JPS6259857B2 - - Google Patents

Info

Publication number
JPS6259857B2
JPS6259857B2 JP56055946A JP5594681A JPS6259857B2 JP S6259857 B2 JPS6259857 B2 JP S6259857B2 JP 56055946 A JP56055946 A JP 56055946A JP 5594681 A JP5594681 A JP 5594681A JP S6259857 B2 JPS6259857 B2 JP S6259857B2
Authority
JP
Japan
Prior art keywords
particle
particles
incident
magnetic field
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56055946A
Other languages
Japanese (ja)
Other versions
JPS57170453A (en
Inventor
Hiroshi Takeuchi
Akio Shoji
Katsuyuki Ebisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP56055946A priority Critical patent/JPS57170453A/en
Publication of JPS57170453A publication Critical patent/JPS57170453A/en
Publication of JPS6259857B2 publication Critical patent/JPS6259857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【発明の詳細な説明】 本発明は荷電粒子のエネルギ、質量、空間的分
布等を測定することができる粒子検出装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a particle detection device capable of measuring the energy, mass, spatial distribution, etc. of charged particles.

一般に核融合反応装置等に使用されるプラズマ
発生装置で発生されるプラズマの特性を解析ある
いは制御するには、プラズマ発生装置から放射さ
れる粒子のエネルギ、粒子の種類、空間的分布等
を測定する必要がある。そして、従来このような
粒子の測定には第1図および第2図に示す如き粒
子検出装置が用いられていた。すなわち、1a,
1bは一対の磁極であつて、これらの磁極1a,
1b間には一様な磁界が形成されるように構成さ
れている。また、2a,2bは一対の電極であつ
て、これら電極2a,2b間には上記磁界と互に
平行でかつ互に重なり合う電界が形成されるよう
に構成されている。そしてこれら磁極1a,1b
および電極2a,2bの一側縁は直線状に形成さ
れ、形成される磁界および電界の一側の境界が直
線状となるように構成されている。また3はコリ
メータであつて、粒子の方向を規制するスリツト
4を有し、外部の粒子を上記磁界および電界内に
その一側からこれらと直交する方向に入射させる
ように構成されている。また、5a,5bは複数
たとえば2個の粒子検出体である。これらの粒子
検出体5a,5bはいずれも小形の電子増倍形の
粒子検出器6…を直線状に配列して構成したもの
であつて、上記磁極1a,1bおよび電極2a,
2bの一側縁に対向し、かつこれらの長手方向が
磁界および電界と直交する方向に沿つて配置され
ている。また、これらの粒子検出体5a,5bは
上記コリメータ3から磁界および電界と平行な方
向に所定の距離だけずれた位置に配置されてい
る。そして、上記コリメータ3のスリツト4から
入射した粒子のうちH+、D+、He+等の荷電粒子
は上記磁界および電界内にこれらと直交する方向
に入射する。そして入射した荷電粒子は磁界によ
つて第1図に示す如く半円形の軌跡を描いて180
゜偏向され、また電界によつて第2図に示す如く
電界の方向に変位し、いずれかの粒子検出体5
a,5bに入射する。そして、この電界の方向の
変位量は荷電粒子の電荷と質量との比によつて定
まり、この比は荷電粒子の種類によつて一定であ
るから電界および磁界の強さがあらかじめ求めら
れていれば各荷電粒子毎の変位量が求められる。
したがつて測定対象となつている荷電粒子の変位
量に対応した位置にそれぞれ上記の如く粒子検出
体5a,5bを配置しておけば、どの粒子検出体
5a,5bに荷電粒子が入射したかによつてその
荷電粒子の種類が判明する。また、荷電粒子の描
く半円形の軌跡の半径はその荷電粒子の質量とエ
ネルギの積によつて定まる。そして、この荷電粒
子が粒子検出体5a,5bのうちのどの粒子検出
器6…に入射したかによつてコリメータ3のスリ
ツト4からこの荷電粒子の粒子検出体5a,5b
への入射位置すなわち半円形の軌跡の直径が分る
ので、磁界および電界の強さがあらかじめ分つて
いればどの粒子検出器6…に荷電粒子が入射した
かによつてその質量とエネルギの積が判明する。
そして、前述の如く電界方向の変位量によつてそ
の荷電粒子の種類すなわち質量が判明するので、
その荷電粒子のエネルギも求めることができるも
のである。ところで、このような粒子検出装置で
は、その粒子検出体5a,5bの長さは少なくと
も荷電粒子の描く半円形の軌跡の最大の半径の2
倍としなくてはならない。したがつてコリメータ
3を複数個設けて粒子の空間的分布を求めようと
する場合、このコリメータ3の間隔は少なくても
上記最大の半径の2倍以上とする必要があり、間
隔をこれ以下とすると粒子検出体5a,5bのあ
る粒子検出器6に入射した荷電粒子がどのコリメ
ータ3から入射したものであるかが判別できなく
なり、測定ができなくなる。このため従来のもの
ではコリメータ3の間隔を大きくせざるを得ず、
荷電粒子の空間的分布を精密に測定することがで
きなかつた。そして従来はこのような不具合を解
消するため、複数の粒子検出装置をそのコリメー
タが少しずつずれるように重ね合せて用いてい
た。このため全体が大形化し、狭い空間に挿入で
きなくなるため測定対象への接近性が悪くなり、
また磁界を発生させる磁石の消費電力も大きくな
り、さらに前置増幅器、増幅器等も粒子検出装置
毎に設けなければならず信号処理系が複雑化する
不具合があつた。
In order to analyze or control the characteristics of plasma generated by plasma generators generally used in nuclear fusion reactors, etc., it is necessary to measure the energy, particle type, spatial distribution, etc. of particles emitted from the plasma generator. There is a need. Conventionally, particle detection devices such as those shown in FIGS. 1 and 2 have been used to measure such particles. That is, 1a,
1b is a pair of magnetic poles, these magnetic poles 1a,
The structure is such that a uniform magnetic field is formed between the parts 1b. Reference numerals 2a and 2b are a pair of electrodes, and the structure is such that an electric field is formed between these electrodes 2a and 2b, parallel to and overlapping with the magnetic field. And these magnetic poles 1a, 1b
One side edge of the electrodes 2a and 2b is formed in a straight line, so that the boundaries on one side of the generated magnetic field and electric field are straight. Reference numeral 3 denotes a collimator, which has a slit 4 for regulating the direction of particles, and is configured to allow external particles to enter the magnetic and electric fields from one side in a direction perpendicular to them. Furthermore, 5a and 5b are a plurality of particle detectors, for example, two particles. Each of these particle detectors 5a, 5b is constructed by linearly arranging small electron multiplier type particle detectors 6, and includes the magnetic poles 1a, 1b and the electrodes 2a,
