JPS6259750B2 - - Google Patents

Info

Publication number
JPS6259750B2
JPS6259750B2 JP9301181A JP9301181A JPS6259750B2 JP S6259750 B2 JPS6259750 B2 JP S6259750B2 JP 9301181 A JP9301181 A JP 9301181A JP 9301181 A JP9301181 A JP 9301181A JP S6259750 B2 JPS6259750 B2 JP S6259750B2
Authority
JP
Japan
Prior art keywords
reaction zone
reaction
oil
petroleum
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9301181A
Other languages
Japanese (ja)
Other versions
JPS57207687A (en
Inventor
Masao Sakurai
Tetsuo Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI KOOKUSU KOGYO KK
TOYO ENJINIARINGU KK
Original Assignee
MITSUI KOOKUSU KOGYO KK
TOYO ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI KOOKUSU KOGYO KK, TOYO ENJINIARINGU KK filed Critical MITSUI KOOKUSU KOGYO KK
Priority to JP9301181A priority Critical patent/JPS57207687A/en
Priority to CA000404821A priority patent/CA1184140A/en
Priority to DD24079782A priority patent/DD207923A5/en
Priority to MX19323382A priority patent/MX163317A/en
Publication of JPS57207687A publication Critical patent/JPS57207687A/en
Publication of JPS6259750B2 publication Critical patent/JPS6259750B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は石油系重質油の改良された熱分解法
に関するものである。 従来、石油系重質油の有効利用を目的として、
これを熱分解してガス、軽質分解油およびピツチ
を得る試みが種々行なわれている。 製鉄高炉用コークス製造のための粘結剤とし
て、あるいは粘結炭の代替品として、大量に存在
する石油系重質油から製造されるピツチを利用す
ることは製鉄用原料炭の大部分を海外からの輸入
に依存している我が国においては輸入原料炭の節
減あるいは使用し得る原料炭の品種選択の範囲の
拡大のために極めて有意義である。 石油系重質油の熱分解により生成するピツチの
品質を上記の目的に適合させるためには、得られ
るピツチの性状がベンゼン不溶分において富み、
キノリン不溶分が少ない組成、すなわち炭化度と
重縮合度が中間的であるβレジン含有量が大きい
組成のものとすることが必要である。 石油系重質油の熱分解法として種々の回分法あ
るいは連続法が知られている。しかしながら、こ
れらの従来法では上記の目的に適合する品質のピ
ツチを得ることは困難である。本出願人らは先
に、中央部に開放部を有する1以上の区画床を持
つ反応器内を、石油系重質油を下方から上方に流
し、滞留時間を1〜10時間として熱分解を行なう
ことを提案した(特願昭56―3921)。しかしなが
ら、一般に石油系重質油の熱分解反応において
は、反応初期に分解ガスおよび分解油蒸気などの
気泡の発生が激しい。上記方法では反応液を下方
から上方に流すので反応塔下部において大量の気
泡が発生し、このために反応塔の容量が大とな
る。またガスの上昇流による反応液の撹拌が激し
くなり反応液全体が混合状態に近くなるので得ら
れるピツチの品質を上述の目的に完全には適合さ
せるためにはかなりの段数を要する。 この発明はβレジン成分に富む残渣ピツチを副
生する石油系重質油熱分解のための改良方法を提
供しようとするものである。 この発明の石油系重質油熱分解法は開孔部を有
する仕切板により上部反応域およびおよび下部反
応域に区画された直立筒型反応塔の上部反応域
に、加熱された石油系重質油を連続的に供給して
熱分解反応に付し、この際生成した分解ガスおよ
び油蒸気を上部反応域から抜き出し、ついで上部
反応域からの反応液を下部反応域中をピストン流
に近い形で上部から下部に移行させ、この際生成
した少量の分解ガスおよび分解油蒸気を下部反応
域を上昇させて上部反応域から抜き出し、残渣ピ
ツチを下部反応域の底部から抜き出すことを特徴
とするものである。 この発明においては、石油系重質油の熱分解反
応の特徴、すなわち第1図に示されたように、分
解ガスおよび分解油蒸気の生成反応は主に熱分解
反応の初期段階に進行し、副生ピツチからのβレ
ジン生成が主に熱分解反応の後期に進行するとい
う特徴が利用される。初期反応は、上記のように
上部反応域において分解ガスおよび分解油蒸気の
発生下におこなわれ、熱分解反応の大半が完了す
る。上部反応域を出た反応液は上記の下部反応域
をピストン流に近い形で上方から下方に流され、
この間に若干の熱分解反応を伴いながらβレジン
生成反応が進行する。下部反応域において熱分解
反応により生成した分解ガスおよび分解油蒸気は
反応液中を上昇して上部反応域を経由して排出さ
れる。 下部反応域は1以上の円形の孔またはスリツト
などの開孔部を有する仕切板によつて2以上の区
画に分割することができる。 この発明の実施態様を第2図を参照して説明す
る。ライン1からの1〜20気圧の石油系重質油が
加熱炉2に入り、好ましくは400〜510℃の温度に
予熱され、ライン3を経て反応塔4の上部反応域
5に導入される。反応塔4内には撹拌機8が設け
られる。上部反応域5は仕切板7を介して下部反
応域6に接続されている。必要に応じて分解油の
ストリツピング用スチームをこの部分に吸込むこ
ともできる。下部反応域6は、さらに同様の仕切
板7′,7″,7により4区間に分割される。い
うまでもないが、この区画数は1以上なら特に制
限はないが、20以上では区画の高さが小さくなり
過ぎ実用的でない。この仕切板7,7′,7″およ
び7には円形の孔またはスリツトなどの開孔部
が設けられるが、この円形の孔の直径またはスリ
ツト巾は5mm以上の大きさであることが望まし
い。5mm以下では反応液の下向流がさまたげられ
るからである。開孔部の面積は反応塔の断面積の
20%以下が好ましく、特に10%以下が好ましい。
開孔率が20%以上では区画相互の混合が大とな
る。仕切り板の開孔率を上記の範囲内で下段に行
くなど小さくすることもできる。なお、反応塔の
上部反応域の容積と下部反応域の容積との比は
0.5以下であることが好ましい。0.5以上ではピス
トン流の効果が充分に得られない。 上部反応域5に導入された石油系重質油は、
こゝで熱分解反応の大半が完了する。反応にとも
なつて大量のガスおよび油蒸気が発生し、これら
はライン9から系外に排出される。 反応液は、ついで仕切板7の開口部を通過して
下部反応域に入り、仕切板7′,7″,7の各々
の開孔部を通つて上方から下方に実質的にピスト
ン流として流れる。下部反応域を通過する間に反
応液相の重合反応が進行してβレジン分、キノリ
ン不溶分などを生成する。下部反応域において発
生する分解ガスおよび分解油蒸気は少量であり、
これらは反応液の流れとは反対に上方に向つて気
泡の形で上昇し、最終的には上部反応域で発生す
るガスと共にライン9から抜出される。下部反応
域で上昇する気泡に抗して反応液が下方に円滑に
流れるには、仕切板の開孔率が大きいことが望ま
しいが区画相互の混合を促進するので好ましくな
い。本発明者らの検討の結果によれば、開孔部の
面積を前述したように反応塔の断面積の20%以下
に選び、かつ仕切板の開孔部における分解ガスお
よび分解油蒸気の流速を1〜10m/秒の範囲内に
選ぶことによつて上記の相反する要求を満たすこ
とができる。流速がこの範囲より大きくなると反
応液の下降が円滑に行なわれず、また小さくなる
と区画相互の混合が過大となり、ピストン流から
遠ざかることになる。 下部反応域6における重合反応によりβレジン
およびキノリン不溶分などの含量が増大したピツ
チは液状でライン10から系外に取り出される。 この発明によれば、石油系重質油の熱分解によ
り得られた残渣ピツチ中のβレジン成分含量が増
大する。また反応塔を比較的小さなサイズとする
ことが可能となる。さらに、重質油であるために
発生ガスの分離が困難であるが、この発明の方法
では製品中にガスの混入が少ないから製品の取出
しにトラブルがない。これは実操業では極めて重
要な利点である。 実施例 第2図に示された型の装置であつて、上部反応
域直径が400mm、上部反応域液深400mm、上部反応
域空間部高さ400mm、下部反応域直径300mm、下部
反応域高さ950mm、仕切板枚数6(上部反応域と
下部反応域との間の仕切板を含む)、仕切板間隔
150mmのものを用いた。この装置において仕切板
の開孔率を3,5,10および20%とし、装置内滞
留時間を2時間として実験を実施した。操作条件
および結果を表1に示した。なお、原料重質油は
全てクウエート減圧蒸留塔油であつて予熱温度
490℃、供給速度は50/時、反応圧力は上部反
応域において1.5ATAとした。
This invention relates to an improved pyrolysis method for petroleum heavy oil. Conventionally, with the aim of effectively utilizing heavy petroleum oil,
