JPS6259883A - Measuring method for radioactive iodine - Google Patents

Measuring method for radioactive iodine

Info

Publication number
JPS6259883A
JPS6259883A JP19862185A JP19862185A JPS6259883A JP S6259883 A JPS6259883 A JP S6259883A JP 19862185 A JP19862185 A JP 19862185A JP 19862185 A JP19862185 A JP 19862185A JP S6259883 A JPS6259883 A JP S6259883A
Authority
JP
Japan
Prior art keywords
radioactive iodine
zeolite
filter
activated carbon
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19862185A
Other languages
Japanese (ja)
Other versions
JPH0528793B2 (en
Inventor
Katsuya Ito
伊藤 克弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP19862185A priority Critical patent/JPS6259883A/en
Publication of JPS6259883A publication Critical patent/JPS6259883A/en
Publication of JPH0528793B2 publication Critical patent/JPH0528793B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To improve measurement sensitivity by decomposing a material which contains radioactive iodine in a heating furnace, etc., and adsorbing the radioactive iodine in its decomposed gas by active carbon or zeolite. CONSTITUTION:A sample 1 is put in a heat-resisting container 2 and placed in a combustion tube 4 inserted into the heating furnace 3. The sample 1 is decomposed by heating to become gaseous, and the gas is admitted into a filter which is made of active carbon or zeolite and put in a filter cartridge 6. Then, the radioactive iodine in the decomposed gas is adsorbed by the filter 7 selectively and decomposed gas passed through the filter 7 is sucked by a vacuum pump 8 and discharged. The filter 7 of the active carbon or zeolite which has adsorbed the radioactive iodine is analyzed by a pulse height analyzing device, so that the quantity of radioactivity is measured speedily down to an extremely small value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は放射性ヨウ素の測定方法に関するものであり、
特に原子炉冷却水、放射性廃棄物中の放射性ヨウ素量の
測定に最適な方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for measuring radioactive iodine,
In particular, it relates to an optimal method for measuring the amount of radioactive iodine in nuclear reactor cooling water and radioactive waste.

(従来の技術) 従来、放射性ヨウ素の測定方法としては、直接測定法と
沈澱法が知られている。直接測定法としては、試料を直
接波高分析装置により放射性核種別に測定する方法が知
られていて、例えばl−131の場合は0.364Me
VのT線エネルギーにおける試料のγ線ピーク強度を測
定し、放射性ヨウ素の有無を検出していた。また沈澱法
としては、試料に担体として非放射性ヨウ素化合物例え
ばヨウ化ナトリウムを加えたのち、硝酸銀を加えて放射
性ヨウ素をヨウ化銀の形で沈澱・ろ過して分離して、上
述した直接測定法と同様波高分析装置により放射性ヨウ
素を検出していた。
(Prior Art) Conventionally, methods for measuring radioactive iodine include a direct measurement method and a precipitation method. As a direct measurement method, a method is known in which a sample is directly measured for each radionuclide using a wave height analyzer. For example, in the case of l-131, it is 0.364Me.
The gamma ray peak intensity of the sample at the T-ray energy of V was measured to detect the presence or absence of radioactive iodine. In the precipitation method, a non-radioactive iodine compound such as sodium iodide is added as a carrier to the sample, and then silver nitrate is added to precipitate and filter the radioactive iodine in the form of silver iodide to separate it. Radioactive iodine was detected using the same wave height analyzer.

(発明が解決しようとする問題点) しかしながら上述した直接測定法では、試料中に放射性
ヨウ素以外の放射性核種例えばGo−60゜Co−58
,Mn−54,Zr−65,Cs−134,Cs−13
7゜Cr−51等が多く共存する場合、放射性ヨウ素の
測定感度が悪くなる欠点があった。そのため、波高分析
装置により、測定する前段として、試料中の放射性ヨウ
素だけを抽出することにより放射性ヨウ素以外の放射性
核種の妨害を無くする必要があった。
(Problems to be Solved by the Invention) However, in the above-mentioned direct measurement method, radionuclides other than radioactive iodine, such as Go-60°Co-58, are present in the sample.
, Mn-54, Zr-65, Cs-134, Cs-13
When a large amount of 7°Cr-51 or the like coexists, there is a drawback that the measurement sensitivity of radioactive iodine deteriorates. Therefore, it was necessary to eliminate interference with radionuclides other than radioactive iodine by extracting only the radioactive iodine in the sample as a pre-measurement step using a pulse height analyzer.

