JPS6259525A - Production of sodium bicarbonate - Google Patents

Production of sodium bicarbonate

Info

Publication number
JPS6259525A
JPS6259525A JP19947985A JP19947985A JPS6259525A JP S6259525 A JPS6259525 A JP S6259525A JP 19947985 A JP19947985 A JP 19947985A JP 19947985 A JP19947985 A JP 19947985A JP S6259525 A JPS6259525 A JP S6259525A
Authority
JP
Japan
Prior art keywords
sodium bicarbonate
aqueous solution
sodium
ammonia
sodium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19947985A
Other languages
Japanese (ja)
Inventor
Takashi Katayama
片山 隆士
Eiji Yamatoki
山時 英次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP19947985A priority Critical patent/JPS6259525A/en
Publication of JPS6259525A publication Critical patent/JPS6259525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce high-purity sodium bicarbonate having low ammonium content, by controlling the pH of an aqueous solution of a sodium salt to a specific level and introducing carbon dioxide gas into the solution to precipitate sodium bicarbonate. CONSTITUTION:Sodium bicarbonate is precipitated by introducing carbon dioxide gas into an aqueous solution of a sodium salt having a pH controlled to 6.0-6.5. The aqueous solution of the sodium salt is usually a saturated aqueous solution of sodium chloride similar to the brine preparation process of general ammonia soda process, however, an aqueous solution of neutral sodium salt such as sodium nitrate, etc., can be used for the purpose. The control of pH of the reaction liquid to 6.0-6.5 is carried out usually by adding an ammonium carbonate such as NH4HCO3, (NH4)2CO3, etc., to the reaction liquid, however, it can be easily achieved also by the addition of ammonia such as NH3 gas, NH4OH, etc.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、特にアンモニア含有量の少ない高純度の重炭
酸ナトリウムを容易に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for easily producing high purity sodium bicarbonate, particularly with a low ammonia content.

[従来技術およびその問題点] 従来より、高純度の重炭酸ナトリウムは、水酸化ナトリ
ウムあるいは炭酸ナトリウムの水溶液に炭酸ガスを通じ
て重炭酸化し、結晶を析出、分離および乾燥する方法に
より製造されている。しかしながら、これらの方法では
、水酸化ナトリウムあるいは炭酸ナトリウムを原料とす
るため、その原料代が高く、ひいては得られる重炭酸化
ナトリウムの製造コストが高くなる問題がある。
[Prior Art and its Problems] Conventionally, high-purity sodium bicarbonate has been produced by a method in which an aqueous solution of sodium hydroxide or sodium carbonate is bicarbonated by passing carbon dioxide gas, and crystals are precipitated, separated, and dried. However, in these methods, since sodium hydroxide or sodium carbonate is used as a raw material, there is a problem that the cost of the raw material is high, and the manufacturing cost of the obtained sodium bicarbonate is also high.

他方、重炭酸ナトリウムは、工業的に安価な塩化ナトリ
ウムを原料とするアンモニア・ソーダ法による炭酸ナト
リウム製造の中間生成物として多量に生成するが、不純
物としてアンモニア含有量が1%程度であり、該重炭酸
ナトリウムを乾燥してもアンモニア含有量は200 p
l)II程度に低下するにすぎない。したがって、さら
にアンモニア含有量の少ない高純度の重炭酸ナトリウム
を得る場合には、上記の重炭酸ナトリウムを水溶液から
再結晶により精製するなど別途の後処理を軽し、製造コ
ストが高くなる。
On the other hand, sodium bicarbonate is produced in large quantities as an intermediate product in the production of sodium carbonate by the ammonia-soda method using industrially inexpensive sodium chloride as a raw material, but it contains about 1% ammonia as an impurity. Even if sodium bicarbonate is dried, the ammonia content is 200 p.
l) It only decreases to about II. Therefore, in order to obtain highly pure sodium bicarbonate with even lower ammonia content, additional post-treatments such as purification of the above-mentioned sodium bicarbonate from an aqueous solution by recrystallization are required, which increases the production cost.

[問題を解決するための手段] 本発明台らはL記した問題に鑑み、安価なナトリウム塩
を原料として、高純度の重炭酸ナトリウムを簡便に得る
方法ζこついて鋭意研究を重ねた。
[Means for Solving the Problems] In view of the problems described in L, the inventors of the present invention have conducted intensive research on a method for easily obtaining high-purity sodium bicarbonate from inexpensive sodium salts as raw materials.

