JPS6259530A - Production of high-purity manganese compound - Google Patents

Production of high-purity manganese compound

Info

Publication number
JPS6259530A
JPS6259530A JP19724685A JP19724685A JPS6259530A JP S6259530 A JPS6259530 A JP S6259530A JP 19724685 A JP19724685 A JP 19724685A JP 19724685 A JP19724685 A JP 19724685A JP S6259530 A JPS6259530 A JP S6259530A
Authority
JP
Japan
Prior art keywords
manganese
iron
solution
ferromanganese
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19724685A
Other languages
Japanese (ja)
Other versions
JPH0256289B2 (en
Inventor
Yoji Kenmochi
洋司 見持
Koichi Yoshioka
吉岡 孝一
Kazutada Shiogama
塩釜 一公
Hideaki Honoki
朴木 秀明
Koichi Kanbe
神戸 功一
Kiyoshi Matsuura
松浦 清
Tatsuo Kiyono
清野 達雄
Yoshiyuki Kimura
義行 木村
Mitsuharu Tominaga
富永 光春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP19724685A priority Critical patent/JPS6259530A/en
Publication of JPS6259530A publication Critical patent/JPS6259530A/en
Publication of JPH0256289B2 publication Critical patent/JPH0256289B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain a high-purity manganese compound easily at a low cost, by adding ferromanganese or metallic manganese and an acid to an aqueous solution containing electrolyte to dissolve Mn and Fe, removing the insoluble component and precipitating the dissolved Mn and Fe. CONSTITUTION:Ferromanganese and/or metallic manganese are added to an aqueous solution containing electrolyte and an acid is added to the solution under stirring to effect the dissolution of manganese and iron while keeping the pH at 2-9. The undissolved component is separated and removed from the solution. Thereafter, the manganese and iron in the solution is precipitated and recovered. The electrolyte used in the above process is e.g. ammonium chloride, ammonium nitrate, ammonium acetate or alkali metal salt, etc. The manganese compound is simple manganese compound or a mixture of a manganese compound and an iron compound. The ferromanganese or metallic manganese used as a raw material is crushed (preferably to >=60 mesh) and added to the electrolyte solution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高純度のマンガン化合物の製造法に関するもの
であって、特にマンガン系フェライト用原料に好適なマ
ンガン化合物を製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a high-purity manganese compound, and particularly to a method for producing a manganese compound suitable as a raw material for manganese-based ferrite. .

〔従来の技術〕[Conventional technology]

従来高純度のマンガン化合物はマンガン鉱石を硫酸に溶
解し、不純物たる他の重金属は硫化物法、溶媒抽出法又
はアルコレート法等で、1だ鉄は酸化して水酸化物とし
て分離除去した後、マンガンを各種塩類として回収する
方法が行われている。
Conventionally, high-purity manganese compounds are produced by dissolving manganese ore in sulfuric acid, other heavy metals as impurities are removed by the sulfide method, solvent extraction method, alcoholate method, etc., and iron is oxidized and separated and removed as hydroxide. , methods are being used to recover manganese as various salts.

最近では更に高純度のマンガン化合物を製造するために
、マンガン鉱石よりアルカリ金属等の不純物元素が少な
いフェロマンガン又は金属マンガンを用い、これらを直
接酸で溶解し、前記従来法と同様重金属及び鉄を分離除
去し、さらに再結晶法を組合せることによって高純度マ
ンガン化合物を精製する方法がある。
Recently, in order to produce manganese compounds of even higher purity, ferromanganese or metallic manganese, which has fewer impurity elements such as alkali metals than manganese ore, are used, and these are directly dissolved in acid to remove heavy metals and iron, as in the conventional method. There is a method of purifying high-purity manganese compounds by combining separation and removal and recrystallization.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

1−かI7、前記従来法は原料を直接酸処理(7てマン
ガンを溶解するものでちるため、原料中の不純物の殆ん
ど全量がマンガンと同時に溶解]−1これを除去するた
め、数工程を要し、かつ、複雑な再結晶法による精製工
程を必要とE2、処理能率が悪いばかりか必らずしも高
純度のものを得ることができないと言う欠点がある。
1- or I7, the above-mentioned conventional method uses a direct acid treatment of the raw material (7 is used with a substance that dissolves manganese, so almost all of the impurities in the raw material are dissolved at the same time as manganese)-1 In order to remove this, several E2 requires many steps and requires a purification step using a complicated recrystallization method, which has the disadvantage that not only is the processing efficiency low, but also that it is not always possible to obtain a product of high purity.

