JPS6260179B2 - - Google Patents

Info

Publication number
JPS6260179B2
JPS6260179B2 JP4710578A JP4710578A JPS6260179B2 JP S6260179 B2 JPS6260179 B2 JP S6260179B2 JP 4710578 A JP4710578 A JP 4710578A JP 4710578 A JP4710578 A JP 4710578A JP S6260179 B2 JPS6260179 B2 JP S6260179B2
Authority
JP
Japan
Prior art keywords
water
sand
sand mold
mold
foundry sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4710578A
Other languages
Japanese (ja)
Other versions
JPS54137429A (en
Inventor
Jiro Nakayasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP4710578A priority Critical patent/JPS54137429A/en
Publication of JPS54137429A publication Critical patent/JPS54137429A/en
Publication of JPS6260179B2 publication Critical patent/JPS6260179B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鋳物用砂型の再生利用法に関する。
さらに詳しくは、(a)カルボキシル基またはその塩
を有する水溶性ポリマー、(b)周期律表第族、第
族の金属の酸化物、水酸化物および(c)鋳物用砂
とを水の共存下に混合成形し、硬化せしめられた
鋳物用砂型を鋳造に使用した後、再生利用するに
際し、該鋳物用砂型中に残存する未変質の前記(a)
の水溶性ポリマーに対して0.1〜20重量倍の水を
注水し、砂型を崩壊させ、再び成形、硬化させる
ことにより、残存未変質の水溶性ポリマーを再使
用することを特徴とする鋳物用砂型の再生利用法
に関する。 従来、鋳物砂用の粘結剤としては水ガラスのよ
うな無機質系のものが多く使用されてきたが、水
ガラスを用いた場合には鋳造後、砂型を壊すのが
著しく困難であるばかりでなく、壊す際に機械的
もしくはハンマーを用いて砂の粒子も同時に破壊
して砂の粒径を小さくして再使用可能な回数を減
すとともに、アルカリが残存するために砂をくり
返して再使用するにしたがつてアルカリ性物質の
蓄積が増加し、砂を最終的に廃棄する場合にアル
カリ性物質の処理を必要とする。 またフラン樹脂、フエノール樹脂あるいはポリ
エステル樹脂などの有機粘結剤が用いられること
があるが、いずれも自硬性の樹脂であり、一度化
学反応をおこして硬化すれば、硬化物を粉砕再使
用しようとしても硬化能力を失なつているためは
じめに加えた粘結剤の結合力をいかして再使用す
ることができないばかりでなく、はじめの硬化の
際に使用する酸などの触媒が砂の中に残溜し、使
用した砂の再使用をくり返すたびに新たな粘結剤
並びに触媒を加えうるために触媒の蓄積がおこる
という欠点がある。 本発明者は鋳物用砂型の崩壊性をよくし、使用
後の砂に有毒な物質が蓄積するのを避けるために
α―オレフインと無水マレイン酸とを主成分とす
る共重合体もしくはアクリル酸重合体を各々、周
期律表第族、第族の金属の酸化物または水酸
化物および鋳物砂を水の共存下で混合し、成形硬
化せしめることによつて鋳物用砂型を製造する方
法が、砂型の成型性、生強度、使用済砂型の崩壊
性、鋳物砂としての繰り返し使用可能性さらには
作業環境面で満足のいく方法であるという知見を
得、すでに特願昭51−138703号、同51−145051号
として特許出願を行なつている。これらの方法に
おける鋳物砂としての繰り返し使用方法は、前記
方法により作製された鋳物用砂型に溶融金属を流
し込み、鋳造した後、脱型した砂型を機械的に破
壊せしめて鋳物用砂とし、その砂に再度前記重合
体水溶液を添加し(前記金属化合物を加えること
なしに)、鋳物用砂混合物とし、成形用型に充填
して加圧成形し、砂型を作製した。しかしなが
ら、この方法では鋳造後の砂型の粉砕になお多大
な労力を伴なうこと、粉砕により砂が微細片にな
つてしまうことなどの欠点があつた。 本発明者は、鋳造時に高温にさらされて焼失す
る前記重合体の量は高温の溶融金属に接触する
か、またはその近傍のものに限定され、鋳造後も
鋳造時に変質しない重合体が多量に残存し、しか
もこの残存未変質重合体は水のみを添加するだけ
で再び粘結力を回復することに着目して、この残
存未変質重合体を活用すべく鋭意検討した結果、
本発明に到達した。 すなわち、本発明は(a)カルボキシル基またはそ
の塩を有する水溶性ポリマー、(b)周期律表第
族、第族の金属の酸化物、水酸化物および(c)鋳
物用砂とを水の共存下に混合成形し、硬化せしめ
られた鋳物用砂型を鋳造に使用した後、再生利用
するに際し、該鋳物用砂型中に残存する未変質の
前記(a)の水溶性ポリマーに対して0.1〜20重量倍
の水を注水し、砂型を崩壊させ、再び成形、硬化
させることにより、残存未変質の水溶性ポリマー
を再使用することを特徴とする鋳物用砂型の再生
利用法である。 本発明において、鋳造後の砂型に均一に注水
し、砂型を崩壊して鋳物用砂として再使用できる
状態にすることが重要であるので以下に説明す
る。注水する水の量は、砂型を崩壊せしめてその
砂を再使用して砂型を作製し、次回の鋳造を行な
う際に支障のない量であればよく、砂型を崩壊せ
しめてその砂を再使用して砂型を作製し、次回の
鋳造を行なう際に支障のない量であればよく、具
体的には再使用可能な砂に残存するカルボキシル
基またはその塩を有する水溶性ポリマーに対して
0.1〜20重量倍特に好ましくは0.8〜5重量倍の量
である。上記範囲内の量の水を注水した場合、砂
型中の水溶性ポリマーは適度な粘性を生ずるため
砂に付着したまま存在し、該ポリマーを再利用す
る点で非常に好ましい。注水する水の量が上記範
囲を越えると再使用する砂の中に非常に多量の水
が含有されるので、成形しても短時間では生強度
がでてこない。また、注水量が多くなるに従い砂
型中に残存する水溶性ポリマーは水に溶け出し、
砂から分離してしまうので残存水溶性ポリマーの
再利用が困難となる。例えば、従来、砂型の崩壊
手段として砂型を水中崩壊させる方法が知られて
いるが、このような場合は、大過剰の水を使用す
ることになるため本発明の特有の効果は全く得ら
れない。一方水溶性ポリマーに対して水の使用量
が少な過ぎると鋳造後の砂型に残存する水の量を
考慮しても水溶性ポリマーを溶解しきれず、砂型
の破壊の作業に問題を生じる場合もある。また、
鋳造後の砂型に注水することなく、砂型を崩壊せ
しめて砂状にした後に前記範囲内の量の水を注水
せしめ、焼失した量に相当する前記水溶性ポリマ
ーを加え、もしくは加えずして砂型を作製して鋳
造に供することもできる。注水により崩壊せしめ
た砂型の砂は(成型して)放置しておくと、はじ
めに水溶性ポリマー、金属化合物および鋳物砂を
混合して調整した混合物を水の共存下に成形せし
めたものと同様の硬化特性を示し、結果的にはじ
めて成形硬化した砂型と同等の生強度を示す。 本発明において好ましく使用されるカルボキシ
ル基またはその塩を有する水溶性ポリマーの具体
例としてはポリアクリル酸やα―オレフインと無
水マレイン酸とを主成分とする共重合体、または
それらのアルカリ金属、アルカリ土類金属やアン
モニウム等の塩が挙げられる。α―オレフインと
無水マレイン酸とを主成分とする共重合体はイソ
ブチレン(リターンB.Bも含む)をはじめとして
エチレン、プロピレン、n―ブチレン、スチレン
等のα―オレフインと無水マレイン酸との共重合
体等である。 本発明においては、前記の水溶性ポリマーの硬
化剤として周期律表第族、第族の酸化物、水
酸化物(以下、単に金属化合物と略記す。)が使
用される。該金属化合物としてはマグネシウムを
はじめとしてカルシウム、アルミニウム、亜鉛等
の酸化物あるいは水酸化物が挙げられる。これら
は単独で使用しても2種以上混合して用いてもよ
い。なかでも酸化マグネシウムが好ましい。 なお、最初に製造する鋳物用砂型に使用するカ
ルボキシル基またはその塩を有する水溶性ポリマ
ー(a)、金属化合物(b)および鋳物用砂(c)との混合割
合はa/cで0.25/100〜5/100(重量比)でか
つb/aで2.5/100〜1000/100(重量比)であ
ることが必要である。また、そのときに使用され
る水の量としてはカルボキシル基またはその塩を
有する水溶性ポリマーに対して19重量倍以下に、
好ましくは4重量倍以下に、すなわち、その水溶
液とした場合5重量%以上好ましくは20重量%以
上の水溶液となるようにすることが望ましい。こ
のときの水溶液の粘度は常温で0.5〜500ポイズで
あることが好ましい。 鋳造済の砂型に注水、粉砕して鋳物用砂として
再使用できるようになつた前記水溶性ポリマー、
金属化合物、および水を含有してなる砂との混合
物は、鋳造により損失した砂、前記水溶性ポリマ
ー、金属化合物および水を加えてもしくは加えず
して、常法により成形用型に充填されて成形さ
れ、脱型後、鋳造に供される。 以下、実施例によつて本発明をさらに具体的に