その結果、塩化ナトリウムなどの飽和水溶液に炭酸ガス
を導入して重炭酸ナトリウムを析出させるに際し、該水
溶液にアンモニア炭酸塩などを添加して反応p;]を6
.0〜6.5に制御することにより、生成した重炭酸ナ
トリウムを通常の乾燥によりアンモニア含有量が極めて
少ない高純度の重炭酸すトリウムが得られることを艶出
して、本発明を提供するに至ったものである。IIIち
、本発明はナトリウム塩の水溶液に炭酸ガスを導入して
重炭酸ナトリウムを析出させるに際し、該水溶液のp 
Hを〔5,0〜6.5に制御することを特徴とする重炭
酸−タトリウムの製造方法である。
As a result, when introducing carbon dioxide gas into a saturated aqueous solution such as sodium chloride to precipitate sodium bicarbonate, ammonia carbonate etc. are added to the aqueous solution and reaction p;
.. By controlling the sodium bicarbonate to 0 to 6.5, high purity sodium bicarbonate with extremely low ammonia content can be obtained by normal drying of the produced sodium bicarbonate, and the present invention has been provided. It is something that III. In the present invention, when introducing carbon dioxide gas into an aqueous solution of sodium salt to precipitate sodium bicarbonate, the p of the aqueous solution is
This is a method for producing tatorium bicarbonate, characterized by controlling H to 5.0 to 6.5.

本発明において、ナトリウム塩の水溶液としては、一般
にアンモニア・ソーダ法のカン水玉程で調製されると同
様の塩化ナトリウムの飽和水溶液が用いられるが、その
ほか芒硝なと中性のナトリウム塩の水溶液も用いられる
In the present invention, as the aqueous solution of sodium salt, a saturated aqueous solution of sodium chloride similar to that prepared by the ammonia-soda method is generally used, but in addition, an aqueous solution of a neutral sodium salt such as mirabilite is also used. It will be done.

また、本発明の反応において、ナトリウム塩の水溶液に
導入する炭酸ガスは、なるべく濃厚なものが好ましいが
、これも工業的にアンモニア・ソーダ法の炭酸化工程で
用いられると同様の石灰そiを熱分解して得られる約4
0%程度のものが用いられる。
In addition, in the reaction of the present invention, it is preferable that the carbon dioxide gas introduced into the aqueous solution of sodium salt be as concentrated as possible; Approximately 4 obtained by pyrolysis
About 0% is used.

本発明においては、上記したナトリウム塩の水溶液に炭
酸ガスを導入して重炭酸化反応を行うに際して、重炭酸
ナトリウムの析出における反IZ、液のpHを6.0〜
6.5に制御することが、目的とする高純度の重炭酸ナ
トリウムfi!得るために極めて重要である。即ち、上
記した反応液のp Hを6.5より大きくした場合には
、得られる重炭酸ナトリウムのアンモニア含有量が増大
するため好ましくない。また、同じく反応液のp Hを
8−、 (1より小さくした場合には、ナトリウム塩の
重炭酸化反応が充分に進行しないため、重炭酸ナトリウ
ムを効率的に得ることが出来ない。このような本発明に
おりる反応液のp Hを6.0〜6.5に制御する方法
は、一般に該反応液にN H4t(C03。
In the present invention, when carbon dioxide gas is introduced into the aqueous solution of sodium salt to perform the bicarbonation reaction, the pH of the solution is set to 6.0 to 6.0.
The desired high purity sodium bicarbonate fi! It is extremely important to obtain That is, it is not preferable to increase the pH of the reaction solution above 6.5 because the ammonia content of the resulting sodium bicarbonate increases. Similarly, if the pH of the reaction solution is lower than 8-1, the bicarbonation reaction of the sodium salt will not proceed sufficiently, making it impossible to efficiently obtain sodium bicarbonate. The method of controlling the pH of the reaction solution according to the present invention to 6.0 to 6.5 generally involves adding NH4t (C03) to the reaction solution.

(Nt(4)zcO3などのアンモニア炭酸塩を添加す
ることむこよって好ましく達成されるが、そのほかNH
3ガス、NH4OHなどのアンモニアの添加によっても
?¥精に達成される。
(This is preferably achieved by adding an ammonia carbonate such as Nt(4)zcO3, but in addition, NH
3 gas, by adding ammonia such as NH4OH? Achieved with precision.