Various attempts have been made to thermally decompose this to obtain gas, light cracked oil and pitch. The use of pitch, which is produced from heavy petroleum oil, which exists in large quantities, as a caking agent for the production of coke for steelmaking blast furnaces or as a substitute for caking coal means that most of the coking coal for steelmaking can be exported overseas. In Japan, which relies on imports from other countries, this is extremely meaningful for reducing imported coking coal and expanding the range of types of coking coal that can be used. In order to match the quality of the pitch produced by thermal decomposition of petroleum-based heavy oil to the above-mentioned purpose, the properties of the pitch produced should be rich in benzene-insoluble matter,
It is necessary to have a composition that has a small amount of quinoline insoluble matter, that is, a composition that has a high content of β resin and has an intermediate degree of carbonization and a degree of polycondensation. Various batch methods and continuous methods are known as methods for thermally decomposing heavy petroleum oil. However, with these conventional methods, it is difficult to obtain a pitch of quality that meets the above objectives. The applicants first conducted thermal decomposition by flowing petroleum-based heavy oil from the bottom to the top through a reactor having one or more compartmented beds with an open part in the center, and setting the residence time to 1 to 10 hours. (Special application 1986-3921) However, in general, in the thermal decomposition reaction of petroleum-based heavy oil, bubbles such as cracked gas and cracked oil vapor are generated intensely at the early stage of the reaction. In the above method, since the reaction liquid is flowed from the bottom to the top, a large amount of bubbles are generated at the bottom of the reaction tower, which increases the capacity of the reaction tower. In addition, since the reaction liquid is stirred violently by the upward flow of gas, and the entire reaction liquid approaches a mixed state, a considerable number of stages are required in order to ensure that the quality of the resulting pitch is completely compatible with the above-mentioned purpose. The present invention seeks to provide an improved method for the thermal decomposition of heavy petroleum oils that produces a residue pitch rich in β-resin components. In the petroleum heavy oil pyrolysis method of this invention, heated petroleum heavy oil is placed in the upper reaction zone of an upright cylindrical reaction tower, which is divided into an upper reaction zone and a lower reaction zone by a partition plate having openings. Oil is continuously supplied and subjected to a pyrolysis reaction, the cracked gas and oil vapor generated at this time are extracted from the upper reaction zone, and then the reaction liquid from the upper reaction zone is passed through the lower reaction zone in a form similar to a piston flow. A small amount of cracked gas and cracked oil vapor generated at this time is removed from the upper reaction zone by raising the lower reaction zone, and a residue pitch is extracted from the bottom of the lower reaction zone. It is. In this invention, the characteristics of the thermal decomposition reaction of petroleum-based heavy oil, that is, as shown in FIG. The characteristic that β-resin production from by-product pitch mainly proceeds in the latter stage of the thermal decomposition reaction is utilized. The initial reaction is carried out in the upper reaction zone under the generation of cracked gas and cracked oil vapor as described above, and most of the thermal cracking reaction is completed. The reaction liquid leaving the upper reaction zone flows from above to below in the lower reaction zone in a manner similar to a piston flow.
During this time, the β-resin production reaction progresses with some thermal decomposition reactions. The cracked gas and cracked oil vapor generated by the thermal decomposition reaction in the lower reaction zone rise in the reaction liquid and are discharged via the upper reaction zone. The lower reaction zone can be divided into two or more compartments by a partition plate having apertures such as one or more circular holes or slits. An embodiment of this invention will be described with reference to FIG. Petroleum-based heavy oil from line 1 at a pressure of 1 to 20 atm enters the heating furnace 2, is preheated to a temperature of preferably 400 to 510°C, and is introduced into the upper reaction zone 5 of the reaction column 4 via line 3. A stirrer 8 is provided within the reaction tower 4 . The upper reaction zone 5 is connected to the lower reaction zone 6 via a partition plate 7. If necessary, steam for stripping cracked oil can also be sucked into this part. The lower reaction zone 6 is further divided into four sections by similar partition plates 7', 7'', and 7. Needless to say, there is no particular restriction on the number of sections as long as it is 1 or more, but if it is 20 or more, the number of sections is The height is too small to be practical. The partition plates 7, 7', 7'' and 7 are provided with openings such as circular holes or slits, but the diameter of the circular holes or the slit width is 5 mm. It is desirable that the size is larger than that. This is because if it is less than 5 mm, the downward flow of the reaction liquid will be obstructed. The area of the opening is the cross-sectional area of the reaction tower.
