×10 3 cps, which was the same as in Example 1.
Even though it was smaller than CPE, the roll temperature needed to be 80° C. or higher to form it into a sheet using the same 6-inch roll as in Example 1.

また実施例1と同じように熱プレスで架橋反応
を行つたが耐油性試験[JIS3号油120℃×3日]
の値は重量増加率130%で架橋性が悪いことが判
つた。
In addition, the crosslinking reaction was carried out using a hot press in the same manner as in Example 1, but the oil resistance test [JIS No. 3 oil 120°C x 3 days]
It was found that the weight increase rate was 130%, indicating poor crosslinking properties.

比較例 2 MI=0.045g/10分、Mw/Mn=12、密度=
0.956、DSC法融点128℃の低圧法ポリエチレンの
40メツシユ以下の粉末を実施例1と同じ条件で塩
素含量35重量%迄塩素化し粉末状(平均粒径0.1
mm)CPEを得た。このCPEはDSC測定による結
晶は0cal/gであつた。
Comparative example 2 MI=0.045g/10min, Mw/Mn=12, density=
0.956, low pressure polyethylene with a DSC method melting point of 128℃
Powder of 40 mesh or less was chlorinated under the same conditions as in Example 1 to a chlorine content of 35% by weight to form a powder (average particle size 0.1
mm) obtained CPE. The crystal content of this CPE was 0 cal/g by DSC measurement.

ガーベダイ試験で実施例1と同じ条件では吐出
しないので、可塑剤(DOP)を15部添加した配
合で吐出圧力40〜50Kg/cm2で成型体を得たが、表
面が粗い成形体しか得られなかつた。またこの
CPEを6インチロールでシート状にまとめるに
は110℃以上の温度が必要であつた。
In the Garbe die test, the molded product was not discharged under the same conditions as in Example 1, so a molded product was obtained at a discharge pressure of 40 to 50 kg/cm 2 with a formulation containing 15 parts of plasticizer (DOP), but only a molded product with a rough surface was obtained. Nakatsuta. Also this
A temperature of 110°C or higher was required to form CPE into a sheet using a 6-inch roll.

実施例 2 MI=0.07g/10分、密度=0.951、分子量分布
(Mw/Mn)=26、DSC法結晶融点127℃の低圧法
ポリエチレンの40メツシユ以下の粉末を実施例1
と同じ条件下で塩素化し、その塩素含量を40重量
%とした。そのCPEのトルエン10重量%溶液粘
度(23℃)は30×103cpsであつた。また40℃の6
インチ混練ロールで容易に混練された。また実施
例1と同様に架橋反応を行い耐熱性試験[JIS3号
油120℃×3日]の値は重量増加率21%で架橋性
のよいことも判つた。
Example 2 A powder of 40 meshes or less of low-pressure polyethylene with MI=0.07 g/10 min, density=0.951, molecular weight distribution (Mw/Mn)=26, and DSC crystal melting point of 127°C was prepared in Example 1.
was chlorinated under the same conditions as , and the chlorine content was 40% by weight. The viscosity of a 10% toluene solution (23°C) of the CPE was 30×10 3 cps. Also 6 at 40℃
Easily kneaded with inch kneading rolls. Further, a crosslinking reaction was carried out in the same manner as in Example 1, and the value of the heat resistance test [JIS No. 3 oil 120°C x 3 days] was 21% in weight increase rate, indicating that the crosslinking property was good.