説明するが、本発明はこれらの実施例によつて何
等制限されるものではない。 実施例 1 けい砂150重量部と濃度40重量%のポリアクリ
ル酸水溶液7.5重量部とを混合した後に酸化マグ
ネシウム粉末(協和ガラス化学工業(株)製、キヨー
ワマグ150)1.5重量部を添加、混合して鋳物用砂
混合物を調製した。この混合物を成形用型に充填
し、加圧下(10Kg/cm2)で加圧成形し、直径が5
cmで高さが5cmの重さ約150gの円筒状の砂型試
料を作製した。この試料を脱型後常温で3時間お
よび24時間放置し、生強度の測定に供した。また
同一条件で調整し、24時間放置した砂型試料を
1000℃に赤熱した鉄板に試料の底面が鉄板に面す
るようにのせて、5分間放置した。このとき焼損
したポリアクリル酸は約0.41gであつた。この試
料片に水3.9gを注水したところ、この試験片は
注水直後は強固かつ安定な形状を保つていたが、
時間の経過とともに形がくずれ易くなり、注水後
1時間後には手で触れる位で容易にくずれた。こ
のようにして得た砂灼熱鉄板からはなれた位置に
あつて未焼損のポリアクリル酸および酸化マグネ
シウムを含む)をふるいにかけて、再び鋳物用砂
混合物を得た。この混合物にさらに40重量%のポ
リアクリル酸1.02gを補給して次回のための鋳造
用砂混合物を調整した。再びこの混合物を用いて
上述方法と同様にして砂型試料を作製した。この
試料を脱型して3時間および24時間常温で放置し
た後、その生強度を測定した。一方、同一調製法
により得られた砂型試料を1000℃の鉄板に5分間
のせた。その後上述した注水―砂型試料粉砕―ポ
リアクリル酸(水溶液)補給―成形―1000℃の鉄
板にのせるという操作を繰り返した。この操作を
数回繰り返した。その都度、砂型試料の生強度を
測定した(表1)。 表1に示す如く、鋳物用砂を繰り返し使用して
も水および少量のポリアクリル酸を補給するだけ
で実用可能な成形性と生強度を有する砂型を得る
The present invention relates to a method for recycling foundry sand molds.
More specifically, coexistence of water with (a) a water-soluble polymer having a carboxyl group or a salt thereof, (b) oxides and hydroxides of metals from Groups 1 and 3 of the periodic table, and (c) foundry sand. When a foundry sand mold that has been mixed and molded and hardened is used for casting and then recycled, the unaltered (a) remaining in the foundry sand mold remains in the foundry sand mold.
A foundry sand mold characterized in that the remaining unaltered water-soluble polymer is reused by pouring 0.1 to 20 times the weight of water into the water-soluble polymer, collapsing the sand mold, and molding and hardening it again. Regarding recycling methods. Conventionally, inorganic binders such as water glass have often been used as binders for foundry sand, but when water glass is used, it is extremely difficult to break the sand mold after casting. Instead, the sand particles are destroyed mechanically or with a hammer at the same time, reducing the particle size of the sand and reducing the number of times it can be reused.Also, because the alkali remains, the sand is reused repeatedly. As the sand ages, the accumulation of alkaline substances increases, and when the sand is finally disposed of, it is necessary to treat the alkaline substances. In addition, organic binders such as furan resin, phenolic resin, or polyester resin are sometimes used, but all of them are self-hardening resins, and once they undergo a chemical reaction and harden, it is difficult to crush and reuse the cured product. Since the sand has lost its curing ability, not only can it not be reused by taking advantage of the binding strength of the binder added at the beginning, but also the catalysts such as acids used during the initial curing remain in the sand. However, each time the used sand is reused, new binder and catalyst must be added, resulting in the accumulation of catalyst. In order to improve the disintegrability of foundry sand molds and to avoid the accumulation of toxic substances in the sand after use, the present inventor developed a copolymer mainly composed of α-olefin and maleic anhydride or an acrylic acid polymer. Sand molding is a method of manufacturing foundry sand molds by mixing oxides or hydroxides of metals of Groups 1 and 3 of the periodic table and foundry sand in the presence of water and molding and hardening the mixture. It has been found that this method is satisfactory in terms of moldability, green strength, disintegration of used sand molds, repeatability as foundry sand, and working environment. -A patent application has been filed as No. 145051. The repeated use as foundry sand in these methods involves pouring molten metal into a foundry sand mold made by the above method, casting, and then mechanically destroying the demolded sand mold to obtain foundry sand. The aqueous polymer solution was added again to the mixture (without adding the metal compound) to prepare a foundry sand mixture, which was then filled into a mold and pressure-molded to produce a sand mold. However, this method has drawbacks such as the fact that it still requires a great deal of labor to crush the sand mold after casting, and that the sand becomes fine pieces due to the crushing. The present inventor believes that the amount of the polymer that is exposed to high temperatures and burnt out during casting is limited to those that come into contact with high-temperature molten metal or in the vicinity, and that even after casting, there is a large amount of polymer that does not change in quality during casting. Focusing on the fact that this residual unaltered polymer can regain its cohesive strength by simply adding water, we conducted extensive research to utilize this residual unaltered polymer.
