JPS6260159B2 - - Google Patents

Info

Publication number
JPS6260159B2
JPS6260159B2 JP54052527A JP5252779A JPS6260159B2 JP S6260159 B2 JPS6260159 B2 JP S6260159B2 JP 54052527 A JP54052527 A JP 54052527A JP 5252779 A JP5252779 A JP 5252779A JP S6260159 B2 JPS6260159 B2 JP S6260159B2
Authority
JP
Japan
Prior art keywords
sulfate
gas
ammonium
ammonia
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54052527A
Other languages
Japanese (ja)
Other versions
JPS55145599A (en
Inventor
Hidemasa Tsuruta
Yoshiaki Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITTETU CHEM ENG
Original Assignee
NITTETU CHEM ENG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITTETU CHEM ENG filed Critical NITTETU CHEM ENG
Priority to JP5252779A priority Critical patent/JPS55145599A/en
Publication of JPS55145599A publication Critical patent/JPS55145599A/en
Publication of JPS6260159B2 publication Critical patent/JPS6260159B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

アンモニウム基NH4 +、硫酸基SO4 --、有機物
を含む水溶液を排出する化学工業プロセスは幾つ
か知られている。その代表的な例としては、メタ
クリル酸メチルエステル(以下MMAと称す)ア
ンモオキシデーシヨン法によるアクリロニトリル
(以下ANと称す)の製造プロセスがある。これ等
はいずれも製造単位量あたり大量の排液を生じ、
この中には高い濃度の硫酸アンモニウムと有機物
を混入し、これをそのまゝ廃棄することは、河
川、海洋を汚染するので好ましくない。そのうえ
ANの廃液中には硫安以外のアンモニウムイオン
NH4 +やシアンイオンCN-を含み、これらの処理
も同時に行なう必要がある。 一般に有機物を高度に含む廃水中の有機物を除
去するもつとも確実かつ簡単な方法は焼却法であ
る。 本発明の対象とする廃水溶液又はその濃縮物の
焼却の条件は、炉の型式や大きさのとり方によつ
ても異なるが、通常の場合には焼却温度は、800
℃以上、好ましくは900℃以上となし、かつ、焼
却ガス中に1.5%Vol以上、望ましくは3.0%Vol以
上の酸素が残るような条件下に保つことおよび炉
内装入物とガスの均一かつ強力な混合によつて有
機物はほゞ完全に燃焼する。(以下炉の温度、残
存濃度はすべてこのように混焼後のものを指すも
のとする。) 本発明の内容を詳細に説明するに先立つて、硫
酸カルシウムCaSO4の高温時における熱分解と、
有機物質と共存するCaSO4の高温下で焼却するさ
いの挙動を説明する。 CaSO4は高温下で式(1)のごとく分解し一定の分
解圧を示す。 CaSO4→CaO+SO2+1/2O2 ……(1) 自由エネルギーよりの計算値では雰囲気中の
O2→0%としたときSO2の分圧は900℃で約9×
10-6Atm即ち9ppm、1000℃で約100ppm、1100℃
では8500ppmと急激に増加する。 本発明者等はCaSO4と共に2〜3の有機物を混
合した水溶液スラリー、又はケーク等を同じく
900℃〜1000℃を中心に燃焼テストを行なつた結
果、灰分中に残存するCaSO4は、当初に存在して
いた量より大巾に減少し、その減少量は式(1)で示
されるSO2への分解値をはるかに超えるものであ
つた。又灰分中にはCaSO4以外にかなりのCaSが
残存していた。これ等の現象は、有機物の燃焼時
に一時的にCaSO4の周辺が有機物の未燃物で覆わ
れ還元雰囲気となつて式(2)が起り、生じたCaSに CaSO4+(H2,CO)
→CaS+(H2O,CO2) …(2) CaS+H2O→CaO+H2S …(3) H2S+O2→H2O+SO2 …(4) H2Oが作用して式(2)のごとくH2Sを生じ、これが
ガス中に混合し残存O2と反応して式(4)のごとく
SO2を生じたものと考へられる。 事実実験によるCaSO4に対する有機物の混合量
が多いほど、又はCa++対SO4 --の比率値の低いほ
ど(2)(3)(4)の反応進行率の高いことが明らかにされ
た。 したがつて、炉内においてSO2が発生しないよ
うに焼却に先立つてSO4 --を液より取除いておく
か、あるいは高温でそのように熱分解を受けて
SO2を発生しないような条件にかえておかない限
り焼却廃ガス中のSO2含有量は甚大となり、その
まゝ大気に放出することは公害源となる。 本発明はこのような問題を内蔵するSO4 --を含
む有機物含有廃水溶液を処理することに属するも
のであり、以下のごとき4つの工程よりなる。第
1工程は廃液中のSO4 --を中和する当量に対して
過剰の水酸化カルシウムCa(OH)2または酸化カ
ルシウムCaOを加へ、存在するSO4 --を中和し実
質的にすべて硫酸カルシウムCaSO4として液中に
固定沈澱させ、かつNH4 +をNH3として遊離させ
るものである。Ca++イオンの添加量はSO4 --に対
して1.5以上、好ましくは2.0以上の当量の範囲が
よい。得られたスラリーは過しCaSO4・2H2O
を主体とするケークと、液に分離されこれは次
の第2工程へ送られる。第2工程は液の濃縮工
程であり後述の焼却炉よりの高温排ガスを直接接
触させることにより液を加熱するが、必要により
補助燃料バーナによるガス温度の上昇等の手段で
加熱量の増加をはかる。液に含まれる遊離NH3
その他揮発性の有機物は濃縮のさい水蒸気と共に
溜去する。かくて生ずる蒸発残渣は第3工程に送
られ焼却炉において、焼却温度800℃以上1100℃
以下好ましくは900℃以上1000℃以下で焼却す
る。このさい液中に含まれる大量のCa++と少量
のSO4 --は大量のCaOと少量のCaSO4とよりなる
灰分に変り、排出され再び前記第1工程に戻して
SO4 --の中和剤の一部として使用される。一方炉
よりの排ガス中には、供給された液中に残る
SO4 --の一部が分解して生ずるSO2を含むが前記
第2工程を通過して顕熱の有効利用をはかる等の
措置を経たのち第4工程にいたる。ガスの低温化
につれSO2の一部はSO3に酸化されるが今後総称
してSOxという。ガスは必要により第1工程で発
生するNH3含有ガスを加えたのちスクラバーにお
いて水洗を受ける。後述の通りガス中のNH3
SOxに対して大過剰に調整されるためにガス中の
SOxの大部分はアンモニウム塩の水溶液として回
収され第1工程へ戻される。したがつてスクラバ
ーよりのSOxのアンモニウム塩は最終的にはCa塩
となつて沈澱し、第2工程においてケークへ移行
する。 第4工程を出たガスはSOxに関しては十分の除
去が完了しているが原液の性質によつてはNH3
外他の有害揮発成分を含むので、次の排ガス焼却
工程において適宜分解されて無害化放出される。 いま第1図により、その発明の実施の態様を説
明する。これはANのプロセスより生ずる廃液の
処理に関するものである。ANプロセスよりはた
とえば次のごとき組成の廃液を生ずる。 第1表 (NH42SO4 1〜15wt% その他のNH4 + 0.1〜5〃 シアンCN- 0.05〜0.8〃 有機化合物 3〜15〃 水 分 75〜90〃 有機化合物の燃焼熱約6000K cal/Kg低位原廃
液1は混合槽3に送られ、同時に新らしい微粉末
状の水酸化カルシウムCa(OH)2または酸化カル
シウムCaO2、焼却炉で回収されたCaOに小量の
CaSO4を含む灰分16と共に連続的に混合され
る。その他図に示すように混合槽3には後述する
水スクラバー22より回収されるSOxのアンモニ
ウム塩23も供給される。全体のバランスとして
Ca++はSO4 --に対して約2倍当量とする。一部の
遊離されたNH3は混合槽3よりガス状となつてア
ンモニヤペント管20へと導かれる。送入される
全SO4 --に対して約80%は硫酸カルシウムCaSO4
として沈澱し、これに他の有機カルシウム化合物
等が混合してスラリーとなり、次の遠心分離機4
へ送られて過分離されCaSO4を主体とするケー
ク32を除いたのち、熱風接触型の蒸発器回転胴
体5の一端に送液される。 以上が第1工程に相当する。 ケーク32は水洗によつて溶出物の殆どないも
のとすることができるので、そのまゝ埋土等の方
法で棄却することも地域によつては可能である
が、その他〓焼炉(カルサイナー)によつて処理
し、含有有機物等を完全に焼却、無害化すること
は可能であり常法の範囲である。たゞしこの際発
生する炉尻ガス中には高濃度のSOxガスを含むこ
とは前述の通りであるので、これは前記第4工程
で説明した水スクラバー22において除去する。
次に第2工程に移る。蒸発器回転胴体5に対して
は、次にのべる方法によつて生成された燃焼ガス
が連結ダクト19により液と同じ方向より吹込ま
れ、液の加熱と水分蒸発を行なう。その際に水分
と共に液に含まれている遊離アンモニウムNH3
ほゞ全量とその他揮発成分も蒸発し、濃縮液は蒸
発器の他端より排出する。 この蒸発器に供給される熱ガスは通常800℃ま
たはそれ以上であり、かつ濃縮液中には大量の
Ca++分のほかAN廃液には濃縮中に重合物に変化
し易い有機分が含まれているので局部的過熱によ
る器内での閉塞が起りがちである。これ等を防ぐ
ためには、器内でガスと液との接触がなされる伝
熱面が、絶えず強力に撹拌摺動作用により清掃さ
れていることが望ましい。たとえば特開昭52−
44448のごとき方法はそのような手段の一例であ
る。 図において5は回転胴体、6は仕切格子板、7
は金属性充填物であり前記の要求を満すものであ
る。 またAN原廃液中に存在するCN-の微小量や揮
発性有機物のかなりの分は上記の加熱濃縮により
蒸発水分と共に排ガスに移行する。かくて得られ
た原液濃縮物は出口フード9の下部よりライン1
0により焼却炉11へ供給される。 次に第3工程の説明を行なう。焼却炉11は特
殊な回転炉の型式のものであり、炉内で残留水分
の多い供給液を完全燃焼し、しかも装入物の温度
が前記のごとく1000℃以下に抑へるのが望まし
い。そのためには例えば出願公告昭51−47277に
示される固体焼却炉は本発明の目的にはかなつた
ものであり、本例は便宜上その型式の炉で説明を
行なう。 送液ライン10よりの廃液濃縮物は散液管12
により炉内に軸方向に分散送入される。熱収支の
必要によつては補助燃料18が入口フード15の
側方に配設された補助バーナー17より供給され
る。また炉内において廃液中の可燃物の燃焼を行
なうために炉内の空間にはげしい気流の乱れが望
ましく、そのために必要な燃焼空気14は空気ノ
ズル群13より回転炉11体内に旋回流を与えな
がら高速で進入する。 回転炉1111の体内に散布された濃縮物は、
その場所で補助バーナー17よりの火焔と自己の
燃焼熱により水分蒸発、固体分の熱分解、ガス化
が続いて起り最終的には炉内空間で空気ノズル部
13よりの空気により燃焼して雰囲気温度を高
め、これが再び前記水分蒸発固体分のガス化へ利
用される。そのさい炉体の回転により装入物が均
一に撹拌されること、および空気ノズル群13よ
りの高速吹込ガスが炉内で旋回することにより、
炉内雰囲気は均一な酸化性となり、装入物とも万
遍なく接触し、温度が後述のように1000℃以下と
比較的低温においても装入物は均一かつ完全に燃
焼される。 さて3に持込まれるSO4 --のうち約20%は焼却
炉へ持込まれ、大量の有機物と共に燃焼されるの
で前記式(2),(3),(4)に示されるごとき分解を一部
受けることが予想される。Ca++対SO4 --の比率は
約10倍当量と高いがSO4 --に対する有機物の比率
が高くSO4 --の持込量の約20〜30%はSO2となり
燃焼ガスに移行する。 かくてCaOと少量のCaSO4を主体とする焼却灰
分は他端の出口フードの底部より排出され輸送ラ
イン16を経て混合槽3に循環し中和剤として再
利用される。この焼却炉において、もつとも大き
く燃焼結果を左右するものは、炉温と排ガス中の
残存酸素濃度である。炉内において原液中に含ま
れる有機物を実質的に完全に燃焼する為には、本
件においては装入物炉内温度は900〜1000℃又は
それ以上で、ガス中の残存酸素は3.0%vol以上の
適当な条件に保つことが望ましい。一般の有機化
合物は単に燃焼を完全に行なわせるためのみなら
ば、その温度は高い程有利であるが、本発明のご
とく装入物中に相当量のCaSO4を含むときは前記
(2),(3),(4)式による反応とは別に前述式(1)のごと
くこれが炉内で分解しSO2を発生することを防ぐ
ことが必要で装入物温度は好ましくは1000℃、以
下最高でも1100℃を超えることは避ける必要があ
る。この様に本発明の廃液焼却のための燃焼帯域
の温度条件の許容範囲は、比較的幅のせまいもの
であるので、炉内においてその燃焼用空気及び補
助燃料バーナーの火焔は、図のごとく同方向とす
