JPS6259754B2 - - Google Patents

Info

Publication number
JPS6259754B2
JPS6259754B2 JP11311681A JP11311681A JPS6259754B2 JP S6259754 B2 JPS6259754 B2 JP S6259754B2 JP 11311681 A JP11311681 A JP 11311681A JP 11311681 A JP11311681 A JP 11311681A JP S6259754 B2 JPS6259754 B2 JP S6259754B2
Authority
JP
Japan
Prior art keywords
reaction
coil
section
diameter
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11311681A
Other languages
Japanese (ja)
Other versions
JPS5815587A (en
Inventor
Mamoru Hotsukedo
Yukimasa Shigemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen KK
Original Assignee
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen KK filed Critical Mitsui Zosen KK
Priority to JP11311681A priority Critical patent/JPS5815587A/en
Publication of JPS5815587A publication Critical patent/JPS5815587A/en
Publication of JPS6259754B2 publication Critical patent/JPS6259754B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 この発明は原料炭化水素を加熱、熱分解してオ
レフインを製造するための熱分解炉における反応
管装置に関するものである。 ナフサ、灯軽油などの原料炭化水素を加熱、熱
分解して、エチレン、プロピレンなどの低級オレ
フインを製造するための、いわゆる反応管式熱分
解炉は、一般に第1図ないし第3図の構成となつ
ている。すなわち、これらの各図においてこの熱
分解炉は、炉内上部に対流部2、基部に輻射部
3を有し、原料炭化水素は対流部2に配した予熱
コイル(図示省略)を通して予熱され、かつ希釈
スチームと混合した上でさらに反応温度近くまで
加熱されて、その後、輻射部3に配置した反応管
装置に導入される。 そしてこの従来例の場合、前記反応管装置
は、直管部5をベンド管部6で一連に接続して反
応コイルを形成しており、この反応コイルの2系
統7A,7Bを出口部のヘツダー8により合流さ
せると共に、これらをハンガー9で支持させてあ
り、この反応コイルとしては内径25〜150mmの耐
熱合金製のパイプを用いる。また前記輻射部3を
形成する炉壁および炉底にバーナー10を配して
あつて、通常、550〜650℃の温度で反応コイルに
導入された原料炭化水素は、出口部付近で800〜
950℃の温度まで加熱される。 ここで前記反応管装置のコイルには、従来、
入口部から出口部に至るまで一定口径のパイプが
用いられており、このような一定口径コイルの場
合の流体温度プロフイールは、第8図に曲線Aで
示したように、その温度上昇が中間部で緩慢にな
る傾向を有している。すなわち、原料炭化水素の
熱分解は吸熱反応であつて、この部分で分解が激
しく起るが、このような一定口径コイルでは充分
な熱を与えることができず、このために温度上昇
が緩やかとなるのである。 一方、原料炭化水素を熱分解して高収率でオレ
フインを得るのには、反応コイル内での短かい滞
溜時間内で急速に反応温度を高め、かつ反応圧力
を低くすればよいことが判明しており、また小口
径コイルは大口径コイルに比較して、単位コイル
体積当りの表面積比が大きく、従つて単位コイル
体積当りの吸収熱量も大きくなる。つまり反応コ
イル内での質量移動速度が同じであれば、大口径
コイルよりも小口径コイルの方が吸収熱量が大き
いことになる。 この発明はこのような見地から、一連の反応コ
イルにあつて、特に分解反応の激しいコイル部分
を、複数路の小口径コイルにより構成させ、同部
分での吸収熱量を可及的に増加させ、急速に分解
温度を上昇させることによつて、高いオレフイン
収率を得られるようにしたものである。 以下、この発明に係わる反応管装置の実施例に
つき、第4図ないし第10図を参照して詳細に説
明する。 第4図および第5図と、第6図および第7図と
は、共にこの発明を一系統からなる反応コイルに
適用した各別の実施例であり、第4図,第5図は
中間部が2流路の場合を、また第6図,第7図は
同様に3流路の場合をそれぞれに示している。 これらの各実施例において、入口部の反応コイ
ル11は、反応コイル流路当りの全長に対する比
が0.15以上0.5未満の部分でヘツダー14aによ
り、第4図,第5図の場合は反応コイル12a,
12bの流路と、反応コイル12c,12dの流
路とに、また第6図,第7図の場合は反応コイル
12a,12bの流路と、反応コイル12c,1
2dのの流路と、反応コイル12e,12fの流
路とにそれぞれ一旦分岐されたのち、これらの各
分岐流路は再度、反応コイル流路当りの全長に対
する比が0.6以上の部分でヘツダー14bによ
り、1つにまとめられて出口部の反応コイル13
に至るように形成されると共に、入口部および出
口部の各反応コイル11,13の内径に対し、そ
れぞれに分岐された各反応コイル12a〜12f
の内径を小さいものとしている。すなわち、一連
の反応コイルの全長にあつて、特に分解反応の激
しいコイル中間部分を、入口部および出口部それ
ぞれの各反応コイル11,13の内径よりも小さ
い複数流路の小口径反応コイル12a〜12fに
より形成させたものである。 また第8図には、流路当りのコイル長さに対す
る流体温度分解分布を、第9図には、同じく流路
当りのコイル長さに対する単位体積当りの吸収熱
量分布をそれぞれに示しており、これらの各図に
おいて曲線Aは一定口径コイルによる従来例を、
曲線Bはこの発明での中間部を複数流路の小口径
コイルとした例を表わしているが、これらの曲線
A,Bの対比からも明らかなように、この発明を
適用した反応コイルの場合、原料炭水化水素は従
来例よりも高い反応温度レベルで熱分解されるた
めに、その転化率が高くてオレフイン収率を増加
でき、併せて急速な温度上昇が可能であるため
に、反応コイル内での滞溜時間を短縮し得るので
ある。 一方、炭化水素の熱分解においては、反応コイ
ル内でタール物質、コークスなどが副生されて、
コイル内面に付着、蓄積されるところの、いわゆ
るコーキング現象を生じ、運転の継続に伴なつて
有効な反応コイル内径が小さくなり、反応コイル
内での圧力損失が増加して、反応圧力が高くなる
ことが知られている。第10図は流路当りのコイ
ル長さに対して、コイル内面に付着するタール物
質、コークスの厚さ分布を示しており、コイル出
口部でこのコーキング原象が著るしいことが判
る。そしてこのようにコイル内での反応圧力が高
くなると、炭化水素の熱分解反応が当然抑制され
ると共に、生成されたオレフインの重合などの反
応も促進されて、結果的にオレフイン収率が低下
することになる。そしてこの圧力損失はコイル内
径のほぼ5乗に反比例するから、このようにター
ル物質、コークスなどがコイル内面に付着する場
合、小口径コイルの圧力損失は大口径コイルのそ
れに比較して著るしく増加し、炭化水素の熱分解
に悪影響を及ぼすものである。 しかしこのような反応コイル内面へのタール物
質、コークスなどの付着による圧力損失の増大に
ついても、この発明では中間部の複数流路小口径
コイルに連なる出口部の反応コイルを大口径コイ
ルにしているために、コーキング現象を効果的に
抑制できることになる。この際上述の出口部大口
径コイルは、中間部の複数流路小口径コイルを再
度合流させ一流路としているために、コイル内流
速の低下による滞溜時間の増大をさけることがで
きるのである。つまりコーキングによる反応コイ
ルの熱分解特性の低下を阻止し、長期に亘る継続
運転において最適な分解反応特性を維持できるの
である。 以上詳述しようにこの発明によるときは、輻射
部に配置される反応管において、当該反応管を中
間部で複数流路に分岐し、かつこれらの複数流路
の反応管群を再度合流させることにより、入口
部、中間部、および出口部の3つの反応部を構成
するとともに、当該中間部の複数流路の各反応コ
イルの内径を入口部反応コイルおよび出口部反応
コイルの内径より小さく構成したので反応コイル
内での原料炭化水素の反応温度を急速に高めると
共に、反応圧力を低くしてコイル内での滞溜時間
を短かくでき、これによつてオレフインの収率を
向上し得るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reaction tube device in a pyrolysis furnace for producing olefins by heating and pyrolyzing raw material hydrocarbons. A so-called reaction tube pyrolysis furnace for producing lower olefins such as ethylene and propylene by heating and pyrolyzing feedstock hydrocarbons such as naphtha and kerosene generally has the configuration shown in Figures 1 to 3. It's summery. That is, in each of these figures, this pyrolysis furnace 1 has a convection section 2 in the upper part of the furnace and a radiant section 3 at the base, and the raw material hydrocarbon is preheated through a preheating coil (not shown) disposed in the convection section 2. , and mixed with diluted steam, further heated to near the reaction temperature, and then introduced into the reaction tube device 4 disposed in the radiant section 3. In the case of this conventional example, the reaction tube device 4