We have arrived at the present invention. That is, the present invention comprises (a) a water-soluble polymer having a carboxyl group or a salt thereof, (b) an oxide or hydroxide of a metal of group 1 or group of the periodic table, and (c) foundry sand in water. When a foundry sand mold that has been mixed and molded in coexistence and hardened is used for casting and then recycled, the amount of the unaltered water-soluble polymer of (a) remaining in the foundry sand mold is 0.1 to This method of recycling foundry sand molds is characterized by reusing the remaining unaltered water-soluble polymer by pouring 20 times its weight of water to collapse the sand mold, molding it again, and hardening it. In the present invention, it is important to uniformly inject water into the sand mold after casting so that the sand mold collapses and can be reused as foundry sand, which will be explained below. The amount of water to be injected should be enough to cause the sand mold to collapse and the sand to be reused to create the sand mold and then perform the next casting. The amount of water-soluble polymers that have carboxyl groups or their salts that remain in reusable sand is sufficient as long as it does not cause any problems when making a sand mold and performing the next casting.
The amount is 0.1 to 20 times by weight, particularly preferably 0.8 to 5 times by weight. When water is poured in an amount within the above range, the water-soluble polymer in the sand mold develops a suitable viscosity and therefore remains attached to the sand, which is very preferable in terms of reusing the polymer. If the amount of water injected exceeds the above range, the sand to be reused will contain a very large amount of water, so that green strength will not be achieved in a short period of time even when molded. Additionally, as the amount of water injected increases, the water-soluble polymer remaining in the sand mold begins to dissolve into the water.
Since it separates from the sand, it becomes difficult to reuse the remaining water-soluble polymer. For example, conventionally, a method of collapsing a sand mold underwater is known as a method for collapsing a sand mold, but in such a case, a large excess of water is used, so that the unique effects of the present invention cannot be obtained at all. . On the other hand, if the amount of water used is too small for the water-soluble polymer, the water-soluble polymer will not be completely dissolved even if the amount of water remaining in the sand mold after casting is taken into account, which may cause problems in the sand mold destruction process. . Also,
Without pouring water into the sand mold after casting, the sand mold is collapsed into sand, and then water is poured in an amount within the above range, and the water-soluble polymer corresponding to the amount burnt out is added or not. It is also possible to prepare and use it for casting. If the sand in a sand mold that has been collapsed by pouring water (after being molded) is left alone, it will form the same mold as a mixture prepared by first mixing a water-soluble polymer, a metal compound, and foundry sand and molding it in the coexistence of water. It exhibits hardening properties and, as a result, exhibits green strength equivalent to that of a molded and hardened sand mold. Specific examples of water-soluble polymers having carboxyl groups or salts thereof that are preferably used in the present invention include polyacrylic acid, copolymers containing α-olefin and maleic anhydride as main components, and alkali metal or alkali thereof. Examples include salts of earth