本発明は前述従来の欠点を改善し、高純度マンガン化合
物を簡単に、かつ、低床に製造する方法を提供するこ乏
にある。
The present invention improves the above-mentioned conventional drawbacks and provides a method for producing high-purity manganese compounds simply and in a low cost manner.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は電解質を含む水溶液にフェロマンガン、金属マ
ンガンの1種又1−12種を加え攪拌しつ\酸を添加し
、pHを2〜9に保持してマンガン及び鉄を溶解した後
、未溶解物を分離除去し、溶液中のマンガン及び鉄を沈
澱分離して回収する高純度マンガン化合物の製造方法で
ある。
The present invention involves adding 1 type or 1 to 12 types of ferromanganese and metal manganese to an aqueous solution containing an electrolyte, stirring, adding acid, maintaining the pH at 2 to 9, and dissolving manganese and iron. This is a method for producing a high-purity manganese compound, in which dissolved matter is separated and removed, and manganese and iron in the solution are precipitated and recovered.

〔作用、効果〕[action, effect]

本発明は以上の如き構成のものからなり、鼓に使用する
電解質は塩化アンモニウム、硝酸アンモニウム、酢酸ア
ンモニウム又はアルカリ金属塩等の1種又は2種以上で
ある。
The present invention is constructed as described above, and the electrolyte used in the drum is one or more of ammonium chloride, ammonium nitrate, ammonium acetate, or an alkali metal salt.

また、本発明に言うマンガン化合物とはマンガン化合物
単独のもののほか、マンガン化合物と鉄化合物との混合
物を含むものとする。
Furthermore, the manganese compound referred to in the present invention includes not only a manganese compound alone but also a mixture of a manganese compound and an iron compound.

本発明の原料たるフェロマンガン、金属マンガンは粉砕
しく好1しくけ60メツシユ下)、これを電解質溶液中
へ添加する。
Ferromanganese and metallic manganese, which are the raw materials of the present invention, are pulverized (preferably 60 mesh or less) and added to the electrolyte solution.

前記の如きフェロマンガン、金属マンガンを水に添加す
ると、マンガン、鉄は一部水と反応して水酸化物を生成
し、その液の−(は9.7゛前後まで上昇する。
When ferromanganese and metallic manganese as mentioned above are added to water, some of the manganese and iron react with the water to form hydroxides, and the -( of the liquid rises to around 9.7°).

一方、塩化アンモニウム等の電解質を含む溶液に、前記
フェロマンガン、金属マンガンを添加すると、マンガン
、鉄は同様に水酸化物を生成するが、前記電解質の緩衝
作用によって溶液のPi(が低下する。その−の低下す
る程度は電解質の濃度によって異なるが2例えば塩化ア
ンモニウムの2%溶液の場合pH−9,0種度、20%
溶液では7.8程度となる。
On the other hand, when the ferromanganese and metal manganese are added to a solution containing an electrolyte such as ammonium chloride, manganese and iron similarly produce hydroxides, but the buffering action of the electrolyte causes a decrease in Pi() in the solution. The degree to which - decreases depends on the concentration of the electrolyte, but 2 For example, in the case of a 2% solution of ammonium chloride, the pH is -9, 0%, 20%
In a solution, it is about 7.8.

舷で水酸化マンガン(ff)又は水酸化鉄(I)が完全
に沈澱する…は夫々9以上、8以上程度であるから、生
成しまた水酸化マンガン及び水酸化鉄は一部溶解し、他
の部分は沈澱1.た状態となり、他方マンガン、鉄より
イオン化化傾向の貴なる元素、即ち重金属元素は未反応
の壕\残存する。
Manganese hydroxide (FF) or iron hydroxide (I) completely precipitates on the ship's side. Since the values are about 9 or above and 8 or above, respectively, some manganese hydroxide and iron hydroxide are dissolved and others are formed. The part is precipitate 1. On the other hand, noble elements that tend to be more ionized than manganese and iron, that is, heavy metal elements, remain unreacted.

前記のようにして生成した水酸化マンガン。Manganese hydroxide produced as described above.

