JPS6259126B2 - - Google Patents

Info

Publication number
JPS6259126B2
JPS6259126B2 JP53124666A JP12466678A JPS6259126B2 JP S6259126 B2 JPS6259126 B2 JP S6259126B2 JP 53124666 A JP53124666 A JP 53124666A JP 12466678 A JP12466678 A JP 12466678A JP S6259126 B2 JPS6259126 B2 JP S6259126B2
Authority
JP
Japan
Prior art keywords
catalyst
titanium
polymerization
group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53124666A
Other languages
Japanese (ja)
Other versions
JPS5552304A (en
Inventor
Kunitaka Yamada
Juji Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP12466678A priority Critical patent/JPS5552304A/en
Publication of JPS5552304A publication Critical patent/JPS5552304A/en
Publication of JPS6259126B2 publication Critical patent/JPS6259126B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はポリオレフインの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyolefins.

さらに詳しくは非常に活性の高い触媒系を用い
ることによつて工業的に有利にポリオレフインを
製造する方法に関する。
More specifically, the present invention relates to an industrially advantageous method for producing polyolefins by using a highly active catalyst system.

従来、オレフイン重合用触媒としては、四塩化
チタンを水素で還元して得られるα型三塩化チタ
ンや、四塩化チタンをアルミニウムで還元して得
られる紫色のγ型三塩化チタン、あるいはこれら
をボールミルで粉砕して得られるδ型三塩化チタ
ン等が知られている。また、これらの触媒の改質
方法として種々の改質剤と共に混合粉砕処理する
方法も知られている。
Conventionally, catalysts for olefin polymerization include α-type titanium trichloride obtained by reducing titanium tetrachloride with hydrogen, purple γ-type titanium trichloride obtained by reducing titanium tetrachloride with aluminum, or ball milling. δ-type titanium trichloride obtained by pulverization is known. Furthermore, as a method for modifying these catalysts, a method of mixing and pulverizing them together with various modifiers is also known.

また、塩化マグネシウムをチタン化合物で処理
するいわゆる担持型触媒もオレフイン重合用触媒
としてよく知られている。
Furthermore, a so-called supported catalyst in which magnesium chloride is treated with a titanium compound is also well known as a catalyst for olefin polymerization.

オレフイン重合においてはポリマー中に残つた
触媒を除く操作である脱灰工程は省略できる方
が、工業的に有利であり、そのため高活性の触媒
の探索が行われている。
In olefin polymerization, it is industrially advantageous to be able to omit the deashing step, which is an operation for removing the catalyst remaining in the polymer, and therefore a search for a highly active catalyst is underway.

本発明者らもこの目的で高活性の触媒を得るべ
く鋭意検討した結果、本発明に到達した。
The present inventors also conducted intensive studies to obtain a highly active catalyst for this purpose, and as a result, they arrived at the present invention.

即ち、本発明では重合時にチタン化合物と有機
アルミニウム化合物を用いる系においてチタン化
合物としてマグネシウムジハロゲン化物に一般式
CH2=CH―CH2―O―R(Rは炭素数1〜10の
アルキル基またはエーテル基やグリシジル基を含
んでいるものでもよい)および/または一般式
CH2=CH―O―R′(R′は炭素数1〜10のアルキ
ル基、またはエーテル基、グリシジル基、ハロゲ
ンを含んでいるものでもよい。)で示される不飽
和基をもつエーテル化合物(α位やβ位の水素が
アルキル基に置換されていてもよい)および一般
式SiXn(OR″)4-o(Xはハロゲン、R″はアルキ
ル基、nは0〜4の整数)で示されるケイ素化合
物とを機械的に接触させたのちチタンテトラハラ
イドで処理したものを用いることによつて重合活
性は非常に高くなり本目的が達成された。
That is, in the present invention, in a system using a titanium compound and an organoaluminum compound during polymerization, magnesium dihalide is used as a titanium compound with the general formula
CH2 =CH-CH2 - O-R (R may contain an alkyl group having 1 to 10 carbon atoms, an ether group, or a glycidyl group) and/or the general formula
Ether compounds having an unsaturated group represented by CH 2 =CH-O-R'(R' may be an alkyl group having 1 to 10 carbon atoms, or an ether group, a glycidyl group, or a halogen group) ( hydrogen at the α-position or β-position may be substituted with an alkyl group) and the general formula SiXn(OR″) 4-o (X is a halogen, R″ is an alkyl group, n is an integer from 0 to 4). By using a material that was mechanically brought into contact with a silicon compound and then treated with titanium tetrahalide, the polymerization activity was extremely high and this objective was achieved.