Claims (1)

【特許請求の範囲】[Claims] 1 分子量分布(Mw/Mn)が20以上で溶融粘
度指数(MI)が1g/10分以下の粉末状ポリエ
チレンを、その結晶の融点付近の高温水性懸濁下
に塩素ガスを用いて、塩素を25〜45重量%含有
し、残存結晶が1%以下になるように塩素化する
ことを特徴とする成型加工性の良好な粉末状加硫
用塩素化ポリエチレンゴムの製造法。
1. Powdered polyethylene with a molecular weight distribution (Mw/Mn) of 20 or more and a melt viscosity index (MI) of 1 g/10 min or less is suspended in aqueous suspension at a high temperature near the melting point of its crystals, using chlorine gas to remove chlorine. A method for producing chlorinated polyethylene rubber for vulcanization in powder form with good moldability, characterized by containing 25 to 45% by weight of chlorinated polyethylene rubber and chlorinating so that residual crystals are 1% or less.
JP13795783A 1983-07-28 1983-07-28 Production of chlorinated polyethylene rubber of good moldability Granted JPS6031503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13795783A JPS6031503A (en) 1983-07-28 1983-07-28 Production of chlorinated polyethylene rubber of good moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13795783A JPS6031503A (en) 1983-07-28 1983-07-28 Production of chlorinated polyethylene rubber of good moldability

Publications (2)

Publication Number Publication Date
JPS6031503A JPS6031503A (en) 1985-02-18
JPS6260401B2 true JPS6260401B2 (en) 1987-12-16

Family

ID=15210672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13795783A Granted JPS6031503A (en) 1983-07-28 1983-07-28 Production of chlorinated polyethylene rubber of good moldability

Country Status (1)

Country Link
JP (1) JPS6031503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285604U (en) * 1988-12-21 1990-07-05
JPH0433642B2 (en) * 1986-02-22 1992-06-03 Ohtsu Tire

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9401893A (en) * 1994-11-14 1996-06-03 Dsm Nv Catalyst for preparing a rubbery copolymer.
KR100929114B1 (en) 2008-02-15 2009-11-30 삼성토탈 주식회사 Chlorinated Polyethylene Resin
WO2014171772A1 (en) * 2013-04-19 2014-10-23 (주) 엘지화학 Low-particle-size polyethylene, chlorinated polyethylene thereof, and pvc composition containing same
CN105169727B (en) * 2015-09-09 2017-04-12 陕西科技大学 Evaporation and concentration system and process for diluted hydrochloric acid generated by production of chlorinated polyethylene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433642B2 (en) * 1986-02-22 1992-06-03 Ohtsu Tire
JPH0285604U (en) * 1988-12-21 1990-07-05

Also Published As

Publication number Publication date
JPS6031503A (en) 1985-02-18

Similar Documents

Publication Publication Date Title
EP1636309B1 (en) Compositions and method for improving the processing of polymer composites
JPH04220435A (en) Extrusion of low density polyethylene
ITMI972764A1 (en) FLUORINATED THERMOPLASTIC ELASTOMERS
JPS63254160A (en) Elastomer compound
JPS6056185B2 (en) Fluoroelastomer formulation
JP2507778B2 (en) Blends consisting of polyvinyl chloride, chlorinated or chlorosulphonated polyethylene and ethylene-containing terpolymers
JP2003510438A (en) Block chlorinated polyolefins used as impact modifier tougheners for PVC or CPVC
KR920001792B1 (en) Elastomeric composition and products
JPS6260401B2 (en)
JPH10506139A (en) Halogen-free flexible thermoplastic polyolefin composition
JPS6360782B2 (en)
JPS6360784B2 (en)
JP2924188B2 (en) Method for producing chlorinated polyethylene
JPH0651813B2 (en) Method for producing porous sheet
JP2876972B2 (en) Thermoplastic elastomer composition
JPS6360783B2 (en)
JP3284209B2 (en) Thermoplastic elastomer composition
JP3800797B2 (en) Chlorinated polyolefin
JPH03163146A (en) Chlorinated polyethylene rubber composition
JPS63128005A (en) Production of chlorinated ethylene-propylene copolymer
JPH0485351A (en) Thermoplastic rubber composition
JPH0361695B2 (en)
JP2817240B2 (en) Thermoplastic elastomer composition
JP2860829B2 (en) Thermoplastic elastomer composition
JPH0381336A (en) Product obtained from reinforced, plasified polyvinylhalide resin