本発明は、ナトリウム塩の水溶液における炭酸カスの溶
解速度が反応律速であることから、反応系を低温および
/または加圧の条件下に実施することが好11ノい。一
般に反応温度は0−30 ℃、圧力は0〜10 k g
 / eva2Gの範囲である。
In the present invention, since the rate of dissolution of carbonate scum in an aqueous solution of sodium salt is reaction rate-determining, it is preferable to carry out the reaction system under low temperature and/or pressurized conditions. Generally reaction temperature is 0-30℃, pressure is 0-10 kg
/eva2G range.

[作用] 本発明しこおいては、従来のアンモニア・ソーダ法に比
べて特別の後処理もす9さずに、通常の乾燥によ−っC
、アンモニア含量の極めて少ない高純度の重炭酸ナトリ
ウムを得ることが出来るが、その理由を次の如く推測し
ている。
[Function] Compared to the conventional ammonia-soda method, the present invention eliminates carbon dioxide by normal drying without any special post-treatment.
, it is possible to obtain highly pure sodium bicarbonate with extremely low ammonia content, and the reason for this is speculated as follows.

アンモニア・ソーダ法におけるtNKHナトリウムの析
出条件では、反応液のpI(が一般に’?−11と高い
。このような条件下では、重炭酸ナトリウムの析出と並
行し゛C1次式(1)のようなカルバミン酸ナトリウム
の生成反応が進行する。
Under the conditions for precipitation of sodium tNKH in the ammonia-soda method, the pI of the reaction solution is generally as high as ? The production reaction of sodium carbamate proceeds.

N a (IJ + CO2+ 2 N H3+N a
cOz ・N)I 2 +N H4cQ・”−(1)し
かして、このカルバミン酸ナトリウムの分解反応は、次
式(2)および(3)の如く進行する。
N a (IJ + CO2+ 2 N H3 + N a
cOz .N)I 2 +N H4cQ."-(1) The decomposition reaction of sodium carbamate proceeds as shown in the following formulas (2) and (3).

NaC02−NH2+2H20 −eNaHcO3+NH4OH・”・(2)2NaCO
2φNH2+28zO →N a 2 CO3+ (N H4) z CO3・
・・・・・(:]) したがって、生成する重炭酸ナトリウムにカルバミン酸
ナトリウムが多量に共存する場合、該カルバミン酸ナト
リウムは上式(2)および(3)のようむこ相応する水
が存在しなければ、容具に分解1ノないため、通常の乾
燥では充分な脱アンモニアが達成されない。
NaC02-NH2+2H20 -eNaHcO3+NH4OH・”・(2)2NaCO
2φNH2+28zO →N a 2 CO3+ (NH4) z CO3・
...(:]) Therefore, if a large amount of sodium carbamate coexists in the produced sodium bicarbonate, the sodium carbamate will have the corresponding water present in the above formulas (2) and (3). Otherwise, there will be no decomposition in the container and sufficient deammonification will not be achieved by normal drying.

これに対し・て、本発明の方法においては、反応液のp
 Hを6.0〜6.5に制御することにより、上記した
式(1〉の反応が全く進行しないか、または極く僅かに
進行するにすぎない。したがって、本発明により生成す
る重炭酸ナトリウムには、力ルバミン酸ナトリウムの共
存が少なく、ひいては通常の乾燥にまりでアンモニア含
有量の極めて少ない高純度の重炭酸ナトリウムを得るこ
とができる。
On the other hand, in the method of the present invention, the p of the reaction solution is
By controlling H to 6.0 to 6.5, the reaction of the above formula (1) does not proceed at all or proceeds only slightly. Therefore, the sodium bicarbonate produced by the present invention In this method, there is little coexistence of sodium bicarbonate, and as a result, highly pure sodium bicarbonate with an extremely low ammonia content can be obtained using ordinary dry agglomerates.

