JPS6259885A - Underwater radiation monitor - Google Patents
Underwater radiation monitorInfo
- Publication number
- JPS6259885A JPS6259885A JP20080485A JP20080485A JPS6259885A JP S6259885 A JPS6259885 A JP S6259885A JP 20080485 A JP20080485 A JP 20080485A JP 20080485 A JP20080485 A JP 20080485A JP S6259885 A JPS6259885 A JP S6259885A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- container
- water
- liquid scintillator
- underwater radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、水中の放射能濃度を測定する水中放射線モニ
タに関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an underwater radiation monitor that measures radioactivity concentration in water.
[発明の技術的背景とその問題点]
一般に原子力発電プラント等の原子力PM股では、施設
内で使用され排出される排水中の放射能濃度および排水
が放出される施設周辺の河水、海水中の放射能濃度を連
続的に監視する必要がある。このため水中放射線モニタ
が配置される。[Technical background of the invention and its problems] In general, in nuclear power generation plants such as nuclear power plants, the radioactivity concentration in the wastewater used and discharged within the facility and the river water and seawater around the facility where the wastewater is discharged are Continuous monitoring of radioactivity concentration is required. For this reason, underwater radiation monitors are installed.
このような原子力施設周辺の排水が放出される河水、海
水中のガンマ線の放射能濃度を連続的に監視する従来の
水中放射線モニタには、小型で感度の高い利点を有する
NaI(Tβ)シンチレータと、このNaI (Tfl
、)シンチレータの発光を検出する光電子増倍管と、こ
の光電子増倍管からの電気信号を処理する高圧分配抵抗
、前置増幅器とを耐圧容器内に収容した検出部と、陸上
あるいは船上に配置された記録計等からなるデータ処理
装置部とを耐圧ケーブルで電気的に接続する外部記録方
式と、検出部と記録計等からなるデータ処理装置部を耐
圧容器内に収容し、船上等から吊下げる自記記録方式と
、2種類の水中放射線モニタがある。Conventional underwater radiation monitors that continuously monitor the radioactivity concentration of gamma rays in river water and seawater from which wastewater is released around nuclear facilities include NaI (Tβ) scintillators, which have the advantages of small size and high sensitivity. , this NaI (Tfl
,) A detection section containing a photomultiplier tube that detects the light emission of the scintillator, a high-voltage distribution resistor that processes the electrical signal from the photomultiplier tube, and a preamplifier housed in a pressure-resistant container, and a detection section located on land or on a ship. The external recording method is to electrically connect the data processing unit, which consists of a recorder, etc., with a pressure-resistant cable, and the data processing unit, which consists of a detection unit and a recorder, is housed in a pressure-resistant container and suspended from a ship, etc. There are two types of underwater radiation monitors: a self-recording method that lowers
このような従来の水中放射線モニタでは、外部記録方式
の水中放射線モニタは、検出部とデータ処理装置部とを
接続する耐圧ケーブルの電気抵抗などのため測定可能な
水深の限界が数100m程度であり、それ以上の水深に
おける測定は自記紀録方式の水中放射線モニタで行なわ
れている。しかしながらこの自記記録方式の水中放射線
モニタでは肉厚の金属からなる耐圧容器内にNa1(T
℃)シンチレータが収容されているため、この耐圧容器
がガンマ線の遮蔽体となり、特に低エネルギーのガンマ
線に対して感度が低くなり、水深の深い場所におけるガ
ンマ線の高感度な測定を行なえないという問題がある。With such conventional underwater radiation monitors, the depth of water that can be measured is limited to several hundred meters due to the electrical resistance of the voltage-resistant cable that connects the detection unit and the data processing unit. Measurements at deeper depths are carried out using a self-recording underwater radiation monitor. However, in this self-recording underwater radiation monitor, Na1 (T
°C) Since the scintillator is housed in this pressure-resistant container, it acts as a shield for gamma rays, resulting in low sensitivity, especially to low-energy gamma rays, which poses the problem of not being able to perform highly sensitive measurements of gamma rays in deep water. be.