水酸化鉄に酸を添加すれば水酸化マンガン1水酸化鉄は
塩となって溶解し、重金属元素を完全に分離できる。こ
\で使用する酸は、塩酸、硫酸、酢酸又は硝酸の何れで
もよい。
When acid is added to iron hydroxide, manganese hydroxide and iron hydroxide become salts and dissolve, making it possible to completely separate heavy metal elements. The acid used here may be any of hydrochloric acid, sulfuric acid, acetic acid, or nitric acid.

つぎにその−例として第1図について説明する。第1図
は電解質溶液中にフェロマンガン粉末を添加し、それに
塩酸を滴加したときの−(変化を示1〜だものであるが
、電解質を含まない水溶液中では、僅かな塩酸の添加に
よって−は急激に低下し、従来の酸溶解と同様になる。
Next, FIG. 1 will be explained as an example. Figure 1 shows the change in -(1~) when ferromanganese powder is added to an electrolyte solution and hydrochloric acid is added dropwise to it. - decreases rapidly and becomes similar to conventional acid dissolution.

従ってかへる場合にはフェロマンガン中の不純物は全量
溶解するため、その不純物の分離は従来法によらざるを
得ない。
Therefore, when the ferromanganese becomes hot, all of the impurities in the ferromanganese are dissolved, so conventional methods have to be used to separate the impurities.

これに対し、電解質を含む溶液では前記電解質の緩衝作
用によって塩酸の添加による可変化が小さくなる。そし
て、このような…領域(少なくとも−=2以上)では未
反応物は酸による影響を受けず、従って何等溶解せず、
不純物を完全に分離することができる。
On the other hand, in a solution containing an electrolyte, the change due to the addition of hydrochloric acid becomes small due to the buffering effect of the electrolyte. In such a region (at least -=2 or more), unreacted substances are not affected by the acid and therefore do not dissolve at all,
Impurities can be completely separated.

また、第1図から明らかなようにPl]を一定に保つ緩
衝作用は電解質の濃度が高い程大きく、5%以上である
場合には、緩衝作用ははソ同様に推移しているのが認め
られる。従って本発明では電解質濃度として5%以上と
することが好ましい。
In addition, as is clear from Figure 1, the buffering effect that keeps Pl constant increases as the electrolyte concentration increases, and when the concentration is 5% or more, the buffering effect keeps the Pl constant. It will be done. Therefore, in the present invention, it is preferable that the electrolyte concentration is 5% or more.

第2図及び第3図は本発明における抽出p!(による不
純物の含有量を夫々示したものである。
FIGS. 2 and 3 show the extraction p! in the present invention. (The content of impurities is shown respectively.

尚、この場合各種Pi1における溶液中のマンガン及び
鉄を炭酸塩として回収し、800℃で焼成した酸化物を
試料としたものである。
In this case, manganese and iron in the solutions of various Pi1 were recovered as carbonates, and oxides obtained by firing at 800° C. were used as samples.

第2図から明らかなようにCr、 V、 Ni等の重金
属類は…2以上で急激に低下しているのが認められる。
As is clear from Fig. 2, heavy metals such as Cr, V, and Ni are seen to decrease rapidly at concentrations of 2 or more.

さらに、本発明で注目されることは、イオン化傾向がマ
ンガン、鉄より卑な元素及び非金属元素も同時に除去で
きることである。即ち、第2図及び第3図から明らかな
ようにMg、Caのみならず、P、 Si等の非金属元
素も除去できる。
Furthermore, what is noteworthy about the present invention is that elements whose ionization tendency is more base than manganese and iron and nonmetallic elements can be removed at the same time. That is, as is clear from FIGS. 2 and 3, not only Mg and Ca but also nonmetallic elements such as P and Si can be removed.

か\る非金属元素はおそらく未反応物に吸着されるもの
と考えられる。尚、Pについては抽出PI]との関連は
認められないが、原料フェロマンガン中のPが1400
 ppm程度を考慮すれば、Pは抽出−とは特に関係な
く、如何なるーであっても効率よく除去することができ
る。
It is thought that such nonmetallic elements are probably adsorbed by unreacted substances. Regarding P, no relationship with extracted PI is observed, but P in the raw material ferromanganese is 1400
Considering the ppm level, P can be efficiently removed regardless of whether it is extracted or not.