るのがよい。 この様にして焼却炉において生じた高温燃焼ガ
ス中には有機分は殆んど存在し得ないが前述のご
とく若干のSOxを含むが前記のごとく連結ダクト
19を経て蒸発器5に導かれ、廃液中の水分およ
びアンモニヤ等の揮発分の蒸発に利用される。蒸
発器5より排出される排ガスは通常200℃以下に
低下しており、次の第4工程で処理される。ガス
は昇圧送風機21によつてアンモニヤベント管2
0よりのアンモニヤ蒸気と共に吸引され水スクラ
バー22に押込まれ、散水ノズル24より撤水さ
れる水により常法により吸収操作を受ける。NH3
の濃度は前述のごとくSOx濃度に比し中和当量点
より大過剰にあるため、SOxの吸収除去率はきわ
めて高い。本例のごとき廃液の場合は水スクラバ
ー22を通つた排ガスは蒸発水分のほか、余剰ア
ンモニヤ、未吸収低沸点有機物を含むので、これ
等有害成分を完全に酸化除去するためにガス焼却
炉25に導いて処理を行ない完全に無害化する。
本図においてはセラミツク製の蓄熱体を用いて、
入気と排気の熱交換を行なう方法を例示するが、
これは必ずしも本発明の必要構成要素ではない。
入気は蓄熱体29を下から上へ通過する間にそれ
より保有する熱を受けて加熱れ、約800〜900℃と
なつて、燃焼室26に入り、そこで燃料28の供
給を受ける加熱バーナ27よりの燃焼ガスが混合
されて950〜1050℃に達する。このような温度下
において、前記の成分を完全に酸化分解するため
には、1〜2秒のガス滞留時間に見合う燃焼室容
積と、さらに前記焼却炉で述べたごとく、残存酸
素として、少なくとも1.5%vol好ましくは3.0%
vol以上が必要である。 かくて焼却が完結したガスは、蓄熱体30を上
から下に通過する間にその保有する熱量をこれに
与えて加熱し、自からは250℃前後まで降温し、
煙突31より大気中へ放散する。 このような蓄熱体29,30は一定時間を経る
と、熱容量に見合つて各々冷却しすぎ、あるいは
加熱しすぎの状態に達するので、弁の切換(図示
せず)を行なつて、入気は蓄熱体30を下から上
に通り、加熱され、さらに燃焼室26で昇温を受
け、焼却完了したのち、蓄熱体29を上から下に
通る間にこれを加熱し、自からは冷却され最終的
には煙突31より排気される。 以上が本発明の実施態様の1つである。 本発明の特長効果についてのべると、 (1) アルカリの中ではコストの安いCaO又はCa
(OH)2を使用し、SO4 --を中和沈澱するさいに
は当量にくらべて1.5〜2.0倍量を使用し沈澱中
のCa++対SO4 --の比率を当量に近づけ得る。し
たがつて総体的には原廃液中に存在するSO4 --
をきわめて安いコストで固定除去し、さらには
仮焼して有害物質の溶出のおそれのない灰分と
なし得る。 (2) 原液中のSO4 --をCaSO4として大部分除去し
た残液を焼却するためにSOxの発生が少ない。
又発生したSOxは必要により前記CaSO4ケーク
の仮焼により生ずるSOxを含めても、それを十
分に中和するに足る遊離アンモニヤと共に水洗
して回収され最終的には再び前記CaSO4ケーク
中に固定廃棄されるので系からの排ガスに含ま
れるSOx僅少になる。 (3) 必要により焼却炉の廃ガス熱量を利用して原
液の水分を最大限に蒸発させることができる。
このときは原廃水を濃縮して得られた蒸発残渣
に含まれる有機物やその他有害成分は焼却炉に
導き僅少の補助燃料を用いて焼却することがで
き省エネルギー的価値は大きい。 (4) 必要により水スクラバーよりの蒸発排ガス中
に含まれるアンモニヤ分やその他有害揮発分は
すべてガス焼却炉において完全酸化を受けて焼
却され、無害ガスとして放出される。したがつ
て分離されたCaSO4ケークの仮焼と相俟つて2
次的な公害は発生しない。 実施例 以下のごとき仕様のアクリロニトリル製造廃液
を用いて、第1図のごとき方法によつて、液の石
灰中和、濃縮、焼却を試みた。 比重 1.05 PH 5.8 燃焼熱 含有有機物質1Kgあたり5300Kcal/
Kg高位 分析値 (NH42SO4 3.3%重量 灰 分 0.3 〃 軽質有機物 1.2 〃 重質有機物 9.2 〃 CN- 0.2 〃 水 残 原液は直接混合槽3に送られ、原料石灰として
は工業用消石灰を使用し、Ca(OH)2分として原
液1000Kg当り21.5Kg(SO4 --に対し1.1当量)を用
いて中和が行なわれる。 かくて得られた液は、生成析出するCaSO4分そ
の他を除くことなく、そのまゝ蒸発器に送り、液
の濃縮がなされる。加熱源としての熱ガスは焼却
炉の廃ガスを利用し約950℃の高温下で送られ、
原廃液の蒸発に用いられた。液の固体分はこの間
に約15%より46%附近まで高められ、含有アンモ
ニヤ分の大部分は揮発性有機物と共にガス側へ放
散される。 このような直接接触型の蒸発器を出る際の排ガ
ス温度は、150℃程度、濃縮スラリーは90〜95℃
程度に保たれる。排ガス中に含まれる蒸発水分と
アンモニヤその他の揮発分は、混合槽よりのアン
モニヤガスと共に、水スクラバーを経てガス焼却
炉に導き炉温1100℃において完全に酸化分解さ
れ、無害となつて大気中に放散される。 一方濃縮されたスラリーは、そのまゝ回転炉に
導かれ、最高装入物温度950℃において過剰空気
率20―30%の範囲で焼却される。このさいに補助
燃料として重油を原液1000Kg当り平均180000〜
200000Kcal(高位)相当量を必要とする。収得
されるCaSO4を主体とするケークは水洗によつて
残留する有機物質やCN-の溶出は殆ど認められな
い域に達するが、分析値としては引続き次表に示
すごとき値をもつ。これは900℃において、在炉
時間1hのロータリーキルン型仮焼炉によつて処
理することにより次表のごとく低減し得た。
Several chemical industrial processes are known that discharge aqueous solutions containing ammonium groups NH 4 + sulfate groups SO 4 -- and organic substances. A typical example is a process for producing acrylonitrile (hereinafter referred to as AN) using a methacrylic acid methyl ester (hereinafter referred to as MMA) ammoxidation method. All of these produce a large amount of waste liquid per unit of production,
It is undesirable to mix high concentrations of ammonium sulfate and organic matter into this and dispose of it as it is because it will pollute rivers and oceans. Besides,
Ammonium ions other than ammonium sulfate are present in AN waste liquid.
It contains NH 4 + and cyanide ions CN - , and these treatments must be performed at the same time. In general, incineration is the most reliable and simple method for removing organic matter from wastewater containing a high degree of organic matter. The conditions for incinerating the waste water solution or its concentrate, which is the subject of the present invention, vary depending on the type and size of the furnace, but in normal cases, the incineration temperature is 800°C.
℃ or higher, preferably 900℃ or higher, and maintain the incineration gas under conditions such that 1.5% Vol or more, preferably 3.0% Vol or more of oxygen remains, and the contents in the furnace and the gas are uniform and strong. The organic matter is almost completely combusted by proper mixing. (Hereinafter, all furnace temperatures and residual concentrations refer to those after co-firing in this way.) Before explaining the contents of the present invention in detail, we will explain the thermal decomposition of calcium sulfate CaSO 4 at high temperatures,
We will explain the behavior of CaSO 4 , which coexists with organic substances, when it is incinerated at high temperatures. CaSO 4 decomposes at high temperatures as shown in equation (1) and exhibits a constant decomposition pressure. CaSO 4 →CaO+SO 2 +1/2O 2 ...(1) The calculated value from the free energy is
When O 2 →0%, the partial pressure of SO 2 is approximately 9× at 900℃
10 -6 Atm or 9ppm, approximately 100ppm at 1000℃, 1100℃
It increases rapidly to 8500ppm. The present inventors also prepared an aqueous slurry or cake containing CaSO 4 and 2 to 3 organic substances.
As a result of combustion tests conducted mainly at 900℃ to 1000℃, the amount of CaSO 4 remaining in the ash was significantly reduced compared to the amount originally present, and the amount of reduction is shown by equation (1). The value far exceeded the decomposition value to SO 2 . In addition to CaSO 4 , a considerable amount of CaS remained in the ash. These phenomena are caused by the fact that when organic matter is combusted, the area around CaSO 4 is temporarily covered with unburned organic matter, creating a reducing atmosphere, which causes equation (2), and the resulting CaS is exposed to CaSO 4 + (H 2 , CO )
→CaS+(H 2 O, CO 2 ) …(2) CaS+H 2 O→CaO+H 2 S …(3) H 2 S+O 2 →H 2 O+SO 2 …(4) H 2 O acts to reduce the equation (2). This generates H 2 S, which mixes with the gas and reacts with the remaining O 2 to form H 2 S as shown in equation (4).
It is thought that SO 2 was generated. In fact, experiments have revealed that the greater the amount of organic matter mixed with CaSO 4 or the lower the ratio value of Ca ++ to SO 4 -- , the higher the reaction progress rate of (2), (3), and (4). . Therefore, in order to prevent SO 2 from being generated in the furnace, SO 4 -- must be removed from the liquid before incineration, or the SO 4 must be thermally decomposed at high temperatures.