[発明の目的]
本発明はかかる従来の事情に対処してなされたもので、
水深の深い場所においても水中のガンマ線の放射能m度
の測定を行うことができ、かつ従来に比べて低エネルギ
ーのガンマ線に対してモ高い感度を有する水中放射線モ
ニタを提供しようとするものである。[Object of the invention] The present invention has been made in response to such conventional circumstances,
The present invention aims to provide an underwater radiation monitor that can measure the radioactivity of gamma rays in water even at deep water depths and has higher sensitivity to gamma rays with lower energy than conventional ones. .
[発明の概要]
すなわち本発明の水中放射線モニタは、開口部を有し内
部に液体シンチレータを充填された容器と、前記開口部
を密閉し前記容器内外の圧力差に応じて変形することに
よって前記容器内の圧力を外側周囲の圧力と同等に保つ
圧力調節機構と、耐圧容器内に収容され前記液体シンチ
レータに耐圧性の光学窓を介して接続された光検出器と
を備えたことにより水深の深い場所においても水中のガ
ンマ線の放射能濃度の測定を行うことができ、かつ従来
に比べて低エネルギーガンマ線に対しても高い感度を備
えたものである。[Summary of the Invention] That is, the underwater radiation monitor of the present invention includes a container having an opening and filled with a liquid scintillator, and a container that seals the opening and deforms according to the pressure difference between the inside and outside of the container. It is equipped with a pressure adjustment mechanism that keeps the pressure inside the container equal to the pressure around the outside, and a photodetector housed in the pressure-resistant container and connected to the liquid scintillator through a pressure-resistant optical window. It can measure the radioactivity concentration of gamma rays in water even in deep places, and has higher sensitivity to low-energy gamma rays than conventional methods.
[発明の実施例]
以下、本発明の詳細を図面に示す一実施例について説明
する。[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
第1図は本発明の水中放射線モニタの一実施例を示すも
ので、図において符号1は液体シンチレータを示してい
る。この液体シンチレータ1は肉薄の金属からなる球形
の外殻容器2内に充填ざ゛れており、この外殻容器2に
は、空気孔3と開口部4が設けられこの開口部4はベロ
ー5によって密閉されている。また、外殻容器2の中央
部には、肉厚の金属からなる球形の耐圧容器6が懸架さ
れており、この耐圧容器6には強化ガラスからなる耐圧
性の光学窓7が配設され、この光学窓7の内側には、光
電子増倍管8が配設されている。またこの耐圧容器6の
内側には第2図に示すように、光電子増倍管8を作動さ
せるためのバッテリ9、高圧供給回路10からなる光電
子増倍管駆動装置と、光電子増倍管8からの電気信号を
処理するための前置増幅器11、線形増幅器12、加算
器13、計数率計14からなるデータ処理装置が収容さ
れている。FIG. 1 shows an embodiment of the underwater radiation monitor of the present invention, and in the figure, reference numeral 1 indicates a liquid scintillator. This liquid scintillator 1 is filled in a spherical outer shell container 2 made of thin metal, and the outer shell container 2 is provided with an air hole 3 and an opening 4, and the opening 4 is connected to a bellows 5. is sealed by. Further, a spherical pressure-resistant container 6 made of thick metal is suspended in the center of the outer shell container 2, and a pressure-resistant optical window 7 made of tempered glass is disposed in this pressure-resistant container 6. A photomultiplier tube 8 is disposed inside this optical window 7. Furthermore, as shown in FIG. 2, inside this pressure-resistant container 6, there is a photomultiplier tube drive device consisting of a battery 9 for operating the photomultiplier tube 8, a high voltage supply circuit 10, and a photomultiplier tube drive device consisting of a battery 9 for operating the photomultiplier tube 8. A data processing device consisting of a preamplifier 11, a linear amplifier 12, an adder 13, and a count rate meter 14 for processing electrical signals is housed.