また上述した沈澱法では、試料が水溶液の状態でないと
ならないと共に抽出、沈降、ろ過するのに2.5時間程
度の時間を要する欠点があった。また試料がイオン交換
樹脂等固体状の場合は吸着している放射性ヨウ素を遊離
・抽出して水溶液の形とするため、さらに4時間以上の
時間を要するとともに、その抽出率は最大約30%と低
く精度上の問題があった。
Furthermore, the above-mentioned precipitation method has the disadvantage that the sample must be in an aqueous solution state and that it takes about 2.5 hours for extraction, precipitation, and filtration. In addition, if the sample is in a solid state such as an ion exchange resin, it takes an additional 4 hours or more to liberate and extract the adsorbed radioactive iodine and make it into an aqueous solution, and the extraction rate is about 30% at maximum. There were problems with accuracy.

本発明の目的は上述した不具合を解消して、液体状、固
体状の試料中の放射性ヨウ素を極微量まで迅速に測定で
きる放射性ヨウ素の測定方法を提供しようとするもので
ある。
An object of the present invention is to eliminate the above-mentioned problems and provide a method for measuring radioactive iodine that can rapidly measure even trace amounts of radioactive iodine in liquid or solid samples.

すなわち、本発明の第一の目的は、従来技術より測定感
度が高い放射性ヨウ素の測定方法を提供しようとするも
のである。
That is, the first object of the present invention is to provide a method for measuring radioactive iodine that has higher measurement sensitivity than conventional techniques.

本発明の第二の目的は、従来技術では試料が水溶液の状
態でないと測定が困難であった欠点があったのに対し、
試料が固体、液体の各状態を問わず放射性ヨウ素の測定
が可能な方法を提供しようとするものである。
The second object of the present invention is to solve the problem of the conventional technology in that it was difficult to measure unless the sample was in an aqueous solution state.
The aim is to provide a method that allows radioactive iodine to be measured regardless of whether the sample is in a solid or liquid state.

本発明の第三の目的は、従来技術に比べ測定時間が短く
迅速な放射性ヨウ素の測定方法を提供するものである。
A third object of the present invention is to provide a method for measuring radioactive iodine that takes less time and is faster than conventional techniques.

本発明の第四の目的は、活性炭またはゼオライトによる
ヨウ素ガスの選択吸着であるので他、の放射性核種の悪
影響が少ない放射性ヨウ素の測定方法を提供するもので
ある。
A fourth object of the present invention is to provide a method for measuring radioactive iodine that has less adverse effects on other radionuclides because it selectively adsorbs iodine gas using activated carbon or zeolite.

(問題点を解決するための手段) 本発明の放射性ヨウ素の測定方法は、放射性ヨウ素を含
む含有物を熱分解し、発生した分解ガス中のヨウ素成分
を活性炭又はゼオライト中を通過させて活性炭又はゼオ
ライトに選択吸着させ、この活性炭又はゼオライトに吸
着されたヨウ素をγ線を利用した波高分析装置により検
出して放射性ヨ゛つ素を測定することを特徴とするもの
である。
(Means for Solving the Problems) The method for measuring radioactive iodine of the present invention is to thermally decompose a substance containing radioactive iodine, and pass the iodine component in the generated decomposed gas through activated carbon or zeolite. This method is characterized in that radioactive iodine is measured by selectively adsorbing it onto zeolite, and detecting the iodine adsorbed on activated carbon or zeolite with a pulse height analyzer using gamma rays.

また、発生した分解ガスを活性炭又はゼオライトに吸着
させるに先立って分解ガスをセラミ・ツクフィルタを通
過させるかあるいはさらに冷却器により活性炭又はゼオ
ライトの耐熱使用温度以下の温度まで分解ガスを冷却す
ると更に好ましい。
Further, it is more preferable that the cracked gas is passed through a ceramic filter or further cooled to a temperature below the heat-resistant operating temperature of the activated carbon or zeolite using a cooler before the cracked gas is adsorbed onto activated carbon or zeolite. .