metals and ammonium. Copolymers whose main components are α-olefins and maleic anhydride are copolymers of α-olefins such as isobutylene (including return BB), ethylene, propylene, n-butylene, and styrene, and maleic anhydride. etc. In the present invention, oxides and hydroxides (hereinafter simply abbreviated as metal compounds) of Groups 1 and 2 of the periodic table are used as curing agents for the water-soluble polymer. Examples of the metal compound include oxides or hydroxides of magnesium, calcium, aluminum, zinc, and the like. These may be used alone or in combination of two or more. Among them, magnesium oxide is preferred. In addition, the mixing ratio of the water-soluble polymer (a) having a carboxyl group or its salt, the metal compound (b), and the foundry sand (c) used in the foundry sand mold to be manufactured first is 0.25/100 in a/c. -5/100 (weight ratio) and b/a of 2.5/100 to 1000/100 (weight ratio). In addition, the amount of water used at that time is 19 times the weight or less of the water-soluble polymer having a carboxyl group or its salt,
Preferably, the amount is 4 times or less by weight, that is, the aqueous solution is preferably 5% by weight or more, preferably 20% by weight or more. The viscosity of the aqueous solution at this time is preferably 0.5 to 500 poise at room temperature. The water-soluble polymer can be reused as foundry sand by pouring water into a cast sand mold and crushing it.
The mixture with sand containing a metal compound and water is filled into a mold in a conventional manner with or without addition of the sand lost during casting, the water-soluble polymer, the metal compound and water. After being molded and demolded, it is subjected to casting. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 After mixing 150 parts by weight of silica sand and 7.5 parts by weight of an aqueous polyacrylic acid solution having a concentration of 40% by weight, 1.5 parts by weight of magnesium oxide powder (manufactured by Kyowa Glass Chemical Industry Co., Ltd., Kiyowa Mag 150) was added and mixed. A foundry sand mixture was prepared. This mixture was filled into a mold and molded under pressure (10Kg/cm 2 ) to a diameter of 5.
A cylindrical sand mold sample with a height of 5 cm and a weight of approximately 150 g was prepared. After demolding, this sample was left at room temperature for 3 hours and 24 hours, and its green strength was measured. In addition, a sand mold sample prepared under the same conditions and left for 24 hours was
The sample was placed on a red-hot iron plate at 1000°C with the bottom side facing the iron plate and left for 5 minutes. Approximately 0.41 g of polyacrylic acid was burnt out at this time. When 3.9 g of water was poured into this specimen, the specimen maintained a strong and stable shape immediately after the water was poured, but
As time passed, the shape became easier to collapse, and one hour after pouring water, it could be easily touched with the hand. The thus obtained sand (containing unburned polyacrylic acid and magnesium oxide) located away from the scorched iron plate was sieved to obtain a foundry sand mixture again. This mixture was further supplemented with 1.02 g of 40% by weight polyacrylic acid to prepare the next casting sand mixture. A sand mold sample was prepared using this mixture again in the same manner as described above. This sample was demolded and left at room temperature for 3 hours and 24 hours, and then its green strength was measured. On the other hand, a sand mold sample obtained by the same preparation method was placed on an iron plate at 1000°C for 5 minutes. Thereafter, the above-mentioned operations of pouring water, crushing the sand mold sample, replenishing polyacrylic acid (aqueous solution), molding, and placing it on an iron plate at 1000°C were repeated. This operation was repeated several times. In each case, the green strength of the sand mold samples was measured (Table 1). As shown in Table 1, even if foundry sand is repeatedly used, a sand mold with practical moldability and green strength can be obtained by simply replenishing water and a small amount of polyacrylic acid.