2b, and are arranged along a direction in which their longitudinal directions are orthogonal to the magnetic field and the electric field. Further, these particle detectors 5a and 5b are arranged at positions offset from the collimator 3 by a predetermined distance in a direction parallel to the magnetic field and the electric field. Of the particles incident through the slit 4 of the collimator 3, charged particles such as H + , D + and He + enter the magnetic field and the electric field in a direction perpendicular to these. Due to the magnetic field, the incident charged particles draw semicircular trajectories as shown in Figure 1.
It is deflected by the electric field and displaced in the direction of the electric field as shown in FIG.
a, 5b. The amount of displacement in the direction of this electric field is determined by the ratio of the charge to the mass of the charged particle, and since this ratio is constant depending on the type of charged particle, the strength of the electric and magnetic fields must be determined in advance. For example, the amount of displacement for each charged particle is determined.
Therefore, if the particle detectors 5a and 5b are arranged as described above at positions corresponding to the displacement of the charged particles to be measured, it is possible to determine which particle detectors 5a and 5b the charged particle has entered. The type of charged particle can be determined by Furthermore, the radius of the semicircular locus drawn by a charged particle is determined by the product of the mass and energy of the charged particle. Depending on which particle detector 6 of the particle detectors 5a, 5b this charged particle enters, the charged particle is transmitted from the slit 4 of the collimator 3 to the particle detector 5a, 5b.
Since the incident position, that is, the diameter of the semicircular trajectory, is known, if the strength of the magnetic and electric fields is known in advance, the mass and energy of the charged particle can be calculated depending on which particle detector 6 the charged particle is incident on. The product becomes clear.
As mentioned above, the type of charged particle, that is, the mass, can be determined by the amount of displacement in the direction of the electric field.
The energy of the charged particles can also be determined. Incidentally, in such a particle detection device, the length of the particle detection bodies 5a and 5b is at least 2 times the maximum radius of the semicircular locus drawn by the charged particles.
It has to be doubled. Therefore, if a plurality of collimators 3 are provided to determine the spatial distribution of particles, the spacing between the collimators 3 must be at least twice the maximum radius mentioned above, and the spacing should not be smaller than this. Then, it becomes impossible to determine from which collimator 3 the charged particles incident on the particle detector 6 including the particle detectors 5a and 5b are incident, and measurement becomes impossible. For this reason, in the conventional model, the distance between the collimators 3 has to be increased,
It was not possible to precisely measure the spatial distribution of charged particles. Conventionally, in order to solve this problem, a plurality of particle detection devices have been stacked one on top of the other so that their collimators are slightly shifted from each other. This increases the overall size and makes it impossible to insert into narrow spaces, making it difficult to access the measurement target.
In addition, the power consumption of the magnet that generates the magnetic field becomes large, and a preamplifier, amplifier, etc. must also be provided for each particle detection device, resulting in a problem that the signal processing system becomes complicated.