, a reaction coil is formed by connecting a straight pipe section 5 in series with a bent pipe section 6, and the two systems 7A and 7B of this reaction coil are joined by a header 8 at the outlet section, and are connected by a hanger 9. The reaction coil is a heat-resistant alloy pipe with an inner diameter of 25 to 150 mm. In addition, burners 10 are arranged on the furnace wall and the furnace bottom forming the radiant section 3, and the feedstock hydrocarbons introduced into the reaction coil at a temperature of 550 to 650°C are usually heated to 800 to 800°C near the outlet.
Heated to a temperature of 950°C. Here, in the coil of the reaction tube device 4 , conventionally,
A pipe with a constant diameter is used from the inlet to the outlet, and the fluid temperature profile in the case of such a constant diameter coil is such that the temperature rises at the middle part, as shown by curve A in Figure 8. It has a tendency to slow down. In other words, the thermal decomposition of raw material hydrocarbons is an endothermic reaction, and decomposition occurs violently in this part, but a fixed diameter coil like this cannot provide enough heat, so the temperature rise is slow. It will become. On the other hand, in order to obtain olefins in high yield by thermally decomposing feedstock hydrocarbons, it is necessary to rapidly raise the reaction temperature and lower the reaction pressure within a short residence time in the reaction coil. It has been found that a small-diameter coil has a larger surface area ratio per unit coil volume than a large-diameter coil, and therefore a larger amount of absorbed heat per unit coil volume. In other words, if the mass transfer speed within the reaction coil is the same, a small diameter coil will absorb a larger amount of heat than a large diameter coil. From this point of view, the present invention consists of a series of reaction coils, in which the coil portion where the decomposition reaction is particularly intense is constituted by a plurality of small-diameter coils, and the amount of heat absorbed in the same portion is increased as much as possible. By rapidly raising the decomposition temperature, a high olefin yield can be obtained. Hereinafter, embodiments of the reaction tube apparatus according to the present invention will be described in detail with reference to FIGS. 4 to 10. 4 and 5 and FIGS. 6 and 7 are different embodiments in which the present invention is applied to a reaction coil consisting of one system, and FIGS. 4 and 5 show the intermediate section. shows the case where there are two channels, and FIGS. 6 and 7 similarly show the case where there are three channels. In each of these embodiments, the reaction coil 11 at the inlet is connected to the header 14a at a portion where the ratio to the total length per reaction coil flow path is 0.15 or more and less than 0.5, and in the case of FIGS. 4 and 5, the reaction coil 12a,
12b and the reaction coils 12c, 12d, or in the case of FIGS. 6 and 7, the reaction coils 12a, 12b and the reaction coils 12c, 1.
2d and the reaction coils 12e and 12f, each of these branched channels is again connected to the header 14b at a portion where the ratio to the total length per reaction coil channel is 0.6 or more. , the reaction coil 13 at the outlet is combined into one.
The reaction coils 12a to 12f are formed so as to reach the inner diameters of the reaction coils 11 and 13 at the inlet and outlet portions, and are branched into respective ones.
The inner diameter is made small. That is, in the entire length of a series of reaction coils, the middle part of the coil where the decomposition reaction is particularly intense is divided into small-diameter reaction coils 12a to 12a with multiple channels smaller than the inner diameter of each reaction coil 11, 13 at the inlet and outlet sections. 12f. Furthermore, Fig. 8 shows the fluid temperature decomposition distribution with respect to the coil length per flow path, and Fig. 9 shows the absorbed heat amount distribution per unit volume with respect to the coil length per flow path. In each of these figures, curve A represents a conventional example using a constant diameter coil.