(作 用) 上述した構成において、放射性ヨウ素を含む含有物を加
熱炉等で分解してその分解ガスを測定に使用するため、
試料が固体でも液体でも同じ測定方法を使用できる。ま
た、活性炭又はゼオライトの放射性ヨウ素のみを選択的
に吸着する性質を利用しているので、他の放射性核種の
ヨウ素測定に及ぼす悪影響が少ない。
(Function) In the above-mentioned configuration, the material containing radioactive iodine is decomposed in a heating furnace, etc., and the decomposed gas is used for measurement.
The same measurement method can be used whether the sample is solid or liquid. Furthermore, since the property of activated carbon or zeolite to selectively adsorb only radioactive iodine is utilized, there is little adverse effect on the iodine measurement of other radionuclides.

(実施例) 第1図は本発明を実施するのに好適な測定装置の一実施
例を示す線図である。本実施例では、以下のような手順
で放射性ヨウ素を測定する。まず、試料1を坩堝、燃焼
ボート等耐熱性の容器2に採取し、加熱炉3に挿入され
た燃焼管4内へ置く。
(Example) FIG. 1 is a diagram showing an example of a measuring device suitable for carrying out the present invention. In this example, radioactive iodine is measured using the following procedure. First, a sample 1 is taken into a heat-resistant container 2 such as a crucible or a combustion boat, and placed into a combustion tube 4 inserted into a heating furnace 3 .

加熱炉3は熱源3aにより昇温し、加熱炉3内の温度は
測温体5により測定する。加熱により試料1は分解して
ガス化する。好ましくは分解ガスはフィルタカートリッ
ジ6に装填された活性炭またはゼオライトよりなるフィ
ルタフに導入され、分解ガス中に含まれる放射性ヨウ素
は活性炭またはゼオライトのフィルタ7に選択的に吸着
される。フィルタ7を通過した分解ガスは真空ポンプ8
により吸引し、大気へ排出する。放射性ヨウ素が吸着さ
れた活性炭またはゼオライトのフィルタ7を波高分析装
置において分析し、0.364MeVのT線エネルギー
におけるT線ピーク強度からl−131の放射能量を算
出する。この波高分析装置による放射性ヨウ素の測定方
法はJIS Z 4520の分析方法を準用するもので
ある。
The heating furnace 3 is heated by a heat source 3a, and the temperature inside the heating furnace 3 is measured by a temperature measuring element 5. Sample 1 is decomposed and gasified by heating. Preferably, the decomposed gas is introduced into a filter made of activated carbon or zeolite loaded in a filter cartridge 6, and radioactive iodine contained in the decomposed gas is selectively adsorbed by the activated carbon or zeolite filter 7. The decomposed gas that has passed through the filter 7 is sent to the vacuum pump 8
and discharged into the atmosphere. The activated carbon or zeolite filter 7 on which radioactive iodine has been adsorbed is analyzed using a wave height analyzer, and the amount of l-131 radioactivity is calculated from the T-line peak intensity at a T-line energy of 0.364 MeV. The method of measuring radioactive iodine using this pulse height analyzer is based on the analysis method of JIS Z 4520.

第2図は本発明を実施するのに好適な測定装置の他の実
施例を示す線図である。第2図中第1図と同一部材には
同一の符号を付し、その説明を省略する。本実施例では
、高温の分解ガスを活性炭又はゼオライトに吸着させる
に先立って冷却器9により分解ガスを吸着剤の耐熱使用
温度以下の温度まで冷却している。冷却器9において、
冷却水は冷却水人口9aより導入し、冷却水出口9bよ
り排出する。冷却により生成する分解ガスよりのドレイ
ンは、測定終了後ドレイン抜出口9cより排出する。本
実施例は特に液体廃棄物中の放射性ヨウ素の測定に有効
である。
FIG. 2 is a diagram showing another embodiment of a measuring device suitable for carrying out the invention. The same members in FIG. 2 as in FIG. 1 are designated by the same reference numerals, and their explanations will be omitted. In this embodiment, before the high-temperature decomposed gas is adsorbed onto activated carbon or zeolite, the decomposed gas is cooled by the cooler 9 to a temperature below the heat-resistant operating temperature of the adsorbent. In the cooler 9,
Cooling water is introduced from a cooling water port 9a and discharged from a cooling water outlet 9b. The drain from the cracked gas generated by cooling is discharged from the drain outlet 9c after the measurement is completed. This example is particularly effective for measuring radioactive iodine in liquid waste.