また、CoはCr、 V、 Ni等より高い値を示して
いるが、Cr、 V、 Ni等と同様p)(2以上とす
れば犬d〕に除去することができる。その理由はおそら
< Coは溶液中でアンミン錯体を形成し、これが未反
応物に吸着されるものと考えられる。
In addition, although Co shows a higher value than Cr, V, Ni, etc., it can be removed in the same way as Cr, V, Ni, etc. It is thought that Co forms an ammine complex in the solution, and this is adsorbed by unreacted substances.

以上第2図及び第3図に示すように、本発明はマンガン
、鉄以外の不純物を除去分離することができるが、電解
質として硝酸化合物又は酸として硝酸を使用すれば鉄を
もまた分離することができる。即ち、硝酸の如き酸化性
の酸を使用すれば、水酸化鉄(n)が酸化されて水酸−
化鉄(III)となり、該水酸化鉄(III)は−5以
上でははソ完全に沈澱するため、未反応物と共にr過分
離することにより容易に分離することができる。
As shown in Figures 2 and 3 above, the present invention can remove and separate impurities other than manganese and iron, but if a nitric acid compound is used as the electrolyte or nitric acid is used as the acid, iron can also be separated. I can do it. That is, if an oxidizing acid such as nitric acid is used, iron hydroxide (n) is oxidized to form hydroxyl-
Since the iron(III) hydroxide completely precipitates at temperatures above -5, it can be easily separated by over-separation together with unreacted substances.

このような現象は、他の酸化剤、例えば過酸化水素を添
加するか又は空気の吹き込み等を用いても同様である。
This phenomenon is similar even when other oxidizing agents such as hydrogen peroxide are added or air is blown.

従って、本発明は最終製品の用途等を考慮し、適宜酸を
選択して使用すればマンガンと鉄の混合物又はマンガン
単独からなる高純度マンガン化合物を得ることができる
Therefore, in the present invention, if an appropriate acid is selected and used in consideration of the intended use of the final product, a high purity manganese compound consisting of a mixture of manganese and iron or manganese alone can be obtained.

以上のようにマンガン及び鉄を溶解分離したものは常法
によって炭酸塩、修酸塩又は水酸化物として沈澱分離す
ればよく、1だ必要によっては酸化物として回収できる
。このようにして得られた高純度マンガン化合物はフェ
ライト用原料として使用することができる。
Manganese and iron dissolved and separated as described above can be precipitated and separated as carbonates, oxalates, or hydroxides by conventional methods, and if necessary, they can be recovered as oxides. The high purity manganese compound thus obtained can be used as a raw material for ferrite.

以上の如く本発明は簡単な方法でフェロマンガン金属マ
ンガン中の重金属元素のみならず、P、 Si等の非金
属元素をも効率よく除去することができると共に、高価
な設備を必要としないから、高純度マンガン化合物を廉
価て提供することができるという効果がある。
As described above, the present invention can efficiently remove not only heavy metal elements in ferromanganese metal manganese but also non-metal elements such as P and Si, and does not require expensive equipment. This has the effect of being able to provide a high purity manganese compound at a low price.

〔実施例〕〔Example〕

本発明の具体的構成を実施例をもって説明する。 The specific configuration of the present invention will be explained using examples.

実施例1゜ 10%塩化アンモニウム溶液200 ml、Vc、60
メツシユ以下に粉砕したフェロマンがン粉末207を加
えて、前記溶液を攪拌しながら、かつ前記溶液のpHを
5以上に保持しながら6M塩酸を逐次添加してフェロマ
ンガン粉末中のマンガン及び鉄を溶解抽出した。前記溶
液の−が2以上を保持出来なくなったとき6M塩酸の添
加を中止し1反応を終了させた。反応時間は約3時間、
6M塩酸の消費量は106m1であり、前記塩酸の消費
量から計算したフェロマンガン中のマンガン及び鉄の反
応率(溶解率)は約90%であった。
Example 1 10% ammonium chloride solution 200 ml, Vc, 60
Add ferromanganese powder 207 crushed to a mesh size or less, and while stirring the solution and maintaining the pH of the solution at 5 or more, 6M hydrochloric acid is successively added to dissolve the manganese and iron in the ferromanganese powder. Extracted. When the solution could no longer maintain -2 or more, the addition of 6M hydrochloric acid was stopped and one reaction was completed. Reaction time is approximately 3 hours.
The consumption amount of 6M hydrochloric acid was 106 ml, and the reaction rate (dissolution rate) of manganese and iron in ferromanganese calculated from the consumption amount of hydrochloric acid was about 90%.