本発明は以上の事情にもとづいてなされたもの
で、その目的とするところは粒子の入射するスリ
ツトを小さな間隔で配列することができ、粒子の
空間的分布を精密に測定でき、かつ全体を小形、
単純化することができる粒子検出装置を得ること
にある。
The present invention was made based on the above circumstances, and its purpose is to be able to arrange the slits into which particles enter at small intervals, to accurately measure the spatial distribution of particles, and to make the entire structure compact. ,
The object is to obtain a particle detection device that can be simplified.

以下本発明を第3図ないし第5図に示す一実施
例にしたがつて説明する。図中101a,101
bは一対の磁極であつて、これらの磁極101
a,101bは互に所定の間隔を有して対向して
いる。そして、これらの磁極101a,101b
間の間隙には磁石(図示せず)によつて所定の強
さの一様な磁界が形成されるように構成されてい
る。また、102a,102bは一対の電極であ
つて、これら電極102a,102bは上記磁極
101a,101b間の間隙内に収容されてい
る。そして、これら電極102a,102b間に
は所定の電圧が印加され、これら電極102a,
102b間に上記磁界と互に平行でかつ互に重な
り合う電界が形成されるように構成されている。
そして、これら磁極101a,101bおよび電
極102a,102bの一側縁は直線状に形成さ
れ、形成される磁界および電界の一側の境界が直
線状となるように構成されている。また、103
a,103b,103c…はコリメータであつ
て、複数個のものが磁極101a,101bおよ
び電極102a,102bの一側縁に沿う方向に
比較的小さな間隔で配列されている。そして、こ
れらのコリメータ103a,103b,103c
…は荷電粒子の入射方向を規制するスリツト10
4…を有し、これらスリツト104…を通過した
H+、D+等の荷電粒子は上記磁極101a,10
1bおよび電極102a,102b間の間隙内に
形成される磁界および電界内にこれらに直交する
方向に入射するように構成されている。また、1
05a,105bは位置有感形粒子検出器であ
る。これら位置有感形粒子検出器105a,10
5bは細長状をなし、その長手方向が磁極101
a,101bおよび電極102a,102bの一
側縁に沿つて設けられている。そして、これら位
置有感粒子検出器105a,105bはコリメー
タ103a,103b,103c…に対し測定対
象となる荷電粒子が電界内で電界の方向に変位す
る量に対応して変位して設けられており、たとえ
ばD+粒子は位置有感粒子検出器105aに、H+
粒子は位置有感粒子検出器105bにそれぞれ入
射するように構成されている。そして、上記位置
有感形粒子検出器105a,105bはその長手
方向すなわち磁極101a,101bおよび電極
102a,102bの一側縁に沿う方向の荷電粒
子の入射位置yとその荷電粒子のエネルギkの積
k・yおよびエネルギkを求めることができるも
のであつて、以下第5図を参照してその構成を説
明する。この位置有感粒子検出器105a,10
5bは半導体を用いたものであつて、106はそ
の基板である。そしてこの基板106の両面には
n側電極107およびp側電極108が被着され
ており、n側電極107はその電気抵抗が充分に
小さく、p側電極108は単位長さ当り所定の電
気抵抗を有している。そして上記n側電極107
の一端には端子109が設けられ、この端子10
9は所定の抵抗110を介して電源に接続される
とともに前置増幅器111を介して信号処理回路
112に接続されている。また、上記p側電極1
08の両端にはそれぞれ端子113,114が設
けられ、一方の端子113は前置増幅器115を
介して信号処理回路112に接続され、また他方
の端子114はアース側に接続されている。そし
て、この位置有感粒子検出器105a,105b
の他端からyだけ離れた矢印Aの位置に荷電粒子
が入射すると、この入射位置において半導体の充
満帯にある電子が励起されて伝導帯にたたき上げ
られ、この入射位置においてn側電極107から
p側電極108にパルス状の電流Ioが流れ、この
電流Ioのパルス高等は入射した荷電粒子のエネル
ギkに比例する。そして、n側電極107はその
電気抵抗が充分に小さいので、このn側電極10
7の端子109を流れる電流のパルス高等は荷電
粒子の入射位置とは関係なく荷電粒子の入射位置
において流れる電流Ioと等しいので、このn側電
極107の端子109を流れる電流を検出するこ
とによつて入射した荷電粒子のエネルギkが求め
られる。また、この電流Ioはp側電極108にお
いては一方の端子113に向う電流I1と他方の端
子114に向う電流I2とに分れる。そしてこれら
の電流I1,I2の比は荷電粒子の入射位置からそれ
ぞれの端子113,114までの間の抵抗の比に
よつて定まる。そして、このp側電極108は単
位長さ当り所定の電気抵抗を有するものであるか
ら、入射位置からそれぞれの端子113,114
までの電気抵抗は入射位置からそれぞれの端子1
13,114までの距離に比例する。したがつて
この位置有感粒子検出器105a,105bの有
効長さすなわち端子113,114間の距離を
y0、入射位置から一方の電極113までの距離を
y1、入射位置から他方の電極114までの距離を
yとすれば、一方の端子113に流れる電流I1は I1=I0×y/y ……(1) となる。したがつてこの電流I1を検出することに
より入射した荷電粒子のエネルギkと他端から入
射位置までの距離yとの積k・yが求められるも
のである。
The present invention will be explained below with reference to an embodiment shown in FIGS. 3 to 5. 101a, 101 in the figure
b is a pair of magnetic poles, these magnetic poles 101