Unless conditions are changed to prevent the generation of SO 2 , the SO 2 content in incineration waste gas will be enormous, and releasing it into the atmosphere as it is will become a source of pollution. The present invention relates to the treatment of organic matter-containing wastewater solutions containing SO 4 -- , which have such problems, and consists of the following four steps. The first step is to add excess calcium hydroxide Ca(OH) 2 or calcium oxide CaO to the equivalent amount to neutralize SO 4 -- in the waste liquid, to neutralize the existing SO 4 -- and substantially All calcium sulfate is fixed and precipitated in the liquid as CaSO 4 , and NH 4 + is liberated as NH 3 . The amount of Ca ++ ions added is preferably in the range of 1.5 or more equivalents, preferably 2.0 or more equivalents relative to SO 4 -- . The resulting slurry was filtered with CaSO 4 2H 2 O
It is separated into a cake mainly composed of , and a liquid, which is sent to the next second step. The second step is a liquid concentration step, in which the liquid is heated by direct contact with high-temperature exhaust gas from an incinerator, which will be described later.If necessary, the amount of heating is increased by means such as raising the gas temperature with an auxiliary fuel burner. . Free NH 3 and other volatile organic substances contained in the liquid are distilled off along with water vapor during concentration. The evaporation residue thus generated is sent to the third step and in an incinerator at an incineration temperature of 800℃ or higher and 1100℃.
Hereinafter, it is preferably incinerated at a temperature of 900°C or higher and 1000°C or lower. At this time, a large amount of Ca ++ and a small amount of SO 4 -- contained in the liquid are converted into ash consisting of a large amount of CaO and a small amount of CaSO 4 , which is discharged and returned to the first step.
SO 4 -- used as part of the neutralizing agent. On the other hand, in the exhaust gas from the furnace, it remains in the supplied liquid.
Although it contains SO 2 produced by the decomposition of a portion of SO 4 -- , it passes through the second step and undergoes measures such as effective use of sensible heat, before proceeding to the fourth step. As the temperature of the gas decreases, some of the SO 2 is oxidized to SO 3 , which will be collectively referred to as SO x from now on. The gas is washed with water in a scrubber after adding NH 3 -containing gas generated in the first step if necessary. As mentioned later, NH 3 in the gas is
in the gas due to large excess adjustment to SO x
Most of the SO x is recovered as an aqueous solution of ammonium salt and returned to the first step. Therefore, the ammonium salt of SO x from the scrubber ultimately becomes Ca salt and precipitates, which is transferred to a cake in the second step. The gas leaving the fourth step has been sufficiently removed for SOx , but depending on the nature of the raw solution, it may contain other harmful volatile components in addition to NH3 , so it will be decomposed appropriately in the next flue gas incineration step. and released harmlessly. An embodiment of the invention will now be described with reference to FIG. This is related to the treatment of waste liquid generated from the AN process. For example, the AN process produces waste liquid with the following composition. Table 1 (NH 4 ) 2 SO 4 1-15wt% Other NH 4 + 0.1-5〃 Cyan CN - 0.05-0.8〃 Organic compound 3-15〃 Water 75-90〃 Heat of combustion of organic compound Approximately 6000K cal /Kg The low level raw waste liquid 1 is sent to the mixing tank 3, and at the same time new fine powder calcium hydroxide Ca(OH) 2 or calcium oxide CaO2 is added to the CaO recovered in the incinerator.
Continuously mixed with ash 16 containing CaSO 4 . In addition, as shown in the figure, the mixing tank 3 is also supplied with an ammonium salt 23 of SO x recovered from a water scrubber 22, which will be described later. as a whole balance
Ca ++ is approximately twice equivalent to SO 4 -- . A part of the liberated NH 3 becomes gaseous from the mixing tank 3 and is led to the ammonia pent pipe 20 . Approximately 80% of the total SO 4 injected is calcium sulfate CaSO 4
This is mixed with other organic calcium compounds to form a slurry, which is sent to the next centrifuge 4.
After removing the cake 32 which is excessively separated and mainly composed of CaSO 4 , the liquid is sent to one end of the hot air contact type evaporator rotating body 5 . The above corresponds to the first step. Cake 32 can be washed with water to make it virtually free of eluate, so in some regions it is possible to dispose of it as is by burying it in soil, etc.; It is possible and within the range of conventional methods to completely incinerate and render harmless the organic substances contained. However, as mentioned above, the furnace tail gas generated at this time contains a high concentration of SO x gas, so this is removed by the water scrubber 22 described in the fourth step.
Next, move on to the second step. Combustion gas generated by the method described below is blown into the evaporator rotating body 5 from the same direction as the liquid through the connecting duct 19, thereby heating the liquid and evaporating water. At this time, almost all of the free ammonium NH 3 and other volatile components contained in the liquid are evaporated together with the water, and the concentrated liquid is discharged from the other end of the evaporator. The hot gas supplied to this evaporator is typically 800°C or higher, and there is a large amount of gas in the concentrate.
In addition to Ca ++ , AN waste liquid contains organic components that are easily converted into polymers during concentration, so local overheating tends to cause blockage in the vessel. In order to prevent this, it is desirable that the heat transfer surface where gas and liquid come into contact in the vessel be constantly and vigorously cleaned by a stirring and sliding action. For example, JP-A-52-