次に反応の終了した前記溶液をろ過して未溶解物を分離
除去した後、前記溶液に炭酸水素アンモニウム251と
7.5Mアンモニア水43mt3を加えて溶液のpHを
7.8とし、溶液中のマンガン及び鉄を炭酸塩として沈
澱させた。沈澱した前記炭酸塩をろ過分離して回収した
Next, the reaction-completed solution was filtered to separate and remove undissolved substances, and then 251 ammonium hydrogen carbonate and 43 mt3 of 7.5M aqueous ammonia were added to the solution to adjust the pH of the solution to 7.8. Manganese and iron were precipitated as carbonates. The precipitated carbonate was separated by filtration and recovered.

前記炭酸塩の精製効果を確認するために、回収した炭酸
塩を110℃で乾燥後、800℃で90分間焼成してマ
ンガンと鉄の酸化物(Mn203. Fe2O3が主体
)とし、微量不純物の分析を行った。その結果を原料と
して使用したフェロマンガン中の微量不純物含有量と対
比して表1に示したが、生成物の微量不純物は大巾に低
減されている。
In order to confirm the purification effect of the carbonate, the recovered carbonate was dried at 110°C and then calcined at 800°C for 90 minutes to form manganese and iron oxides (mainly composed of Mn203.Fe2O3), and analyzed for trace impurities. I did it. The results are shown in Table 1 in comparison with the trace impurity content in the ferromanganese used as a raw material, and the trace impurities in the product are significantly reduced.

表     1 実施例2゜ 反応容器に12%塩化アンモニウム水溶液150.8を
入れ、前記反応容器に60メツシユ以下に粉砕したフェ
ロマンガンと金属マンガンを2:1に混合した粉末を前
記溶液を攪拌しながら徐々に加え、更に前記溶液に6M
塩酸を徐々に注入して前記粉末中のマンガン及び鉄を溶
解抽出した。前記溶解抽出の間、溶液の−が5以上に保
持されるように前記粉末の添加量と6M塩酸の注入量を
調節しながら行い、粉末混合物15Ky(フェロマンガ
ンl0K9.金ffマンガン5に2)を溶解処理した。
Table 1 Example 2 A 12% ammonium chloride aqueous solution (150.8 g) was placed in a reaction container, and a powder of 2:1 mixture of ferromanganese and metallic manganese crushed to 60 mesh or less was added to the reaction container while stirring the solution. Gradually add 6M to the solution.
Hydrochloric acid was gradually injected to dissolve and extract manganese and iron in the powder. During the dissolution and extraction, the addition amount of the powder and the injection amount of 6M hydrochloric acid were adjusted so that the - of the solution was maintained at 5 or more, and the powder mixture was 15Ky (ferromanganese 10K9. gold ff manganese 5 to 2). was dissolved.

この溶解処理に要した時間は約10時間、6M塩酸の使
用量は78pであった。
The time required for this dissolution treatment was approximately 10 hours, and the amount of 6M hydrochloric acid used was 78 p.

溶解処理が終了した溶液を12時間放置した後、ろ過し
て未溶解物を分離除去した。つづいて、その溶液に炭酸
水素アンモニウム17に9と7.5Mアンモニア水26
Aを加えて約1時間放置した後、沈澱生成した炭酸マン
ガンと炭酸鉄をろ過分離して回収した。生成量は乾燥重
量で23.7に5+であった。
After the dissolution treatment was completed, the solution was allowed to stand for 12 hours, and then filtered to separate and remove undissolved substances. Next, add 17 to 9 of ammonium hydrogen carbonate and 26 to 7.5M aqueous ammonia to the solution.
After adding A and leaving the mixture for about 1 hour, manganese carbonate and iron carbonate, which had formed a precipitate, were separated by filtration and recovered. The yield was 23.7 to 5+ on a dry weight basis.

生成した炭酸塩の一部を実施例1と同様に焼成して酸化
物とし分析した結果表2の通りである。
A part of the generated carbonate was calcined in the same manner as in Example 1 and analyzed as an oxide. The results are shown in Table 2.