[発明の効果コ 上記に説明したように、本発明によれば、原料と1)で
安価なナトリウム塩から直接にアンモニア含量′の少な
い重炭酸ナトリウムを生成し、該重炭酸ナトリウムを特
別の後処理を施すことなく、通常の乾燥ζこよって、一
般にアンモニア含量が10ppm以丁である高純度の重
炭酸ナトリウムを得ることが出来る。したがって、本発
明は従来法を比へて製造コストを大巾に削減して高純度
の重炭酸ナトリウノ、を容易ζこ得ることが出来、該重
炭酸ナトリウムは食添用、桑事用としても充分に採用で
きる。
[Effects of the Invention] As explained above, according to the present invention, sodium bicarbonate with a low ammonia content is produced directly from the raw materials and the inexpensive sodium salt in 1), and the sodium bicarbonate is treated with a special treatment. High purity sodium bicarbonate with an ammonia content of generally less than 10 ppm can be obtained by conventional drying without further treatment. Therefore, the present invention can greatly reduce the production cost compared to the conventional method and easily obtain highly pure sodium bicarbonate, which can be used as a food additive and for mulberry crops. Can be fully adopted.

[実施例] 以下、本発明の実施例を示すが、本発明はこれら実施例
に特に限定されるものではない4、実施例1 26 w t%の塩化ナトリウム飽fU水溶液に、90
v09%の炭酸ガスを吹き込みながら、25wt%の重
炭酸アンモニウムの水溶液を添加し、反応液を6.0〜
6.5に制御した。反応温度は約20℃に維持した。
[Example] Examples of the present invention are shown below, but the present invention is not particularly limited to these Examples4. Example 1 90 wt% sodium chloride saturated fU aqueous solution was added.
While blowing 9% carbon dioxide gas, 25wt% ammonium bicarbonate aqueous solution was added, and the reaction solution was heated to 6.0~
It was controlled to 6.5. The reaction temperature was maintained at approximately 20°C.

生成した重炭酸ナトリウムの結晶を濾過、洗浄した後、
60℃の温度で3時間乾燥した。得られた重炭酸ナトリ
ウムのアンモニア(NH3)含有酸は7 ppmであっ
た。
After filtering and washing the formed sodium bicarbonate crystals,
It was dried at a temperature of 60° C. for 3 hours. The ammonia (NH3)-containing acid content of the resulting sodium bicarbonate was 7 ppm.

比較例】 反応液のp Hを8.5〜9.2に制御した以外は、実
施例1と同様に実施した。
Comparative Example] The same procedure as in Example 1 was carried out except that the pH of the reaction solution was controlled to 8.5 to 9.2.

得られた重炭酸ナトリウム中のアンモニア(N■(3)
含有量は、2560 ppmであった。
Ammonia (N■(3) in the resulting sodium bicarbonate
The content was 2560 ppm.

実施例2 Na(Q飽和railに90voi%のCO2ガスを吹
き込みながら、io%N H401(を添加し、pH=
6.0〜6.5になるように制御した。生成した炭酸ナ
トリウムの結晶を実施例1と同様に濾過、洗浄、乾燥を
行った。反応温度は約20℃に維持(]た。
Example 2 Na (io%N H401) was added while blowing 90voi% CO2 gas into a Q-saturated rail, and pH=
It was controlled to be 6.0 to 6.5. The produced sodium carbonate crystals were filtered, washed, and dried in the same manner as in Example 1. The reaction temperature was maintained at approximately 20°C.

得られた重炭酸ナトリウム中のN1(3含有徽は、8 
Fltlmであった。
The N1(3 content) in the obtained sodium bicarbonate was 8
It was Fltlm.

比較例2 ph+の;υ1i311を8.5〜うJ、2にした以外
は、実施例2と同様な処理操作を行った。
Comparative Example 2 The same processing operations as in Example 2 were performed except that the pH+;υ1i311 was set to 8.5 to 2.

このとき01、られた重炭酸ナトリウム中のN83含千
イ量は、lE)≦]Oppmであった。
At this time, the N83 content in the sodium bicarbonate obtained was lE)≦]Oppm.