a and 101b face each other with a predetermined interval. And these magnetic poles 101a, 101b
A uniform magnetic field of a predetermined strength is formed in the gap between the two by a magnet (not shown). Further, 102a and 102b are a pair of electrodes, and these electrodes 102a and 102b are housed in the gap between the magnetic poles 101a and 101b. A predetermined voltage is applied between these electrodes 102a, 102b, and these electrodes 102a,
It is configured such that electric fields are formed between the magnetic fields 102b that are parallel to the magnetic field and overlap each other.
One side edges of these magnetic poles 101a, 101b and electrodes 102a, 102b are formed in a straight line, so that the boundary on one side of the generated magnetic field and electric field is straight. Also, 103
a, 103b, 103c... are collimators, and a plurality of collimators are arranged at relatively small intervals in the direction along one side edge of the magnetic poles 101a, 101b and the electrodes 102a, 102b. And these collimators 103a, 103b, 103c
... is a slit 10 that regulates the direction of incidence of charged particles
4... and passed through these slits 104...
Charged particles such as H + and D + are located at the magnetic poles 101a and 10.
1b and the magnetic field and electric field formed in the gap between the electrodes 102a and 102b in a direction perpendicular to these fields. Also, 1
05a and 105b are position-sensitive particle detectors. These position-sensitive particle detectors 105a, 10
5b has an elongated shape, and its longitudinal direction is the magnetic pole 101.
a, 101b and along one side edge of the electrodes 102a, 102b. These position-sensitive particle detectors 105a, 105b are provided to be displaced relative to the collimators 103a, 103b, 103c, etc. in accordance with the amount by which charged particles to be measured are displaced in the direction of the electric field within the electric field. , for example, D + particles are sent to the position-sensitive particle detector 105a, and H +
The particles are configured to respectively enter the position-sensitive particle detectors 105b. The position-sensitive particle detectors 105a, 105b are the product of the incident position y of the charged particle in the longitudinal direction, that is, along one side edge of the magnetic poles 101a, 101b and the electrodes 102a, 102b, and the energy k of the charged particle. It is capable of determining k.y and energy k, and its configuration will be explained below with reference to FIG. 5. This position-sensitive particle detector 105a, 10
5b is a device using a semiconductor, and 106 is its substrate. An n-side electrode 107 and a p-side electrode 108 are adhered to both sides of this substrate 106, and the n-side electrode 107 has a sufficiently small electrical resistance, and the p-side electrode 108 has a predetermined electrical resistance per unit length. have. And the n-side electrode 107