第3図は本発明を実施するのに好適な測定装置の更に他
の実施例を示す線図である。第3図中第1図と同一部材
には同一の符号を付し、その説明を省略する。本実施例
では第2図に示す実施例における冷却器9の上流側にさ
らにセラミックフィルタ10を設けている。そのため、
発生した熱分解ガスをまず最初に好ましくは高温のセラ
ミックフィルタ10を通過させて、放射性ヨウ素以外の
放射性核種、例えばCo−60,Co−58,Mn−5
4,2n−65、Cs−134,Cs−137,Cr−
51等をセラミックフィルタ10により除去し、放射性
ヨウ素を含む分解ガスだけを下流側へ流している。本実
施例は特に固体廃棄物中の放射性ヨウ素の測定に有効で
ある。
FIG. 3 is a diagram showing still another embodiment of a measuring device suitable for carrying out the present invention. In FIG. 3, the same members as in FIG. 1 are designated by the same reference numerals, and their explanations will be omitted. In this embodiment, a ceramic filter 10 is further provided upstream of the cooler 9 in the embodiment shown in FIG. Therefore,
The generated pyrolysis gas is first passed through a preferably hot ceramic filter 10 to remove radionuclides other than radioactive iodine, such as Co-60, Co-58, Mn-5.
4,2n-65, Cs-134, Cs-137, Cr-
51 and the like are removed by a ceramic filter 10, and only the decomposed gas containing radioactive iodine is allowed to flow downstream. This example is particularly effective for measuring radioactive iodine in solid waste.

叉崖斑−1 第2図に示す測定装置を使用した実施例を以下に述べる
。磁器製の容器2に原子力発電所で発生したS縮廃液を
10cc採取した後、加熱炉3に挿入された燃焼管4内
に置いた。その後熱源3aを加熱することにより試料1
を熱分解し、燃焼管4内の分解ガスを冷却器9及び活性
炭を充填したフィルタ7を介して真空ポンプ8により吸
引しながら、加熱炉3を500℃まで30分間かけて徐
々に加熱した。その後フィルタ7をフィルタカートリッ
ジ6より取外し、波高分析装置によりフィルタ7゛中の
活性炭に選択的に吸着された放射性ヨウ素(I−131
)量を0.364 MeVOT線エネルギーにおけるγ
線ピーク強度から測定した。
Cross cliff spot-1 An example using the measuring device shown in FIG. 2 will be described below. After collecting 10 cc of S degenerate liquid generated at a nuclear power plant in a porcelain container 2, the container was placed in a combustion tube 4 inserted into a heating furnace 3. After that, the sample 1 is heated by heating the heat source 3a.
The heating furnace 3 was gradually heated to 500° C. over 30 minutes while the decomposed gas in the combustion tube 4 was sucked by the vacuum pump 8 through the cooler 9 and the filter 7 filled with activated carbon. After that, the filter 7 was removed from the filter cartridge 6, and the radioactive iodine (I-131) selectively adsorbed on the activated carbon in the filter 7 was measured using a wave height analyzer.
) quantity at 0.364 MeVOT line energy γ
It was measured from the line peak intensity.

同時に同一試料に対して、従来法の直接法として試料を
直接測定すると共に、沈澱法としてヨウ化カリウムを担
体として加え、硝酸銀による沈澱物を波高分析装置によ
り測定して比較した。なお、分析結果はそれぞれ3点づ
つの結果から求めた。
At the same time, the same sample was directly measured as a conventional direct method, and potassium iodide was added as a carrier as a precipitation method, and the precipitate caused by silver nitrate was measured using a wave height analyzer for comparison. The analysis results were obtained from the results of three points each.

結果を第1表に示す。The results are shown in Table 1.

第1表から明らかなように、本発明と従来方法を比較す
ると試料Aでは本発明方法は直接法と比べて平均値、変
動巾共に有意差がないが、沈澱法と比べると本発明の方
が精度が優れていることがわかった。
As is clear from Table 1, when comparing the present invention and the conventional method, for sample A, the present method has no significant difference in average value and fluctuation range compared to the direct method, but compared to the precipitation method, the present method was found to have excellent accuracy.

更に試料Bでは従来方法のうち直接法では検出限界未満
となって測定が不可能であるのに対し、本発明方法は測
定が可能であることがわかった。
Furthermore, it was found that in sample B, the amount could not be measured using the direct method among the conventional methods because the value was below the detection limit, but it was found that measurement was possible using the method of the present invention.