A method such as 44448 is an example of such a means. In the figure, 5 is a rotating body, 6 is a partition lattice plate, and 7
is a metallic filling and satisfies the above requirements. In addition, a minute amount of CN - and a significant portion of volatile organic matter present in the AN raw waste liquid are transferred to the exhaust gas along with the evaporated water due to the heating and concentration described above. The concentrate obtained in this way is passed through the line 1 from the bottom of the outlet hood 9.
0 is supplied to the incinerator 11. Next, the third step will be explained. The incinerator 11 is of a special rotary furnace type, in which the feed liquid with a high residual moisture content is completely combusted, and the temperature of the charge is desirably kept below 1000° C., as mentioned above. For this purpose, for example, the solid incinerator shown in Application Publication No. 51-47277 is suitable for the purpose of the present invention, and this example will be explained using that type of furnace for convenience. The waste liquid concentrate from the liquid feeding line 10 is transferred to the liquid dispersion pipe 12.
It is dispersed and fed into the furnace in the axial direction. Depending on the heat balance requirements, auxiliary fuel 18 is supplied from an auxiliary burner 17 arranged on the side of the inlet hood 15. In addition, in order to burn combustible materials in the waste liquid in the furnace, it is desirable to have severe airflow turbulence in the space inside the furnace, and the combustion air 14 necessary for this is supplied from the air nozzle group 13 while giving a swirling flow inside the rotary furnace 11. Enter at high speed. The concentrate dispersed inside the body of the rotary furnace 1111 is
At that location, the flame from the auxiliary burner 17 and its own combustion heat cause water evaporation, thermal decomposition of the solid content, and gasification to occur continuously, and finally the combustion occurs in the furnace space with the air from the air nozzle part 13, creating an atmosphere. The temperature is raised and this temperature is used again to gasify the water-evaporated solids. At that time, the charge is uniformly stirred by the rotation of the furnace body, and the high-speed blown gas from the air nozzle group 13 swirls in the furnace.
The atmosphere inside the furnace is uniformly oxidizing and comes in contact with the charge evenly, and the charge is combusted uniformly and completely even at a relatively low temperature of 1000°C or less, as described below. Approximately 20% of the SO 4 -- brought into 3 is brought into the incinerator and burned together with a large amount of organic matter, so some of the decomposition shown in equations (2), (3), and (4) above occurs. expected to be received. The ratio of Ca ++ to SO 4 -- is high, about 10 times equivalent, but the ratio of organic matter to SO 4 -- is high, and about 20 to 30% of the amount of SO 4 -- brought in becomes SO 2 and transfers to combustion gas. do. In this way, the incinerated ash mainly consisting of CaO and a small amount of CaSO 4 is discharged from the bottom of the outlet hood at the other end, circulates through the transport line 16 to the mixing tank 3, and is reused as a neutralizing agent. In this incinerator, what greatly influences the combustion results is the furnace temperature and the concentration of residual oxygen in the exhaust gas. In order to virtually completely burn the organic matter contained in the raw solution in the furnace, in this case the temperature inside the charge furnace must be 900 to 1000℃ or higher, and the residual oxygen in the gas must be 3.0% vol or more. It is desirable to maintain it under appropriate conditions. For general organic compounds, if the temperature is simply to ensure complete combustion, the higher the temperature is, the more advantageous it is, but when the charging material contains a considerable amount of CaSO 4 as in the present invention,
In addition to the reactions according to equations (2), (3), and (4), it is necessary to prevent this from decomposing in the furnace and generating SO 2 as shown in equation (1) above, and the temperature of the charge is preferably 1000. It is necessary to avoid temperatures below 1100°C. As described above, the permissible range of temperature conditions in the combustion zone for waste liquid incineration of the present invention is relatively narrow, so the combustion air and the flame of the auxiliary fuel burner in the furnace are the same as shown in the figure. It is better to use the direction. The high-temperature combustion gas generated in the incinerator in this way contains almost no organic components, but contains some SO x as described above, but is led to the evaporator 5 via the connecting duct 19 as described above. It is used to evaporate moisture and volatile components such as ammonia in waste liquid. The exhaust gas discharged from the evaporator 5 usually has a temperature lower than 200°C and is processed in the next fourth step. The gas is passed through the ammonia vent pipe 2 by the booster blower 21.
The water is sucked together with the ammonia vapor from 0 and pushed into the water scrubber 22, and is subjected to an absorption operation in a conventional manner by water withdrawn from the water spray nozzle 24. NH3
As mentioned above, the concentration of SO x is in large excess of the neutralization equivalent point compared to the SO x concentration, so the absorption and removal rate of SO x is extremely high. In the case of waste liquid as in this example, the exhaust gas that has passed through the water scrubber 22 contains not only evaporated water but also excess ammonia and unabsorbed low-boiling organic matter, so it is sent to a gas incinerator 25 to completely oxidize and remove these harmful components. It is then processed and rendered completely harmless.