A terminal 109 is provided at one end of the terminal 10.
9 is connected to a power supply via a predetermined resistor 110 and to a signal processing circuit 112 via a preamplifier 111. In addition, the p-side electrode 1
08 are provided with terminals 113 and 114, respectively, one terminal 113 is connected to a signal processing circuit 112 via a preamplifier 115, and the other terminal 114 is connected to the ground side. These position-sensitive particle detectors 105a and 105b
When a charged particle is incident at the position indicated by the arrow A, which is y apart from the other end, electrons in the full band of the semiconductor at this incident position are excited and pumped up into the conduction band, and at this incident position, the electrons are transferred from the n-side electrode 107 to the p A pulsed current Io flows through the side electrode 108, and the pulse height of this current Io is proportional to the energy k of the incident charged particle. Since the n-side electrode 107 has a sufficiently low electrical resistance, this n-side electrode 107
Since the pulse height of the current flowing through the terminal 109 of the n-side electrode 107 is equal to the current Io flowing at the incident position of the charged particle regardless of the incident position of the charged particle, by detecting the current flowing through the terminal 109 of the n-side electrode 107, The energy k of the incident charged particle is then determined. Further, this current Io is divided into a current I 1 directed toward one terminal 113 and a current I 2 directed toward the other terminal 114 at the p-side electrode 108 . The ratio of these currents I 1 and I 2 is determined by the ratio of resistances from the charged particle incident position to the respective terminals 113 and 114. Since this p-side electrode 108 has a predetermined electrical resistance per unit length, each of the terminals 113, 114 from the incident position
The electrical resistance from the incident position to each terminal 1
It is proportional to the distance to 13,114. Therefore, the effective length of the position-sensitive particle detectors 105a and 105b, that is, the distance between the terminals 113 and 114, is
y 0 , the distance from the incident position to one electrode 113 is
y 1 and the distance from the incident position to the other electrode 114 is y, the current I 1 flowing through one terminal 113 is I 1 =I 0 ×y/y 0 (1). Therefore, by detecting this current I 1 , the product k·y of the energy k of the incident charged particle and the distance y from the other end to the incident position can be determined.