【表】 ことがきる。 実施例 2 けい砂150重量部と濃度40重量%のイソブチレ
ンと無水マレイン酸との共重合体(以下、IBMと
略記する。)の水溶液7.5重量部を混合した後酸化
マグネシウム粉末(協和ガス化学工業(株)製、キヨ
ーワマグ20)1.5重量部を混合し、成型用型に充
填し、加圧(10Kg/cm2)成形し、脱型して直径5
cmおよび高さ5cmで重さ150gの円筒状の砂型試
料を作成した。この試料を常温で3時間および24
時間放置してその生強度を測定した。同様にして
調整した砂型試料を1000℃に赤熱した鉄板にのせ
て5分間放置した。分析したところ焼損したIBM
の量は0.45gであつた。この鉄板にのせた試料に
水3.8gを注水して粉砕して鋳造用砂混合物を得
た。さらにこの混合物に40重量%のIBM水溶液を
1.12g補給して鋳物用砂混合物とした。この砂型
試料を実施例1と同様に注水―粉砕―IBM(水溶
液)補給―成形―1000℃の鉄板にのせる―という
操作を繰り返し、その都度、砂型の生強度を測定
した。この繰り返し操作(すなわち、鋳物砂の繰
り返し使用回数)と砂型試料の生強度の関係を表
2に示す。
[Table] I can do things. Example 2 150 parts by weight of silica sand and 7.5 parts by weight of an aqueous solution of a copolymer of isobutylene and maleic anhydride (hereinafter abbreviated as IBM) with a concentration of 40% by weight were mixed, and then magnesium oxide powder (Kyowa Gas Chemical Industry Co., Ltd.) was mixed. 1.5 parts by weight of Kiyowa Mag 20) manufactured by Co., Ltd. was mixed, filled into a mold, molded under pressure (10 Kg/cm 2 ), and demolded to a diameter of 5 mm.
A cylindrical sand mold sample with a height of 5 cm and a weight of 150 g was prepared. This sample was heated at room temperature for 3 hours and 24 hours.
The green strength was measured after being left for a period of time. A sand mold sample prepared in the same manner was placed on a red-hot iron plate at 1000°C and left for 5 minutes. IBM was burnt out when analyzed.
The amount was 0.45g. 3.8 g of water was poured into the sample placed on the iron plate and the sample was crushed to obtain a foundry sand mixture. Furthermore, 40% by weight IBM aqueous solution was added to this mixture.
1.12g was replenished to make a foundry sand mixture. This sand mold sample was subjected to the same operations as in Example 1, including pouring water, crushing, replenishing IBM (aqueous solution), molding, and placing it on a steel plate at 1000° C., and the green strength of the sand mold was measured each time. Table 2 shows the relationship between this repeated operation (that is, the number of repeated uses of the foundry sand) and the green strength of the sand mold sample.