Curve B represents an example in which the intermediate portion of the present invention is a small-diameter coil with multiple channels, but as is clear from the comparison of these curves A and B, in the case of a reaction coil to which this invention is applied. Since the raw material hydrocarbon is thermally decomposed at a higher reaction temperature level than in conventional examples, the conversion rate is high and the olefin yield can be increased, and at the same time, the reaction temperature can be rapidly increased. This makes it possible to shorten the residence time within the coil. On the other hand, in the thermal decomposition of hydrocarbons, tar substances, coke, etc. are produced as by-products in the reaction coil.
A so-called coking phenomenon occurs where the substance adheres to and accumulates on the inner surface of the coil, and as operation continues, the effective inner diameter of the reaction coil decreases, pressure loss within the reaction coil increases, and the reaction pressure increases. It is known. FIG. 10 shows the thickness distribution of tar substances and coke adhering to the inner surface of the coil with respect to the length of the coil per flow path, and it can be seen that this coking phenomenon is significant at the coil outlet. When the reaction pressure inside the coil increases in this way, the thermal decomposition reaction of hydrocarbons is naturally suppressed, and reactions such as polymerization of the produced olefin are also promoted, resulting in a decrease in olefin yield. It turns out. Since this pressure loss is approximately inversely proportional to the fifth power of the coil inner diameter, when tar substances, coke, etc. adhere to the inner surface of the coil, the pressure loss of a small diameter coil is significantly greater than that of a large diameter coil. This has a negative impact on the thermal decomposition of hydrocarbons. However, in order to deal with the increase in pressure loss due to the adhesion of tar substances, coke, etc. to the inner surface of the reaction coil, in this invention, the reaction coil at the outlet section connected to the multi-channel small-diameter coil at the middle section is made into a large-diameter coil. Therefore, the coking phenomenon can be effectively suppressed. In this case, since the above-mentioned large-diameter exit coil rejoins the small-diameter coils with multiple channels in the middle portion to form a single channel, it is possible to avoid an increase in the residence time due to a decrease in the flow velocity in the coil. In other words, it is possible to prevent deterioration of the thermal decomposition characteristics of the reaction coil due to coking, and maintain optimal decomposition reaction characteristics during long-term continuous operation. As detailed above, according to the present invention, in the reaction tube disposed in the radiating section, the reaction tube is branched into a plurality of channels at the middle part, and the reaction tube groups of these plurality of channels are merged again. As a result, three reaction sections, an inlet section, an intermediate section, and an outlet section, were constructed, and the inner diameter of each reaction coil in the plurality of channels in the intermediate section was configured to be smaller than the inner diameter of the inlet section reaction coil and the outlet section reaction coil. Therefore, it is possible to rapidly raise the reaction temperature of the raw material hydrocarbon in the reaction coil, lower the reaction pressure, and shorten the residence time in the coil, thereby improving the yield of olefin. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例による熱分解炉の概要構成を示
す断面図、第2図および第3図は第1図―お
よび―線部のそれぞれ断面図、第4図はこの
発明の一実施例による反応コイルを示す正面構成
図、第5図は第4図―線部の断面説明図、第
6図は同上他の実施例による反応コイルの正面構
成図、第7図は第6図―線部の断面説明図、
第8図,第9図および第10図は反応コイルの流
路当りの長さに対する流体温度分布、単位吸収熱
量分布およびコーキング付着厚さ分布をそれぞれ
に示す特性図である。 …熱分解炉、2…対流部、3…輻射部、
反応管装置、10…バーナー、11…入口部反応
コイル、12aないし12f…中間部反応コイ
ル、13…出口部反応コイル、14a,14b…
ヘツダー。
FIG. 1 is a cross-sectional view showing the general structure of a conventional pyrolysis furnace, FIGS. 2 and 3 are cross-sectional views of the portions lined in FIG. 1, and FIG. 4 is an embodiment of the present invention. A front configuration diagram showing the reaction coil, FIG. 5 is a cross-sectional explanatory diagram of the line part shown in FIG. 4, FIG. 6 is a front configuration diagram of a reaction coil according to another embodiment of the same as above, and FIG. A cross-sectional diagram of
FIGS. 8, 9, and 10 are characteristic diagrams showing the fluid temperature distribution, unit absorbed heat amount distribution, and coking adhesion thickness distribution with respect to the length per channel of the reaction coil, respectively. 1 ...Pyrolysis furnace, 2...Convection section, 3...Radiation section, 4 ...
Reaction tube device, 10... Burner, 11... Inlet reaction coil, 12a to 12f... Intermediate reaction coil, 13... Outlet reaction coil, 14a, 14b...
Hetzder.