表     2 実施例3゜ フェロマンガン粉末20!i’(60メツシユ以下)を
、15%硝酸アンモニウム溶液200m1に加えて、攪
拌しながら、かつ前記溶液の…を5以上に保ちながら7
 M HNO:lを逐次添加してマンガン及び鉄を溶解
抽出した。前記溶液の−が5以上で7 M HNO3を
添加できなくなった時を、反応の終点とした。この際7
 M HNO3の消費量は84m1であり反応が終了す
るまでの時間は、約2時間であった。
Table 2 Example 3 Ferromanganese powder 20! i' (60 mesh or less) was added to 200 ml of 15% ammonium nitrate solution, and while stirring and keeping the ... of the solution above 5.
Manganese and iron were dissolved and extracted by sequentially adding MHNO:1. The end point of the reaction was when the - of the solution was 5 or more and 7 M HNO3 could no longer be added. At this time 7
The amount of M HNO3 consumed was 84 ml, and it took about 2 hours to complete the reaction.

次に、前記溶液中の未溶解物をろ過分離し、ろ液に炭酸
水素アンモニウム221と7.5Mアンモニウム水38
m1を加えて溶液のpHを7.6に合わせ、溶液中のマ
ンガンを、炭酸塩として沈澱させろ過分離して回収した
。この除鉄は、硝酸塩及び硝酸によって酸化され、前記
未溶解物としてろ過分離される。
Next, undissolved substances in the solution were separated by filtration, and the filtrate was mixed with 221 ammonium hydrogen carbonate and 38 mol of 7.5 M ammonium water.
ml was added to adjust the pH of the solution to 7.6, and the manganese in the solution was precipitated as a carbonate, separated by filtration, and recovered. This removed iron is oxidized by nitrate and nitric acid, and is filtered and separated as the undissolved material.

前記炭酸塩の精製効果を確認するため、回収した炭酸塩
を110’Cで乾燥後、800℃で90分間焼成した。
In order to confirm the purification effect of the carbonate, the recovered carbonate was dried at 110'C and then calcined at 800C for 90 minutes.

得られたマンガン酸化物の組成を原料として使用したフ
ェロマンガンの組成と対比して表3に示した。
The composition of the obtained manganese oxide is shown in Table 3 in comparison with the composition of ferromanganese used as a raw material.

表3のように酸として、硝酸を用いた場合、微量不純物
はもとより鉄も高率に分離除去できる。
When nitric acid is used as the acid as shown in Table 3, not only trace impurities but also iron can be separated and removed at a high rate.

表     3 実施例4゜ 60メツシユ以下に粉砕した金属マンガン209pHを
、15%酢酸アンモニウム溶液に添加し、攪拌しながら
7.5M酢酸を加え一5以−上でマンがンを溶解抽出し
た。この際消費した7、5M酢酸量は95m1であり、
抽出に要(−た時間は攪拌しながら炭酸水素アンモニウ
ム281と7.5Mアンモニウム水48m1加えて溶液
のpHを7.2に合わせ、マンガンを炭酸塩とし沈澱さ
せ。
Table 3 Example 4 Metallic manganese 209 pH pulverized to 60 mesh or less was added to a 15% ammonium acetate solution, and 7.5 M acetic acid was added with stirring to dissolve and extract the manganese at 15° or higher. The amount of 7.5M acetic acid consumed at this time was 95ml,
During the time required for extraction, 281 ammonium hydrogen carbonate and 48 ml of 7.5M ammonium water were added while stirring to adjust the pH of the solution to 7.2, and manganese was converted into carbonate and precipitated.

ろ過回収した。It was collected by filtration.

前記炭酸塩の純度?確めるため、110℃で乾燥した後
、800°Cで90分間焼成した。原料の金属マンガン
と生成物の不純物含量及びMn含量を表4に示した。
The purity of said carbonate? To confirm this, it was dried at 110°C and then fired at 800°C for 90 minutes. Table 4 shows the impurity content and Mn content of the raw material manganese metal and the product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電解溶液の滴定曲線、第2図及び第3図は夫々
−に対する不純物含有量の関係を示すグラフである。
FIG. 1 is a titration curve of an electrolytic solution, and FIGS. 2 and 3 are graphs showing the relationship between impurity content and -, respectively.