It is preferably 20% or less, particularly preferably 10% or less.
When the open area ratio is 20% or more, intermixing between sections becomes large. The aperture ratio of the partition plate can also be made smaller within the above range, such as toward the lower stage. The ratio of the volume of the upper reaction zone to the volume of the lower reaction zone of the reaction tower is
It is preferably 0.5 or less. If it is 0.5 or more, the piston flow effect cannot be sufficiently obtained. The petroleum heavy oil introduced into the upper reaction zone 5 is
At this point, most of the thermal decomposition reaction is completed. A large amount of gas and oil vapor are generated as a result of the reaction, and these are discharged from the system through line 9. The reaction liquid then passes through the openings in the partition plate 7 into the lower reaction zone and flows substantially in a piston flow from above to below through the openings in each of the partition plates 7', 7'', 7. While passing through the lower reaction zone, the polymerization reaction of the reaction liquid phase progresses to produce β-resin components, quinoline insoluble components, etc. The cracked gas and cracked oil vapor generated in the lower reaction zone are small amounts;
These rise in the form of bubbles in an upward direction opposite to the flow of the reaction liquid, and are finally extracted from line 9 together with the gas generated in the upper reaction zone. In order for the reaction liquid to smoothly flow downward against the rising bubbles in the lower reaction zone, it is desirable that the porosity of the partition plate be large, but this is not preferable because it promotes mixing between the compartments. According to the results of studies conducted by the present inventors, the area of the openings is selected to be 20% or less of the cross-sectional area of the reaction tower as described above, and the flow rate of cracked gas and cracked oil vapor in the openings of the partition plate is The above conflicting demands can be satisfied by selecting the speed within the range of 1 to 10 m/sec. If the flow rate is higher than this range, the reaction liquid will not descend smoothly, and if it is lower, mixing between the compartments will be excessive and the flow will move away from the piston flow. Pitch whose content of β-resin and quinoline insoluble components has increased due to the polymerization reaction in the lower reaction zone 6 is taken out of the system through a line 10 in liquid form. According to the present invention, the content of the β-resin component in the residue pitch obtained by thermal decomposition of petroleum heavy oil is increased. Moreover, it becomes possible to make the reaction tower relatively small in size. Furthermore, since the oil is heavy, it is difficult to separate the generated gas, but in the method of the present invention, there is no problem in taking out the product because there is little gas mixed into the product. This is a very important advantage in actual operation. Example: An apparatus of the type shown in Figure 2, with an upper reaction zone diameter of 400 mm, an upper reaction zone liquid depth of 400 mm, an upper reaction zone space height of 400 mm, a lower reaction zone diameter of 300 mm, and a lower reaction zone height. 950mm, number of partition plates: 6 (including the partition plate between the upper reaction zone and lower reaction zone), partition plate spacing
A 150mm one was used. In this device, experiments were conducted with the pore ratios of the partition plates set to 3, 5, 10, and 20%, and the residence time in the device set to 2 hours. The operating conditions and results are shown in Table 1. The raw material heavy oil is all Kuwait vacuum distillation column oil, and the preheating temperature is
The temperature was 490° C., the feed rate was 50/hr, and the reaction pressure was 1.5 ATA in the upper reaction zone.