In this figure, a ceramic heat storage body is used.
An example of a method for heat exchange between intake air and exhaust air is given below.
This is not necessarily a necessary component of the invention.
While passing through the heat storage body 29 from the bottom to the top, the incoming air is heated by the heat it retains, reaching a temperature of approximately 800 to 900°C, and enters the combustion chamber 26, where it is heated to a heating burner supplied with fuel 28. The combustion gases from No. 27 are mixed and reach a temperature of 950-1050°C. Under such temperatures, in order to completely oxidize and decompose the above-mentioned components, the volume of the combustion chamber must be sufficient for the gas residence time of 1 to 2 seconds, and as described in the above-mentioned incinerator, the residual oxygen must be at least 1.5 %vol preferably 3.0%
vol or more is required. The gas that has been incinerated in this way is heated by giving its own heat while passing through the heat storage body 30 from top to bottom, and its temperature drops to around 250 degrees Celsius.
Dissipates into the atmosphere from the chimney 31. After a certain period of time, these heat storage bodies 29 and 30 reach a state where they are either too cooled or too heated depending on their heat capacity, so valves (not shown) are switched to stop the incoming air. It passes through the heat storage body 30 from bottom to top, is heated, and is further heated in the combustion chamber 26, and after incineration is completed, it is heated while passing through the heat storage body 29 from top to bottom, and is cooled from itself to the final Specifically, it is exhausted from the chimney 31. The above is one embodiment of the present invention. The features and effects of the present invention are as follows: (1) CaO or Ca, which is low in cost among alkalis,
When using (OH) 2 to neutralize and precipitate SO 4 -- , use 1.5 to 2.0 times the amount of the equivalent amount to bring the ratio of Ca ++ to SO 4 -- in the precipitation closer to the equivalent amount. . Therefore, overall, the SO 4 present in the raw waste liquid --
can be fixed and removed at an extremely low cost and further calcined to produce ash without the risk of leaching harmful substances. (2) Since most of the SO 4 -- in the stock solution is removed as CaSO 4 and the remaining solution is incinerated, SO x is generated less.
Further, the generated SO x is recovered by washing with water, if necessary, together with free ammonia sufficient to sufficiently neutralize the SO x generated by the calcination of the CaSO 4 cake, and finally the CaSO 4 cake is recovered. Because the waste is fixed and disposed of inside the system, the amount of SOx contained in the exhaust gas from the system is reduced to a minimum. (3) If necessary, the waste gas heat from the incinerator can be used to evaporate the moisture in the raw solution to the maximum extent possible.
In this case, the organic matter and other harmful components contained in the evaporation residue obtained by concentrating the raw wastewater can be led to an incinerator and incinerated using a small amount of auxiliary fuel, which has a large energy saving value. (4) If necessary, all ammonia and other harmful volatile substances contained in the evaporated exhaust gas from the water scrubber will be completely oxidized and incinerated in a gas incinerator, and released as harmless gas. Therefore, together with the calcination of the separated CaSO 4 cake, 2
No secondary pollution will occur. Example Using acrylonitrile production waste liquid having the following specifications, lime neutralization, concentration, and incineration of the liquid were attempted using the method shown in FIG. Specific gravity 1.05 PH 5.8 Heat of combustion 5300Kcal per 1Kg of organic matter contained
Kg high-level analysis value (NH 4 ) 2 SO 4 3.3% weight ash 0.3 〃 Light organic matter 1.2 〃 Heavy organic matter 9.2 〃 CN - 0.2 〃 Water Residual liquid is directly sent to mixing tank 3, and industrial slaked lime is used as raw lime Neutralization is carried out using 21.5 Kg of Ca(OH) per 1000 Kg of stock solution (1.1 equivalents to SO 4 -- ) for 2 min. The liquid thus obtained is directly sent to the evaporator without removing the precipitated CaSO 4 and others, and the liquid is concentrated. The hot gas used as a heating source is sent at a high temperature of approximately 950℃ using waste gas from an incinerator.
It was used to evaporate raw waste liquid. During this time, the solids content of the liquid increases from about 15% to around 46%, and most of the ammonia content is dissipated to the gas side together with volatile organic substances. The exhaust gas temperature when leaving such a direct contact type evaporator is about 150℃, and the concentrated slurry is 90 to 95℃.
It is maintained at a certain level. The evaporated water, ammonia and other volatile components contained in the exhaust gas, along with the ammonia gas from the mixing tank, are led to the gas incinerator via a water scrubber, where they are completely oxidized and decomposed at a furnace temperature of 1100°C, becoming harmless and being released into the atmosphere. Dissipated. On the other hand, the concentrated slurry is directly led to a rotary furnace where it is incinerated at a maximum charge temperature of 950°C with an excess air content in the range of 20-30%. At this time, heavy oil is used as auxiliary fuel at an average cost of 180,000~ per 1000 kg of raw solution.
Requires 200,000Kcal (high) equivalent amount. The obtained cake, which is mainly composed of CaSO 4 , reaches a level where almost no remaining organic substances or CN - are observed after washing with water, but the analytical values continue to be as shown in the following table. This could be reduced as shown in the following table by processing in a rotary kiln type calcination furnace at 900°C for 1 hour.