以上の如く構成した本発明の一実施例は、荷電
粒子はたとえばコリメータ103aのスリツト1
04を通つて磁界および電界内に入射する。そし
て磁界によつて半径rの半円形の軌跡Tを描いて
180゜偏向され、また電界によつてこの電界の方
向にzだけ変位して位置有感形粒子検出器105
a,105bに入射する。そしてこの変位量zは
入射した荷電粒子の質量をm、電荷をq、磁界の
強さをB、電界の強さをEとすれば、 z=π/2×E/B×m/q ……(2) となる。そして、荷電粒子の質量mの電荷qの比
m/qは荷電粒子の種類によつて一定であるか
ら、どの位置有感形粒子検出器105a,105
bに入射したかによつてその荷電粒子の種類が判
明する。また、上記位置有感粒子検出器105
a,105bでは入射した荷電粒子のエネルギK
とエネルギKと入射位置yの積K・yが求められ
るので、荷電粒子のエネルギKと入射位置yの両
方が求められる。また、荷電粒子の描く半円形の
半径rは で求められる。したがつて前述の如く荷電粒子の
質量mとエネルギKが求められればその軌跡の半
径rが求められる。そして、さらに上述の如くこ
の荷電粒子の入射位置yも求められるので、この
荷電粒子がどのコリメータ103a,103b,
103c…を通過したものであるかを判別するこ
とができる。したがつて、第3図に示す如くコリ
メータ103aを通過して半径r1の軌跡T1を描い
た荷電粒子とコリメータ103aを通過して半径
r2の軌跡T2を描いた荷電粒子が位置有感形粒子検
出器105a,105bの同じ位置に入射して
も、これら荷電粒子がどのコリメータ103a,
103b,103c…を通過したものであるかを
判別できる。したがつてこれらコリメータ103
a,103b,103c…は荷電粒子の描く軌跡
の最大の半径等とは無関係に必要なだけ小さな間
隔で配置できる。よつて荷電粒子の空間的分布を
精密に測定でき、また1個の粒子検出装置に多数
のコリメータ13a,13b,13c…を設ける
ことができ、構造も簡単でかつ小形に形成できる
ものである。なお、上記位置有感形粒子検出器1
05a,105bに入射する荷電粒子は電界を通
過する際に △K=π/2(E/B)2m ……(4) だけエネルギが増加するが、このエネルギの増加
分△KはKに比べてきわめて小さいので、これを
無視することもでき、また場合によつては信号処
理回路112で補正を加えてもよい。
In one embodiment of the present invention configured as described above, the charged particles are e.g.
04 into the magnetic and electric fields. Then, a semicircular trajectory T with radius r is drawn by the magnetic field.
The position-sensitive particle detector 105 is deflected by 180° and is also displaced by the electric field by z in the direction of the electric field.
a, 105b. Then, this displacement z is calculated as follows, where m is the mass of the incident charged particle, q is the electric charge, B is the strength of the magnetic field, and E is the strength of the electric field, z=π 2 /2×E/B 2 ×m/ q...(2) becomes. Since the ratio m/q of charge q to mass m of a charged particle is constant depending on the type of charged particle, which position-sensitive particle detector 105a, 105
The type of charged particle can be determined depending on whether it is incident on b. In addition, the position-sensitive particle detector 105
a, 105b, the energy K of the incident charged particle
Since the product K·y of the energy K and the incident position y is obtained, both the energy K and the incident position y of the charged particle are obtained. Also, the radius r of the semicircle drawn by the charged particle is is required. Therefore, as described above, if the mass m and energy K of a charged particle are determined, the radius r of its trajectory can be determined. Furthermore, since the incident position y of this charged particle is also determined as described above, which collimator 103a, 103b,
103c... can be determined. Therefore, as shown in FIG. 3, a charged particle that passes through the collimator 103a and draws a trajectory T 1 with a radius r 1 and a charged particle that passes through the collimator 103a and draws a trajectory T 1 with a radius
Even if charged particles that draw a trajectory T 2 of r 2 are incident on the same position of the position-sensitive particle detectors 105a, 105b, which collimator 103a,
103b, 103c, etc. can be determined. Therefore, these collimators 103
a, 103b, 103c, . . . can be arranged at as small intervals as necessary, regardless of the maximum radius of the trajectory drawn by the charged particles. Therefore, the spatial distribution of charged particles can be precisely measured, a large number of collimators 13a, 13b, 13c, . . . can be provided in one particle detection device, and the structure can be made simple and compact. Note that the position-sensitive particle detector 1
When charged particles incident on 05a and 105b pass through the electric field, their energy increases by △K=π 2 /2 (E/B) 2 m...(4), but this energy increase △K is Since this is extremely small compared to , it can be ignored, or the signal processing circuit 112 may correct it depending on the case.