【表】 表2にみられるごとく、焼損したIBM量に相当
するIBMの水溶液と水を加えることによつて実用
的な成形性と生強度を得ることができる。 実施例 3 実施例2において円筒状砂型試料を1000℃に赤
熱した鉄板上にのせて5分間放置後に砂型試料を
機械的に粉砕した後、水を3.8gのみを加えて濃
度40重量%のIBM水溶液を加えることなしに成形
用型に充填し加圧下(10Kg/cm2)で成形し、脱型
して常温で3時間放置して生強度を測定した。こ
の砂型の粉砕―注水―成形―加熱(1000℃に赤熱
した鉄板にのせる操作)を繰り返し、その時の生
強度を測定した(表3)。表3にみられるように
4回繰り返し使用した後も実用上差支えない生強
度を有している。
[Table] As shown in Table 2, practical formability and green strength can be obtained by adding an aqueous solution of IBM and water corresponding to the amount of burned IBM. Example 3 In Example 2, the cylindrical sand mold sample was placed on a red-hot iron plate at 1000°C, left for 5 minutes, the sand mold sample was mechanically pulverized, and only 3.8 g of water was added to give an IBM concentration of 40% by weight. The mixture was filled into a mold without adding an aqueous solution, molded under pressure (10 Kg/cm 2 ), demolded, left at room temperature for 3 hours, and measured for green strength. This sand mold was repeatedly crushed, poured with water, molded, and heated (placed on an iron plate heated to 1000°C), and the green strength was measured (Table 3). As shown in Table 3, it has a green strength that is acceptable for practical use even after repeated use four times.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 (a)カルボキシル基またはその塩を有する水溶
性ポリマー、(b)周期律表第族、第族の金属の
酸化物、水酸化物および(c)鋳物用砂とを水の共存
下に混合成形し、硬化せしめられた鋳物用砂型を
鋳造に使用した後、再生利用するに際し、該鋳物
用砂型中に残存する未変質の前記(a)の水溶性ポリ
マーに対して0.1〜20重量倍の水を注水し、砂型
を崩壊させ、再び成形、硬化させることにより、
残存未変質の水溶性ポリマーを再使用することを
特徴とする鋳物用砂型の再生利用法。
1. Mixing (a) a water-soluble polymer having a carboxyl group or a salt thereof, (b) an oxide or hydroxide of a metal of group 1 or group of the periodic table, and (c) foundry sand in the presence of water. After the molded and hardened foundry sand mold is used for casting, when recycling it, 0.1 to 20 times the weight of the unaltered water-soluble polymer (a) remaining in the foundry sand mold is added. By pouring water, collapsing the sand mold, shaping and hardening again,
A method for recycling foundry sand molds characterized by reusing residual unaltered water-soluble polymer.
JP4710578A 1978-04-18 1978-04-18 Regeneration of casting sand mold Granted JPS54137429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4710578A JPS54137429A (en) 1978-04-18 1978-04-18 Regeneration of casting sand mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4710578A JPS54137429A (en) 1978-04-18 1978-04-18 Regeneration of casting sand mold