【表】 焼却炉に送られる空気は20%〜30%の過剰率を
もつて送られ、原液中の有機物質は完全に燃焼さ
れ生ずる灰分はCaOに若干のCaSO4が混入する
が、再び中和に戻して循環使用することが可能で
あつた。 かくて焼却炉より生ずる排ガス中のSOx濃度は
約200ppm(容積)CaSO4の仮焼キルンより生ず
るSOxは約2000ppmと高いが水スクラバーを出た
のちのSOxは50ppm以下に下げることができる。
[Table] The air sent to the incinerator is sent with an excess rate of 20% to 30%, and the organic substances in the raw solution are completely burned. It was possible to recycle and reuse it. Thus, the SO x concentration in the exhaust gas generated from the incinerator is about 200 ppm (by volume), and the SO x generated from the CaSO 4 calcining kiln is high at about 2000 ppm, but the SO x concentration after leaving the water scrubber can be lowered to below 50 ppm. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施の態様を示すフローシー
トであり図中の番号は以下の通りである。 1…原廃水、2…消石灰、3…混合槽、4…遠
心分離機、5…蒸発品回転胴体、6…仕切り格
子、7…充填物、8…入口フード、9…出口フー
ド、10…送液ライン、11…焼却炉回転胴体、
12…散液管、13…空気ノズル群、14…燃焼
用空気、15…入口フード、16…輸送ライン、
17…補助バーナー、18…補助燃料、19…連
結ダクト、20…アンモニヤベンド管、21…昇
圧送風機、22…水スクラバー、23…回収液ラ
イン、24…散水ノズル、25…ガス焼却炉、2
6…燃焼室、27…加熱バーナ、28…燃料、2
9,30…蓄熱体、31…煙突。
FIG. 1 is a flow sheet showing an embodiment of the present invention, and the numbers in the figure are as follows. 1... Raw wastewater, 2... Slaked lime, 3... Mixing tank, 4... Centrifugal separator, 5... Evaporated product rotating body, 6... Partition grid, 7... Filler, 8... Inlet hood, 9... Outlet hood, 10... Sending Liquid line, 11... Incinerator rotating body,
12...Dispersion pipe, 13...Air nozzle group, 14...Combustion air, 15...Inlet hood, 16...Transportation line,
17... Auxiliary burner, 18... Auxiliary fuel, 19... Connection duct, 20... Ammonia bend pipe, 21... Boost blower, 22... Water scrubber, 23... Recovery liquid line, 24... Water nozzle, 25... Gas incinerator, 2
6... Combustion chamber, 27... Heating burner, 28... Fuel, 2
9, 30... Heat storage body, 31... Chimney.