以上のように構成された水中放射線モニタでは、船上な
どから水中に吊下げられガンマ線の放射能濃度の連続的
な監視が行われる。この時水中放射線モニタが水中に配
置されると、水圧によりベロー5が変形し、外殻容器2
内に充填された液体シンチレータ]を押圧することによ
り外殻容器2内の圧力を外側周囲の水圧と同等に保持す
る。この状態でガンマ線による液体シンチレータ1の発
光を光学窓4を介して配置された光電子増倍管8が検知
し、データ処理装置によって計数される。The underwater radiation monitor configured as described above is suspended underwater from a ship or the like and continuously monitors the radioactivity concentration of gamma rays. At this time, when the underwater radiation monitor is placed underwater, the bellows 5 is deformed by water pressure, and the outer shell container 2
By pressing the liquid scintillator filled inside, the pressure inside the outer shell container 2 is maintained at the same level as the water pressure around the outside. In this state, light emission from the liquid scintillator 1 due to gamma rays is detected by the photomultiplier tube 8 disposed through the optical window 4, and counted by the data processing device.
すなわちこのように構成された水中放射線モニタでは、
ガンマ線遮蔽能力の弱い肉薄の金属からなる外殻容器2
に液体シンチレータ1を充填し、ベロー5を配設して外
殻容器2内の圧力が周囲の水圧と同等となるようにし、
肉厚の金属からなり、耐圧性の光学窓を有する耐圧容器
6内に光電子増倍管8とデータ処理装置とを収容したの
で、水圧の高い水深の深い場所におけるガンマ線の放射
能濃度の測定を行うことができ、しかも低エネルギーガ
ンマ線に対しても高感度を有する。In other words, in the underwater radiation monitor configured in this way,
Outer shell container 2 made of thin metal with weak gamma ray shielding ability
is filled with a liquid scintillator 1, and a bellows 5 is arranged so that the pressure inside the outer shell container 2 is equal to the surrounding water pressure,
Since the photomultiplier tube 8 and the data processing device are housed in a pressure container 6 made of thick metal and having a pressure-resistant optical window, it is possible to measure the radioactivity concentration of gamma rays in deep water locations with high water pressure. Moreover, it has high sensitivity even to low-energy gamma rays.
また、液体シンチレータ1は従来の水中放射線モニタに
使用される同一体積のNaI (T、2>シンチレータ
に比べて感度は劣るが、この実施例に使用された外殻容
器には、耐圧性を考慮する必要がなく、大きさを自由に
設計できるので、液体シンチレータ1の容量を大きくす
ることができ、従来の水中放射線モニタ以上に感度をあ
げることができる。In addition, although the liquid scintillator 1 has inferior sensitivity compared to the same volume of NaI (T, 2> scintillator) used in conventional underwater radiation monitors, the outer shell container used in this example was designed with pressure resistance in mind. Since there is no need to do this and the size can be freely designed, the capacity of the liquid scintillator 1 can be increased, and the sensitivity can be increased more than that of conventional underwater radiation monitors.
なお、この実施例では外殻容器2内にデータ処理装置を
収容する自記記録方式の水中放射線モニタとしたが、本
発明はかかる実施例に限定されるものではなく、例えば
データ処理装置を船上等に配置する外部記録方式として
もよいことはもちろんである。Although this embodiment is a self-recording underwater radiation monitor in which a data processing device is housed in the outer shell container 2, the present invention is not limited to such an embodiment. Of course, an external recording method may also be used.
第1図は本発明の水中放射線モニタの一実施例を示す縦
断面図、第2図は第1図に示す水中放射線モニタ内に収
容される光電子増倍管駆動装置およびデータ処理装置を
示すブロック図である。
1・・・・・・・・・液体シンチレータ2・・・・・・
・・・外殻容器
4・・・・・・・・・開口部
5・・・・・・・・・ベロー
6・・・・・・・・・耐圧容器
7・・・・・・・・・光学窓
8・・・・・・・・・光電子増倍管
出願人 日本原子力事業株式会社出願人
株式会社 東芝
代理人弁理士 須 山 佐 −
1頁の続きFIG. 1 is a vertical sectional view showing an embodiment of the underwater radiation monitor of the present invention, and FIG. 2 is a block diagram showing a photomultiplier tube drive device and data processing device housed in the underwater radiation monitor shown in FIG. 1. It is a diagram. 1...Liquid scintillator 2...