Publications (2)

Publication Number Publication Date
JPS54137429A JPS54137429A (en) 1979-10-25
JPS6260179B2 true JPS6260179B2 (en) 1987-12-15

Family

ID=12765888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4710578A Granted JPS54137429A (en) 1978-04-18 1978-04-18 Regeneration of casting sand mold

Country Status (1)

Country Link
JP (1) JPS54137429A (en)

Also Published As

Publication number Publication date
JPS54137429A (en) 1979-10-25

Similar Documents

Publication Publication Date Title
US2683296A (en) Method of preparing shell molds and composition therefor
CA1247299A (en) Phenolic resin binders for foundry and refractory uses
EP0005371B1 (en) Process for preparing olivine foundry sand and mould compositions containing olivine foundry sand
EP0224119B1 (en) Cold-setting compositions for foundry sand cores and molds
WO1990010669A1 (en) Phenolic resin compositions
CA2161897C (en) A method of improving the properties of reclaimed sand used for the production of foundry moulds and cores
US3878159A (en) Foundry binders on the basis of phenolic resins
US4163000A (en) Foundry mold composition and process for producing foundry mold
GB1579989A (en) Shell moulding process and composition
US4183759A (en) Hardenable compositions
US3838095A (en) Foundry sand coated with a binder containing novolac resin and urea compound
EP0006721B1 (en) Foundry sand binder compositions
WO1980000047A1 (en) Encapsulating wastes
EP0079672B1 (en) Method of forming foundry cores and moulds
JPS6260179B2 (en)
US3725090A (en) Method of preparing a liquid mixture for the production of foundry cores and moulds
JPS55149743A (en) Resin-coated sand particle for casting
US2999829A (en) Aqueous shell molding composition comprising maleic acid, furfuryl alcohol, and urea
KR810001554B1 (en) Foundry mold composition
US3344095A (en) Resin bonded magnesium oxychloride cement composition
US3050797A (en) Water sensitive molds and cores of fast collapsibility
JPH0372371B2 (en)
KR860000316B1 (en) Compositions of refractory mould
SU1692717A1 (en) Method of preparing composition for foundry moulds and cores
SU1696092A1 (en) Mixture for making foundry cores