Claims (1)

【特許請求の範囲】[Claims] 1 アンモニウム基、硫酸基および有機化合物を
含む廃水溶液を処理するにあたり、硫酸基を中和
する当量に対して過剰の水酸化カルシウム又は酸
化カルシウムを加へ液中の硫酸イオンを大部分硫
酸カルシウムとして固定沈澱させてこれを別す
ると共にアンモニウム基をアンモニヤとして遊離
させる第1工程と、第1工程で得られた液を第
3工程よりの高温排ガスと接触し濃縮しながら水
蒸気と共にアンモニヤ等の揮発性物質を溜去する
第2工程と、かくて生ずる蒸発残液を焼却炉に送
り、800℃以上1100℃以下の適当なる温度の下で
酸化性雰囲気下で焼却し酸化カルシウムを主体と
する灰分を得てこれを第1工程へ戻し、硫酸基の
中和剤の一部として使用する第3工程と、第3工
程において硫酸基の一部の分解によつて生ずる
SOxを含む焼却排ガスを第2工程を通しさらに第
1工程によつて発生するアンモニヤを含むガスを
必要によつて加へたのちスクラバーによつて水洗
してSOxを一時アンモニウム塩として吸収してこ
れを第1工程に戻してカルシウム塩として沈澱除
去する第4工程とよりなるアンモニウム基、硫酸
基および有機化合物を含む廃水溶液の処理方法。
1. When treating wastewater solutions containing ammonium groups, sulfate groups, and organic compounds, add calcium hydroxide or calcium oxide in excess of the equivalent amount to neutralize the sulfate groups, and convert most of the sulfate ions in the solution into calcium sulfate. A first step in which the ammonium groups are fixed and precipitated and separated, and the ammonium groups are liberated as ammonia, and the liquid obtained in the first step is brought into contact with the high temperature exhaust gas from the third step and concentrated while vaporizing volatile substances such as ammonia together with water vapor. The second step is to distill off the substances, and the resulting evaporation residue is sent to an incinerator and incinerated in an oxidizing atmosphere at an appropriate temperature of 800°C or more and 1100°C or less to remove ash mainly composed of calcium oxide. The obtained product is returned to the first step and used as part of the neutralizing agent for the sulfate group, and the third step is produced by decomposition of a part of the sulfate group in the third step.
The incineration exhaust gas containing SO x is passed through the second step, and the gas containing ammonia generated in the first step is added as necessary, and then washed with water using a scrubber to temporarily absorb SO x as ammonium salt. A method for treating a wastewater solution containing an ammonium group, a sulfuric acid group, and an organic compound, comprising a fourth step of returning the wastewater to the first step to precipitate and remove it as a calcium salt.
JP5252779A 1979-05-01 1979-05-01 Treatment of waste aqueous solution containing ammonium radical, sulfate radical and organic compound Granted JPS55145599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5252779A JPS55145599A (en) 1979-05-01 1979-05-01 Treatment of waste aqueous solution containing ammonium radical, sulfate radical and organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5252779A JPS55145599A (en) 1979-05-01 1979-05-01 Treatment of waste aqueous solution containing ammonium radical, sulfate radical and organic compound