【表】【table】

【表】 定常運転不能
表1から明らかなように実験No.1の如く仕切板
の開孔部ガス流速が22.2m/秒と高い時は、下部
反応域において反応液が下降できず、フラツデイ
ングを起して定常運転ができなくなる。また実験
No.4の如く仕切板の開孔率が20%の場合には、ピ
ツチ中のβレジン含量も25重量%と低く、実験No.
2および3の場合に比してピストン流から遠ざか
つていることが明らかである。
[Table] Steady operation impossible As is clear from Table 1, when the gas flow velocity at the opening of the partition plate was as high as 22.2 m/sec as in Experiment No. 1, the reaction liquid could not descend in the lower reaction zone, causing flattening. It will wake up and make steady operation impossible. Experiment again
When the porosity of the partition plate is 20% as in No. 4, the β-resin content in the pitch is as low as 25% by weight, which is the case in Experiment No.
It is clear that the flow is further away from the piston flow than in cases 2 and 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石油系重質油の熱分解反応における反
応時間とガス、油蒸気発生量および反応温度との
関係を示すグラフであり、第2図はこの発明の実
施態様を説明するためのフローシートである。 2…加熱炉、4…反応塔、5…上部反応域、6
…下部反応域、7,7′,7″,7…仕切板、8
…撹拌機。
FIG. 1 is a graph showing the relationship between the reaction time, the amount of gas and oil vapor generated, and the reaction temperature in the thermal decomposition reaction of petroleum-based heavy oil, and FIG. 2 is a flowchart for explaining an embodiment of the present invention. It is a sheet. 2... Heating furnace, 4... Reaction tower, 5... Upper reaction zone, 6
...lower reaction zone, 7, 7', 7'', 7...partition plate, 8
…mixer.