一方従来法のうち沈澱法では、3点のうち2点しか測定
できずかつバラツキが大きいため、本発明の方が優れて
いることがわかった。なお、測定所要時間は本発明方法
の約1時間に対し従来法のうち沈澱法は、沈澱、ろ過す
るのに1.5時間、波高分析装置測定に0.5時間 計
2時間を要し、本発明方法は従来方法に比べ所要時間に
おいて約172に短くなることがわ゛かった。
On the other hand, among the conventional methods, the precipitation method can measure only two out of three points and has large variations, so it was found that the present invention is superior. The time required for measurement is approximately 1 hour for the method of the present invention, whereas the precipitation method of the conventional method requires 1.5 hours for sedimentation and filtration, and 0.5 hours for measurement with a wave height analyzer, for a total of 2 hours. The method of the present invention was found to be approximately 172 times shorter in required time than the conventional method.

大立1 第3図に示す測定装置を使用した実施例を以下に述べる
Daitachi 1 An example using the measuring device shown in FIG. 3 will be described below.

磁器製の容器2に原子力発電所で発生した廃イオン交換
樹脂を1occ採取した後、加熱炉3に挿入された燃焼
管4内に置いた。その後、加熱炉を昇温しで試料を熱分
解し燃焼管4の分解ガスをセラミックフィルタ10、冷
却器9及び活性炭及びゼオライトを充填したフィルタ7
を介して真空ポンプ8により吸引しながら、加熱炉3を
800℃まで1時間かけて徐々に加熱した。その後、フ
ィルタ7中の活性炭及びゼオライトに吸着された放射性
ヨウ素(I −131)量を0.364MeVのγ線エ
ネルギーにおけるr’ft1Aピーク強度から測定した
1 occ of waste ion exchange resin generated at a nuclear power plant was collected in a porcelain container 2 and placed in a combustion tube 4 inserted into a heating furnace 3. Thereafter, the heating furnace is heated to thermally decompose the sample, and the decomposed gas in the combustion tube 4 is transferred to a ceramic filter 10, a cooler 9, and a filter 7 filled with activated carbon and zeolite.
The heating furnace 3 was gradually heated to 800° C. over 1 hour while suction was applied via the vacuum pump 8. Thereafter, the amount of radioactive iodine (I-131) adsorbed on the activated carbon and zeolite in the filter 7 was measured from the r'ft1A peak intensity at γ-ray energy of 0.364 MeV.

同時に同一試料に対して、従来法の直接法として試料を
直接測定すると共に、沈澱法としてヨウ化カリウムを担
体として加え、カラムに充填し、硝酸す) IJウムで
溶離後酸にて中和、有機溶媒抽出した液に硝酸銀を加え
生成した沈澱物を測定して比較した。なお、分析結果は
それぞれ3点づつの結果から求めた。結果を第2表に示
す。
At the same time, for the same sample, the sample is directly measured using the conventional direct method, and potassium iodide is added as a carrier using the precipitation method, the column is filled, and nitric acid is added. After elution with IJum, neutralization with acid is performed. Silver nitrate was added to the organic solvent extraction solution, and the resulting precipitate was measured and compared. The analysis results were obtained from the results of three points each. The results are shown in Table 2.

第2表   (μCi/ce) 第2表から明らかなように、本発明と従来方法を比較す
ると、従来方法のうち直接法では検出限界未満となって
測定が不可能であるのに対し、本発明方法は測定が可、
能であることがわかった。また本発明方法は、従来法の
うちの沈澱法に比ベバラツキが少なく本発明方法は精度
が優れていることがわかった。また、測定所要時間は本
発明方法の約1.5時間に対し、従来法のうち沈澱法は
抽出、沈澱、ろ過するのに4時間、波高分析装置測定に
0.5時間の計4.5時間を要し、本発明方法は従来方
法に比べ所要時間において約173に短くなることがわ
かった。
Table 2 (μCi/ce) As is clear from Table 2, when comparing the present invention and the conventional method, it is found that among the conventional methods, the direct method is below the detection limit and measurement is impossible, whereas the present invention The invented method can be measured,
It turned out to be Noh. It was also found that the method of the present invention has less variation than the precipitation method among conventional methods, and the method of the present invention has excellent accuracy. In addition, the time required for measurement is approximately 1.5 hours for the method of the present invention, whereas the precipitation method of the conventional method requires 4 hours for extraction, precipitation, and filtration, and 0.5 hours for measurement using a wave height analyzer, for a total of 4.5 hours. It has been found that the method of the present invention is approximately 173 times shorter in time than the conventional method.