Claims (1)

【特許請求の範囲】[Claims] 1 輻射部に配置した反応管に原料炭化水素を導
入し、これを加熱、熱分解してオレフインを製造
する熱分解炉において、当該反応管を中間部で複
数流路に分岐し、かつこれらの複数流路の反応管
群を再度合流させることにより、入口部、中間
部、および出口部の3つの反応部を構成するとと
もに、当該中間部の複数流路の各反応コイルの内
径を入口部反応コイルおよび出口部反応コイルの
内径より小さく構成したことを特徴とする反応管
装置。
1. In a pyrolysis furnace in which feedstock hydrocarbons are introduced into a reaction tube placed in a radiant section, heated and thermally decomposed to produce olefins, the reaction tube is branched into multiple channels at the middle section, and these channels are By merging the reaction tube groups of multiple channels again, three reaction sections, an inlet section, an intermediate section, and an outlet section, are constructed, and the inner diameter of each reaction coil of the multiple channels in the intermediate section is changed to the inlet section reaction section. A reaction tube device characterized in that the inner diameter is smaller than that of a coil and an outlet reaction coil.
JP11311681A 1981-07-20 1981-07-20 Reaction tube arrangement in pyrolysis furnace Granted JPS5815587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11311681A JPS5815587A (en) 1981-07-20 1981-07-20 Reaction tube arrangement in pyrolysis furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11311681A JPS5815587A (en) 1981-07-20 1981-07-20 Reaction tube arrangement in pyrolysis furnace