Claims (1)

【特許請求の範囲】[Claims] 1 開孔部を有する仕切板により上部反応域およ
び下部反応域に区画された直立筒型反応塔の上部
反応域に、加熱された石油系重質油を連続的に供
給して熱分解反応に付し、この際生成した分解ガ
スおよび油蒸気を上部反応域から抜き出し、つい
で上部反応域からの反応液を下部反応域中をピス
トン流に近い形で上部から下部に移行させ、この
際生成した少量の分解ガスおよび分解油蒸気を下
部反応域を上昇させて上部反応域から抜き出し、
残渣ピツチを下部反応域の底部から抜き出すこと
を特徴とする石油系重質油の熱分解法。
1 Heated petroleum-based heavy oil is continuously supplied to the upper reaction zone of an upright cylindrical reaction tower, which is divided into an upper reaction zone and a lower reaction zone by a partition plate with openings, to initiate a thermal decomposition reaction. The cracked gas and oil vapor generated at this time are extracted from the upper reaction zone, and then the reaction liquid from the upper reaction zone is transferred from the upper part to the lower part in a form similar to a piston flow in the lower reaction zone. A small amount of cracked gas and cracked oil vapor is withdrawn from the upper reaction zone by raising the lower reaction zone.
A method for thermal decomposition of heavy petroleum oil, characterized by extracting residual pits from the bottom of a lower reaction zone.
JP9301181A 1981-06-18 1981-06-18 Cracking of petroleum heavy oil Granted JPS57207687A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9301181A JPS57207687A (en) 1981-06-18 1981-06-18 Cracking of petroleum heavy oil
CA000404821A CA1184140A (en) 1981-06-18 1982-06-09 Continuous thermal cracking method of heavy petroleum oil
DD24079782A DD207923A5 (en) 1981-06-18 1982-06-16 CONTINUOUS THERMAL CRACKING PROCESS FOR HEAVY SOIL
MX19323382A MX163317A (en) 1981-06-18 1982-06-18 CONTINUOUS THERMAL DISINTEGRATION METHOD OF HEAVY OIL OIL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9301181A JPS57207687A (en) 1981-06-18 1981-06-18 Cracking of petroleum heavy oil

Publications (2)

Publication Number Publication Date
JPS57207687A JPS57207687A (en) 1982-12-20
JPS6259750B2 true JPS6259750B2 (en) 1987-12-12

Family

ID=14070474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9301181A Granted JPS57207687A (en) 1981-06-18 1981-06-18 Cracking of petroleum heavy oil

Country Status (1)

Country Link
JP (1) JPS57207687A (en)

Also Published As

Publication number Publication date
JPS57207687A (en) 1982-12-20

Similar Documents

Publication Publication Date Title
DE3504010C2 (en) Process for converting heavy oil residues into hydrogen and gaseous and distillable hydrocarbons
US2445327A (en) Fluidizing process for gasifying carbonaceous solids
CN107531487B (en) Method and system for producing solid carbon material
CN107177378B (en) The supercritical extract of heavy oil feedstock and the combined system of floating bed hydrogenation and method
SU563920A3 (en) Method of producing deashed solid liquid fuel from coal
US4673486A (en) Process for thermal cracking of residual oils
US3841992A (en) Method for retorting hydrocarbonaceous solids
JPS6254153B2 (en)
US2776935A (en) Heat treating fluid coke compactions
US2560403A (en) Method for processing carbonaceous solids
KR0148566B1 (en) Process for the conversion of a heavy hydrocarbonaceous feedstock
JPS6158511B2 (en)
US4443328A (en) Method for continuous thermal cracking of heavy petroleum oil
US2885338A (en) Process and apparatus for retorting of oil shale
WO1984000035A1 (en) Procedure for thermal cracking of hydrocarbon oils
US4468316A (en) Hydrogenation of asphaltenes and the like
RU2729191C1 (en) Method for producing oil needle coke
US4214974A (en) Process for hydrogenation of coal
JPS6259750B2 (en)
US2527198A (en) Apparatus for gasifying carbonaceous solids
CN111004639A (en) Production process of coke
US2015085A (en) Method of thermolizing carbonizable materials
US4290999A (en) Apparatus for direct liquefaction
US3130132A (en) Apparatus for recovering oil from oil-bearing minerals
US2060447A (en) Working-up of carbonaceous materials