なお、本発明は上記の一実施例には限定されな
い。
Note that the present invention is not limited to the above embodiment.

たとえば、粒子の通過するスリツトの中または
前後にガスセルを設け、中性粒子を荷電変換して
イオン化することにより中性粒子も検出できるも
のである。
For example, neutral particles can also be detected by providing a gas cell in or before and after a slit through which the particles pass, and converting the charge of the neutral particles to ionize them.

また、位置有感形粒子検出器は必らずしも半導
体を用いたものに限らず、電離形その他のものを
用いてもよく、要は入射する荷電粒子のエネルギ
と入射位置を求めることのできるものであればよ
い。
Furthermore, position-sensitive particle detectors are not necessarily limited to those using semiconductors, but may also use ionization type or other types.The point is to determine the energy and position of incident charged particles. It's fine as long as it's possible.

上述の如く本発明は互に平行で互に重なり合う
磁界および電界内にこれらと直交する方向に粒子
を入射させる複数のスリツトを設け、また上記磁
界および電界内で偏向された粒子を受け、その入
射位置とエネルギとを検出し得る位置有感形粒子
検出器を設けたものである。したがつて入射した
粒子の種類、エネルギおよびどのスリツトから入
射したかが検出されるので、上記複数のスリツト
の間隔は磁界内で粒子が描く軌跡の最大の半径等
とは無関係に必要なだけ小さな間隔とすることが
でき、粒子の空間的分布を高精度に測定すること
ができ、さらに1個の装置に多数のスリツトを設
けることができるので構造が簡単で小形化できる
等その効果は大である。
As described above, the present invention provides a plurality of slits that allow particles to be incident in a direction perpendicular to magnetic and electric fields that are parallel to each other and overlap each other, and that receives particles that are deflected in the magnetic and electric fields and detects the incident particles. A position-sensitive particle detector capable of detecting position and energy is provided. Therefore, since the type and energy of the incident particle and which slit it entered from are detected, the spacing between the multiple slits can be made as small as necessary, regardless of the maximum radius of the trajectory drawn by the particle in the magnetic field. It is possible to measure the spatial distribution of particles with high accuracy, and since a large number of slits can be provided in one device, the structure is simple and compact, and its effects are great. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来例を示し、第1図は
概略的な平面図、第2図は概略的な側面図であ
る。第3図ないし第5図は本発明の一実施例を示
し、第3図は概略的な平面図、第4図は概略的な
側面図、第5図は位置有感形検出器の概略構成図
である。 101a,101b…磁極、102a,102
b…電極、103a,103b,103c…コリ
メータ、104…スリツト、105a,105b
…位置有感形粒子検出器、107…n側電極、1
08…p側電極。
1 and 2 show a conventional example, with FIG. 1 being a schematic plan view and FIG. 2 being a schematic side view. 3 to 5 show an embodiment of the present invention, in which FIG. 3 is a schematic plan view, FIG. 4 is a schematic side view, and FIG. 5 is a schematic configuration of a position-sensitive detector. It is a diagram. 101a, 101b...magnetic pole, 102a, 102
b...Electrode, 103a, 103b, 103c...Collimator, 104...Slit, 105a, 105b
...position-sensitive particle detector, 107...n-side electrode, 1
08...p side electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 一様な磁界を形成する一対の磁極と、この磁
界と互に平行でかつ互に重なり合う一様な電界を
形成する一対の電極と上記磁界および電界と直交
する方向に沿つて配列され上記磁界および電界内
にこれらと直交する方向に粒子を入射させる複数
のスリツトと、上記スリツトの配列方向に沿つて
設けられ上記磁界内で180゜偏向して入射する粒
子のエネルギおよび上記スリツトの配列方向に沿
う方向の上記粒子の入射位置を検出する位置有感
形粒子検出器とを具備したことを特徴とする粒子
検出装置。
1 A pair of magnetic poles forming a uniform magnetic field, a pair of electrodes forming a uniform electric field parallel to and overlapping with this magnetic field, and arranged along a direction orthogonal to the magnetic field and the electric field, and the magnetic field and a plurality of slits that cause particles to enter the electric field in a direction perpendicular to these, and the energy of the particles that are provided along the direction in which the slits are arranged and are deflected by 180 degrees in the magnetic field, and the energy of the particles that are incident in the direction in which the slits are arranged. A particle detection device comprising: a position-sensitive particle detector for detecting the incident position of the particles in the direction along the particle detector.
JP56055946A 1981-04-14 1981-04-14 Particle detecting device Granted JPS57170453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56055946A JPS57170453A (en) 1981-04-14 1981-04-14 Particle detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56055946A JPS57170453A (en) 1981-04-14 1981-04-14 Particle detecting device