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
の放射性ヨウ素の測定方法によれば、従来方法のうち直
接法では放射性ヨウ素以外の放射性核種が共存する場合
、検出感度が悪く測定出来なかった微量の放射性ヨウ素
が測定できる。また検出感度を向上させるため行なわれ
ている従来方法のうち沈澱法は水溶液の状態でも沈澱、
ろ過等の処理が必要であり、さらに固体の状態ではなお
さら抽出、沈澱、ろ通算複雑な化学処理を行う必要があ
り、時間がかかりかつ精度が悪い欠点があったが、本発
明の放射性ヨウ素の測定方法によれば、精度が優れてい
る上測定所要時間を大幅に短縮することができる。その
ため、迅速かつ精度良く放射性ヨウ素含有量を求める必
要のある原子炉冷却水や放射性廃棄物中の放射性ヨウ素
の測定に有効である。
(Effects of the Invention) As is clear from the detailed explanation above, according to the method for measuring radioactive iodine of the present invention, the detection sensitivity of the direct method among conventional methods is low when radionuclides other than radioactive iodine coexist. Trace amounts of radioactive iodine, which previously could not be measured, can be measured. In addition, among the conventional methods used to improve detection sensitivity, the precipitation method allows precipitation even in the state of an aqueous solution.
Treatments such as filtration are required, and in the solid state, it is even more necessary to perform complex chemical treatments such as extraction, precipitation, and filtration, which has the disadvantage of being time-consuming and having poor accuracy. According to the measurement method, the accuracy is excellent and the time required for measurement can be significantly shortened. Therefore, it is effective for measuring radioactive iodine in reactor cooling water and radioactive waste, which requires rapid and accurate determination of radioactive iodine content.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図はそれぞれ本発明を実施す
るのに好適な測定装置の一実施例を示す線図である。 ■・・・試料       2・・・容器3・・・加熱
炉      4・・・燃焼管5・・・測温体 6・・・フィルタカートリッジ 7・・・フィルタ     8・・・真空ポンプ9・・
・冷却器      9a・・・冷却水入口9b・・・
冷却水出口    9c・・・ドレイン抜出口10・・
・セラミックフィルタ
FIGS. 1, 2, and 3 are diagrams each showing an embodiment of a measuring device suitable for carrying out the present invention. ■...Sample 2...Container 3...Heating furnace 4...Combustion tube 5...Temperature sensor 6...Filter cartridge 7...Filter 8...Vacuum pump 9...
・Cooler 9a...Cooling water inlet 9b...
Cooling water outlet 9c...Drain outlet 10...
・Ceramic filter

Claims (1)

【特許請求の範囲】 1、放射性ヨウ素を含む含有物を熱分解し、発生した分
解ガス中のヨウ素成分を活性炭又はゼオライト中を通過
させて活性炭又はゼオライトに選択吸着させ、この活性
炭又はゼオライトに吸着されたヨウ素をγ線を利用した
波高分析装置により検出して放射性ヨウ素を測定するこ
とを特徴とする放射性ヨウ素の測定方法。 2、前記分解ガスの活性炭又はゼオライトへの通過に先
立って、放射性ヨウ素以外の放射性核種をセラミックフ
ィルターにより除去する特許請求の範囲第1項記載の放
射性ヨウ素の測定方法。 3、前記分解ガスの活性炭又はゼオライトへの通過に先
立って、前記分解ガスを冷却器により冷却する特許請求
の範囲第1項記載の放射性ヨウ素の測定方法。
[Claims] 1. A substance containing radioactive iodine is thermally decomposed, and the iodine component in the generated decomposed gas is passed through activated carbon or zeolite to be selectively adsorbed onto the activated carbon or zeolite, and adsorbed onto the activated carbon or zeolite. 1. A method for measuring radioactive iodine, the method comprising: detecting the radioactive iodine with a pulse height analyzer using gamma rays. 2. The method for measuring radioactive iodine according to claim 1, wherein radioactive nuclides other than radioactive iodine are removed using a ceramic filter before the cracked gas passes through activated carbon or zeolite. 3. The method for measuring radioactive iodine according to claim 1, wherein the cracked gas is cooled by a cooler before passing through the activated carbon or zeolite.
JP19862185A 1985-09-10 1985-09-10 Measuring method for radioactive iodine Granted JPS6259883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19862185A JPS6259883A (en) 1985-09-10 1985-09-10 Measuring method for radioactive iodine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19862185A JPS6259883A (en) 1985-09-10 1985-09-10 Measuring method for radioactive iodine