Claims (1)

【特許請求の範囲】 1)ナトリウム塩の水溶液に炭酸ガスを導入して重炭酸
ナトリウムを析出するに際し、該水溶液のpHを6.0
〜6.5に制御することを特徴とする重炭酸ナトリウム
の製造方法。 2)アンモニアまたはアンモニウム塩を添加して、水溶
液のpHを6.0〜6.5に制御する特許請求の範囲第
1項記載の製造方法。 3)アンモニウム塩が重炭酸アンモニウムまたは炭酸ア
ンモニウムである特許請求の範囲第2項記載の製造方法
[Claims] 1) When introducing carbon dioxide gas into an aqueous solution of sodium salt to precipitate sodium bicarbonate, the pH of the aqueous solution is adjusted to 6.0.
A method for producing sodium bicarbonate, characterized by controlling the sodium bicarbonate to 6.5. 2) The manufacturing method according to claim 1, wherein ammonia or an ammonium salt is added to control the pH of the aqueous solution to 6.0 to 6.5. 3) The manufacturing method according to claim 2, wherein the ammonium salt is ammonium bicarbonate or ammonium carbonate.
JP19947985A 1985-09-11 1985-09-11 Production of sodium bicarbonate Pending JPS6259525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19947985A JPS6259525A (en) 1985-09-11 1985-09-11 Production of sodium bicarbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19947985A JPS6259525A (en) 1985-09-11 1985-09-11 Production of sodium bicarbonate

Publications (1)

Publication Number Publication Date
JPS6259525A true JPS6259525A (en) 1987-03-16

Family

ID=16408486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19947985A Pending JPS6259525A (en) 1985-09-11 1985-09-11 Production of sodium bicarbonate

Country Status (1)

Country Link
JP (1) JPS6259525A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001030698A1 (en) * 1999-10-25 2001-05-03 Airborne Industrial Minerals Inc. Method for formulating food grade sodium bicarbonate
EP1961479A2 (en) * 2007-01-11 2008-08-27 Silicon Fire AG Method and device for binding gaseous CO2 in connection with sea water desalination
JP2013193005A (en) * 2012-03-16 2013-09-30 Kurita Water Ind Ltd Acidic gas treatment agent, method for producing the same and additive for acidic gas treatment agent
CN104591228A (en) * 2014-12-15 2015-05-06 新疆硝石钾肥有限公司 Production method for improving quality of sodium nitrate products

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001030698A1 (en) * 1999-10-25 2001-05-03 Airborne Industrial Minerals Inc. Method for formulating food grade sodium bicarbonate
EP1961479A2 (en) * 2007-01-11 2008-08-27 Silicon Fire AG Method and device for binding gaseous CO2 in connection with sea water desalination
EP1961479A3 (en) * 2007-01-11 2010-05-05 Silicon Fire AG Method and device for binding gaseous CO2 in connection with sea water desalination
JP2013193005A (en) * 2012-03-16 2013-09-30 Kurita Water Ind Ltd Acidic gas treatment agent, method for producing the same and additive for acidic gas treatment agent
CN104591228A (en) * 2014-12-15 2015-05-06 新疆硝石钾肥有限公司 Production method for improving quality of sodium nitrate products

Similar Documents

Publication Publication Date Title
CN112875726B (en) Method for preparing sodium bicarbonate and calcium sulfate dihydrate by comprehensively utilizing sodium sulfate
NO119160B (en)
US2320635A (en) Manufacture of high test bleach
US8388916B2 (en) Process for production of commercial quality potassium nitrate from polyhalite
CA2157885C (en) Process for making anhydrous magnesium chloride
CN105294509A (en) System and method for synthesizing dicyandiamide by one-step process
US2726139A (en) Production of anhydrous sodium cyanide
JPS6259525A (en) Production of sodium bicarbonate
US4105754A (en) Production of high purity calcium thiosulfate
CN1114636A (en) Process for preparation of soda ash by using bittern method
US4113771A (en) Process for the purification of citric acid
JPS63156012A (en) Production of calcium carbonate having high purity
CN110436520A (en) The method for preparing vanadium product using sodium vanadate cleaning
SU895284A3 (en) Method of isolating guanidincarbonate from diluted aqueous solutions
US3764659A (en) Process for the production of calcium hexacyanoferrate (ii)
JPS6152083B2 (en)
US2002681A (en) Process for the production of potassium carbamate
US4066688A (en) Chemical process
US1741674A (en) Process of producing cyanamid
US3501266A (en) Method of separating potassium halates from potassium halides by addition of ammonia
US3695832A (en) Process for reducing the thiourea and sulfate content of alkali and alkaline earth-metal rhodanides
KR950009747B1 (en) Process for the preparation of z-amino ethane sulfonic alid
US2242507A (en) Manufacture of sodium sulphate
US3502430A (en) Process for preparing ammonium perchlorate
US3154380A (en) Process for the manufacture of ammonium perchlorate and sodium ammonium phosphate