Publications (2)

Publication Number Publication Date
JPS57170453A JPS57170453A (en) 1982-10-20
JPS6259857B2 true JPS6259857B2 (en) 1987-12-14

Family

ID=13013238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56055946A Granted JPS57170453A (en) 1981-04-14 1981-04-14 Particle detecting device

Country Status (1)

Country Link
JP (1) JPS57170453A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718982B2 (en) * 2005-12-07 2011-07-06 財団法人光科学技術研究振興財団 Ion analyzer

Also Published As

Publication number Publication date
JPS57170453A (en) 1982-10-20

Similar Documents

Publication Publication Date Title
James et al. Microsecond mass separation of heavy compound nucleus residues using the Daresbury recoil separator
Charpak et al. Multiwire proportional chambers and drift chambers
US3483377A (en) Position-sensitive radiation detector
JP5080489B2 (en) Gas metering
Borer et al. Multitube proportional chambers for the localization of electromagnetic showers in the CERN UA2 detector
JPS6224749B2 (en)
Oed et al. A new position sensitive proportional counter with microstrip anode for neutron detection
JPS6259857B2 (en)
Alder et al. A high-resolution pair spectrometer for medium energy photons
US4074572A (en) Method and apparatus for sensing the flux of a flowing fluid
US8481957B2 (en) Ionizing radiation detector
Neumann et al. Modification of the Charpak chamber with foil supported conductors
US4882480A (en) Apparatus for detecting the position of incidence of particle beams including a microchannel plate having a strip conductor with combed teeth
Charpak Multiwire and drift proportional chambers
Amendolia et al. High resolution silicon detectors for colliding beam physics
JP2000137081A (en) Beam diagnostic probe of accelerator
RU2052823C1 (en) Voltage measurement technique
JP2007240467A (en) Open window ionization chamber
JPS5917503B2 (en) Neutral particle detection device
Bailey et al. Spatial precision of H1 radial wire drift chambers using gas mixtures suitable for transition radiation detection
Wolfs et al. Segmented focal plane detector for light and heavy ions
Wolfe et al. A neutron spectrometer employing charged-particle collimation to improve resolution
Mull et al. Preliminary design of a heavy ion beam probe diagnostic for the National Spherical Torus Experiment
SU1156579A1 (en) Energy-analyzing magnet
Sauli Development of multidrift tubes