... Outer shell container 4 ...... Opening 5 ... Bellows 6 ...... Pressure-resistant container 7 ...・Optical window 8...Photomultiplier tube applicant Japan Atomic Energy Corporation applicant
Toshiba Corporation Patent Attorney Satoshi Suyama - Continued from page 1
Claims (1)
た容器と、前記開口部を密閉し前記容器内外の圧力差に
応じて変形することによって前記容器内の圧力を外側周
囲の圧力と同等に保つ圧力調節機構と、耐圧容器内に収
容され前記液体シンチレータに耐圧性の光学窓を介して
接続された光検出器とを備えたことを特徴とする水中放
射線モニタ。(1) A container that has an opening and is filled with a liquid scintillator, and the opening is sealed and deformed according to the pressure difference between the inside and outside of the container, so that the pressure inside the container is equal to the pressure around the outside. What is claimed is: 1. An underwater radiation monitor comprising: a pressure adjustment mechanism for maintaining the liquid scintillator; and a photodetector housed in a pressure-resistant container and connected to the liquid scintillator through a pressure-resistant optical window.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20080485A JPS6259885A (en) | 1985-09-11 | 1985-09-11 | Underwater radiation monitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20080485A JPS6259885A (en) | 1985-09-11 | 1985-09-11 | Underwater radiation monitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6259885A true JPS6259885A (en) | 1987-03-16 |
Family
ID=16430466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20080485A Pending JPS6259885A (en) | 1985-09-11 | 1985-09-11 | Underwater radiation monitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6259885A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002341041A (en) * | 2002-04-05 | 2002-11-27 | Tohoku Electric Power Co Inc | Radiation detecting optical transmission device |
JP2008058113A (en) * | 2006-08-30 | 2008-03-13 | Central Res Inst Of Electric Power Ind | Radiation sensing apparatus |
-
1985
- 1985-09-11 JP JP20080485A patent/JPS6259885A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002341041A (en) * | 2002-04-05 | 2002-11-27 | Tohoku Electric Power Co Inc | Radiation detecting optical transmission device |
JP2008058113A (en) * | 2006-08-30 | 2008-03-13 | Central Res Inst Of Electric Power Ind | Radiation sensing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5087818A (en) | Beta scintillation probe | |
CN104820230A (en) | Low-background alpha and beta activity analyzer | |
US4071764A (en) | Gamma and alpha compensated fission chamber | |
US2755389A (en) | Thermal neutron and gamma radiation well logging | |
US5256878A (en) | Self powered detector based monitor for radiographic cameras | |
US4201912A (en) | Subthreshold neutron interrogator for detection of radioactive materials | |
JP3930234B2 (en) | Radon concentration measuring apparatus and method | |
JPS6259885A (en) | Underwater radiation monitor | |
Balestrini et al. | Two specialized delayed-neutron detector designs for assays of fissionable elements in water and sediment samples | |
GB1437244A (en) | Apparatus and method for using the same to ascertain the angular position of a discontinuity in the medium surrounding a test bore | |
JP2014130054A (en) | Radioactivity measurement device | |
US4617167A (en) | Underwater radiation detector | |
US4091288A (en) | Threshold self-powered gamma detector for use as a monitor of power in a nuclear reactor | |
JPH068859B2 (en) | Device for measuring β-radionuclide content in food | |
CN211928191U (en) | Nuclear emergency radioactive liquid activity measuring instrument | |
US3202819A (en) | Beta and gamma measuring apparatus for fluids | |
Zhou et al. | A CdZnTe-based high-resolution gamma spectrometer for in-situ measurement in the marine environment | |
US4638159A (en) | Graded shaped spatial resolution nuclear detectors | |
Wedekind | Gamma-ray spectrometer probe for the measurement of radioactive pollution in the sea | |
US4927593A (en) | Beta ray flux measuring device | |
Kyker Jr et al. | Absolute cosmic ray ionization measurements in a 900‐liter chamber | |
CN210720741U (en) | Node detection device | |
CN219016593U (en) | Drawer type lead shield for liquid scintillation tritium measuring instrument | |
CN216485532U (en) | Water gamma radionuclide online automatic monitoring device | |
JPH10186036A (en) | Radon concentration measuring method and its device |