Claims (2)

【特許請求の範囲】[Claims] (1)電解質を含む水溶液にフェロマンガン、金属マン
ガンの1種又は2種を加えて攪拌しつゝ酸を添加しpH
を2〜9に保持してマンガン及び鉄を溶解して未溶解物
を分離除去した後、溶液中のマンガン及び鉄を沈澱して
回収することを特徴とする高純度マンガン化合物の製造
方法。
(1) Add one or both of ferromanganese and metal manganese to an aqueous solution containing an electrolyte, stir, add acid, and adjust the pH.
1. A method for producing a high-purity manganese compound, which comprises dissolving manganese and iron and separating and removing undissolved substances by maintaining the pH value between 2 and 9, and then precipitating and recovering the manganese and iron in the solution.
(2)電解質として硝酸化合物及び/又は酸に硝酸を使
用して鉄を沈澱分離することを特徴とする特許請求の範
囲第1項記載の高純度マンガン化合物の製造方法。
(2) A method for producing a high-purity manganese compound according to claim 1, characterized in that iron is precipitated and separated using a nitric acid compound as an electrolyte and/or nitric acid as an acid.
JP19724685A 1985-09-06 1985-09-06 Production of high-purity manganese compound Granted JPS6259530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19724685A JPS6259530A (en) 1985-09-06 1985-09-06 Production of high-purity manganese compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19724685A JPS6259530A (en) 1985-09-06 1985-09-06 Production of high-purity manganese compound

Publications (2)

Publication Number Publication Date
JPS6259530A true JPS6259530A (en) 1987-03-16
JPH0256289B2 JPH0256289B2 (en) 1990-11-29

Family

ID=16371279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19724685A Granted JPS6259530A (en) 1985-09-06 1985-09-06 Production of high-purity manganese compound

Country Status (1)

Country Link
JP (1) JPS6259530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2612173A1 (en) * 1987-03-10 1988-09-16 Japan Metals & Chem Co Ltd PROCESS FOR PREPARING MANGANESE COMPOUNDS OF HIGH PURITY
JPH02107529A (en) * 1988-10-17 1990-04-19 Kemiraito Kogyo Kk Purified solution containing iron and manganese and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2612173A1 (en) * 1987-03-10 1988-09-16 Japan Metals & Chem Co Ltd PROCESS FOR PREPARING MANGANESE COMPOUNDS OF HIGH PURITY
JPH02107529A (en) * 1988-10-17 1990-04-19 Kemiraito Kogyo Kk Purified solution containing iron and manganese and production thereof

Also Published As

Publication number Publication date
JPH0256289B2 (en) 1990-11-29

Similar Documents

Publication Publication Date Title
JP3385997B2 (en) Method of recovering valuable metals from oxide ore
CN112941314A (en) Method for separating nickel and iron from nickel-iron alloy and application
CN104229898B (en) Method for preparing high-purity manganese sulfate and zinc sulfate by using waste zinc-manganese batteries as raw materials
US4218240A (en) Method for producing cobaltic hexammine compounds and cobalt metal powder
US9970078B2 (en) Method for producing a solid scandium-containing material of enhanced scandium content
US4278463A (en) Process for recovering cobalt
JP7283720B2 (en) Method for preparing battery grade Ni-Co-Mn mixture and battery grade Mn solution
WO2020181745A1 (en) Method for efficiently separating cobalt/nickel magnesium manganese from crude cobalt/nickel salt raw material
US4184868A (en) Method for producing extra fine cobalt metal powder
CN116598636B (en) Method for separating and recovering valuable metals in waste ternary lithium ion battery anode materials
JPH0340093B2 (en)
GB1486005A (en) Recovery of zinc and copper from copper-bearing materials
JPS634028A (en) Treatment for scrap containing rare earth element and iron
JP3788185B2 (en) Method for recovering cerium from a solution containing chromium and cerium
JPS6259530A (en) Production of high-purity manganese compound
WO2024000614A1 (en) Method for recovering hafnium and other metals from hafnium-containing waste residues
JPH06329414A (en) Production of rare earth fluoride
JPH0340094B2 (en)
JP2004182533A (en) Method of recovering cobalt
US3228765A (en) Copper recovery process from anhydrous copper ammonium sulfite
CN114921649B (en) Method for recycling soluble tungstate in tungsten-containing waste
CN111057856B (en) Method for leaching and recovering cobalt, nickel and molybdenum in catalyst
JPH0357052B2 (en)
JPH0455133B2 (en)
CN107217143A (en) A kind of method of processing platinum group metal chloride precipitation slag