Publications (2)

Publication Number Publication Date
JPS5815587A JPS5815587A (en) 1983-01-28
JPS6259754B2 true JPS6259754B2 (en) 1987-12-12

Family

ID=14603911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11311681A Granted JPS5815587A (en) 1981-07-20 1981-07-20 Reaction tube arrangement in pyrolysis furnace

Country Status (1)

Country Link
JP (1) JPS5815587A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2018664B3 (en) * 1986-06-25 1991-05-01 Naphtachimie Sa Procedure and furnace for hydrocarbon vapor intended for the manufacture of olefins and diolefins.
JPH0335149U (en) * 1989-08-17 1991-04-05
US5151158A (en) * 1991-07-16 1992-09-29 Stone & Webster Engineering Corporation Thermal cracking furnace
JPH0538186U (en) * 1991-10-28 1993-05-25 政夫 鈴木 Pipe material connecting device
JPH0762135B2 (en) * 1991-10-31 1995-07-05 千代田化工建設株式会社 Tube type heating furnace and combustion control method thereof
JP2009514805A (en) * 2005-10-10 2009-04-09 フェアストック テクノロジーズ コーポレイション Method and associated apparatus for converting organic compounds using liquefied metal alloys
JP4825813B2 (en) * 2008-01-08 2011-11-30 株式会社東芝 Heating furnace for waste plastic decomposition oil
CN107532821A (en) * 2015-06-30 2018-01-02 环球油品公司 Alternative coil pipe for combustion-type process heaters
CN107497239B (en) * 2017-09-22 2024-03-29 江门展艺电脑机械有限公司 Waste gas pyrolysis furnace

Also Published As

Publication number Publication date
JPS5815587A (en) 1983-01-28

Similar Documents

Publication Publication Date Title
US5409675A (en) Hydrocarbon pyrolysis reactor with reduced pressure drop and increased olefin yield and selectivity
US4499055A (en) Furnace having bent/single-pass tubes
US3407789A (en) Heating apparatus and process
US5151158A (en) Thermal cracking furnace
MY122107A (en) Pyrolysis furnace with an internally finned u shaped radiant coil
US4324649A (en) Fired process heater
JPS6259754B2 (en)
CA1329317C (en) Cracking furnace
US20030127361A1 (en) Pyrolysis tube and pyrolysis method for using the same
US4661323A (en) Radiating sleeve for catalytic reaction apparatus
US2406640A (en) Conversion of hydrocarbons at high rates of heat input
US5427655A (en) High capacity rapid quench boiler
JP2016006188A (en) Delayed coking method
US6312652B1 (en) Ceramic dip pipe and tube reactor for ethylene production
CN102282438A (en) Coil for pyrolysis heater and method of cracking
EP0253633B1 (en) Furnace and process for hydrocarbon cracking
KR101599662B1 (en) A heat exchange device and a method of manufacturing the same
KR101202541B1 (en) Hydrocarbon thermal-cracking process for reducing pressure difference of reaction tube and improving heat efficiency to pyrolysis gas
JPS60179495A (en) Hydrocarbon vapor pyrolysis
US2598879A (en) Heating apparatus
JPH08319487A (en) Method and apparatus for decomposing hydrocarbon
JP2001262159A (en) Cracking coil
JPH0447719B2 (en)
US1605647A (en) Synthesis of ammonia
WO2003095590A1 (en) Improved cracking of hydrocarbons