Publications (2)

Publication Number Publication Date
JPS6259883A true JPS6259883A (en) 1987-03-16
JPH0528793B2 JPH0528793B2 (en) 1993-04-27

Family

ID=16394241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19862185A Granted JPS6259883A (en) 1985-09-10 1985-09-10 Measuring method for radioactive iodine

Country Status (1)

Country Link
JP (1) JPS6259883A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041836A1 (en) * 2001-11-15 2003-05-22 Universität Bern Method of detecting and/or removing small compounds from a gaseous or liquid medium
JP2010048765A (en) * 2008-08-25 2010-03-04 Mitsubishi Electric Corp Iodine sampler
CN111220428A (en) * 2020-02-25 2020-06-02 中国辐射防护研究院 Multi-channel test device for sampling radioactive aerosol and gaseous iodine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211997A (en) * 1975-07-18 1977-01-29 Seikosha Co Ltd Ticket issuing machine
JPS5419355A (en) * 1977-07-09 1979-02-14 Licentia Gmbh Method of producing fluorescent screen
JPS56119893A (en) * 1980-02-27 1981-09-19 Hitachi Ltd Nuclear water nuclide automatic analysis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211997A (en) * 1975-07-18 1977-01-29 Seikosha Co Ltd Ticket issuing machine
JPS5419355A (en) * 1977-07-09 1979-02-14 Licentia Gmbh Method of producing fluorescent screen
JPS56119893A (en) * 1980-02-27 1981-09-19 Hitachi Ltd Nuclear water nuclide automatic analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041836A1 (en) * 2001-11-15 2003-05-22 Universität Bern Method of detecting and/or removing small compounds from a gaseous or liquid medium
JP2010048765A (en) * 2008-08-25 2010-03-04 Mitsubishi Electric Corp Iodine sampler
CN111220428A (en) * 2020-02-25 2020-06-02 中国辐射防护研究院 Multi-channel test device for sampling radioactive aerosol and gaseous iodine

Also Published As

Publication number Publication date
JPH0528793B2 (en) 1993-04-27

Similar Documents

Publication Publication Date Title
Lan et al. Two-step coprecipitation method for differentiating chromium species in water followed by determination of chromium by neutron activation analysis
CN113406114B (en) Combined analysis method for content of Pu, am and U in aerosol
CN103344982A (en) Radiochemical analyzing method of Sr-90 in soil
Greendale et al. Rapid Radiochemical Procedure for Antimony and Arsenic.
JP2017106851A (en) Analysis method and analysis device of radionuclide in soil sample in environment
CN113359177B (en) Combined analysis method for content of Pu, Am and Sr-90 in large-mass solid environment
Ohno Determination of iodine and bromine in biological materials by neutron-activation analysis
JPS6259883A (en) Measuring method for radioactive iodine
Livingston et al. Estimation of Vanadium in Biological Material by Neutron Activation Analysis.
CN115755146A (en) In high-level radioactive waste liquid 243 Am content analysis method
Van Renterghem et al. Radiochemical determination of twelve trace elements in human blood serum
Marsh et al. Improved 2-Thenoyltrifluoroacetone Extraction Method for Radiozirconium
Harduin et al. Analytical determination of actinides in biological samples
CN216669449U (en) Nickel-63 analytical equipment in radioactive discharge waste liquid
Xiang-Wei et al. High-temperature catalytic oxidation preparation and liquid scintillation counting determination of the carbon-14 in liquid effluent samples from nuclear power plants
RU2770584C1 (en) Method for determining activity of strontium and barium radionuclides in environmental samples and special sorbents
Gjeci Analysis of 90 Sr in environmental and biological samples by extraction chromatography using a crown ether
Lutz et al. Determination of carbon in sodium by photon activation analysis
Pierce et al. The determination of zinc by neutron activation
Sahoo et al. Actinide analysis in biological materials
Jia et al. Determination of gross α-activity in urine by microprecipitation with LaF 3 and α-spectrometry
Magno et al. Determination of Strontium in Environmental Media Using Neutron Activation.
Butler et al. Neutron activation analysis for platinum in Cr 2 O 3
Büttner et al. Development of a procedure for the determination of chromium in samples of urine and serum by neutron activation analysis
CN114371051A (en) Plutonium element analysis method based on high-sensitivity aerosol

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term