Publications (2)

Publication Number Publication Date
JPS55145599A JPS55145599A (en) 1980-11-13
JPS6260159B2 true JPS6260159B2 (en) 1987-12-15

Family

ID=12917212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5252779A Granted JPS55145599A (en) 1979-05-01 1979-05-01 Treatment of waste aqueous solution containing ammonium radical, sulfate radical and organic compound

Country Status (1)

Country Link
JP (1) JPS55145599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445952U (en) * 1987-09-16 1989-03-22
JPH0443949U (en) * 1990-08-13 1992-04-14
JPH0449884Y2 (en) * 1987-06-03 1992-11-25

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145288A (en) * 2013-03-15 2013-06-12 湖南百利工程科技股份有限公司 Method for processing and recovering hazardous substance in liquid waste in caprolactam production
CN104118927A (en) * 2013-04-24 2014-10-29 新疆梅花氨基酸有限责任公司 Method and system for processing waste liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449884Y2 (en) * 1987-06-03 1992-11-25
JPS6445952U (en) * 1987-09-16 1989-03-22
JPH0443949U (en) * 1990-08-13 1992-04-14

Also Published As

Publication number Publication date
JPS55145599A (en) 1980-11-13

Similar Documents

Publication Publication Date Title
KR101243605B1 (en) Waste to energy by way of hydrothermal decomposition and resource recycling
CA1223726A (en) Thermal conversion of wastes
JP3820269B2 (en) Municipal waste and other waste treatment
CN101825285B (en) Burning treatment method and device for organic waste water containing salt
CZ314897A3 (en) Heat treatment process of waste substances and apparatus for making the same
US4668435A (en) Thermal conversion of wastes
CA1061918A (en) Method for the disposal of waste water containing ammonium ions, sulfate ions and organic substances
JPH10132241A (en) Method for disposing of waste liquid or exhaust gas
JPS6260159B2 (en)
US5792361A (en) Method for treatment of an aqueous waste material
JP3448149B2 (en) Treatment method for chlorine-containing plastic waste
JP2002052378A (en) Wastewater treatment method
WO2001032324A1 (en) Method for treating combustion ash of coal and method for desulfurization
CN114216336A (en) Cement raw meal decomposition system using alternative fuel
JP2008031262A (en) Method for stabilization-treating carbonized product
CN113847602A (en) Multi-chamber type multiphase low-nitrogen combustion treatment device and process
JP7143233B2 (en) Incineration ash disposal method
CN217763445U (en) Industry is useless admittedly and mud processing system
CN217499047U (en) Sludge drying safe incineration system
CN220321319U (en) High-salt high-organic waste liquid treatment system
CN217875860U (en) Sludge drying and incinerating system based on bubbling fluidized bed
JP2000274622A (en) Processing method for waste containing high concentration dioxins
KR800000954B1 (en) Method for the disposal of waste water containing ammonium ions sulfate ions and organic substances
JP2002213734A (en) Waste-liquid treating method
JP3391259B2 (en) Method for reforming incinerated ash containing phosphorus