本発明における、マグネシウムジハロゲン化合
物とエーテル化合物およびケイ素化合物との接触
手段には、回転ボールミル、衝撃ミルによる手段
がある。
In the present invention, means for contacting the magnesium dihalogen compound with the ether compound and the silicon compound include a rotary ball mill and an impact mill.

これらミルを用いる処理は回転ボールミルを例
にとれば、例えば内直径110mm、深さ110mmのボー
ルミル円筒に直径15mmのステンレス鋼製ボールを
30〜150個収容し、被処理物を10〜30gとして粉
砕する。
Taking a rotary ball mill as an example, processing using these mills involves placing stainless steel balls with a diameter of 15 mm in a ball mill cylinder with an inner diameter of 110 mm and a depth of 110 mm.
It accommodates 30 to 150 pieces and crushes the material to be processed into 10 to 30 g.

この際、回転数は70〜200rpm、処理温度は0
〜70℃で行えばよく、室温で行うことができる。
また接触時間は40時間以上行えばよい。
At this time, the rotation speed is 70 to 200 rpm, and the processing temperature is 0.
It may be carried out at ~70°C, and can be carried out at room temperature.
Further, the contact time may be 40 hours or more.

また本触媒調整において機械的接触ののちのチ
タンテトラハライドによる処理は、接触処理物を
チタンテトラハライドまたは不活性溶媒で稀釈し
たチタンテトラハライド溶液中に懸濁させ、40℃
から溶液の沸点までの温度において1時間以上単
に撹拌することによつて行われる。
In addition, in the preparation of this catalyst, the treatment with titanium tetrahalide after mechanical contact is carried out by suspending the contact-treated product in titanium tetrahalide or a titanium tetrahalide solution diluted with an inert solvent, and at 40°C.
to the boiling point of the solution by simple stirring for one hour or more.

本触媒調整に用いられるマグネシウムジハロゲ
ン化物としては塩化マグネシウム、臭化マグネシ
ウム,ヨウ化マグネシウムが用いられうるが、こ
のうち塩化マグネシウムが最も好ましい。
Magnesium chloride, magnesium bromide, and magnesium iodide can be used as the magnesium dihalide used for preparing the present catalyst, and among these, magnesium chloride is most preferred.

粉砕処理の際の処理化合物の量比はマグネシウ
ムジハロゲン化物を1とすると不飽和基をもつエ
ーテル化合物0.01〜0.5モル倍、ケイ素化合物0.01
〜0.5モル倍である。
The quantitative ratio of the treated compounds during the pulverization treatment is: magnesium dihalide is 1, ether compound with an unsaturated group is 0.01 to 0.5 mole, and silicon compound is 0.01.
~0.5 mole times.

ここで使用するエーテル化合物として不飽和基
をもつエーテル化合物を用いることにより不飽和
基をもたないエーテル化合物を用いた場合に比
べ、大きな活性上昇効果がみられ、またプロピレ
ンの重合に用いた場合には立体規則性も向上させ
る効果がある。
By using an ether compound with an unsaturated group as the ether compound used here, a large activity increase effect was observed compared to the case of using an ether compound without an unsaturated group, and when used in the polymerization of propylene. also has the effect of improving stereoregularity.

チタンテトラハライドは一般式TiX4で示さ
れ、四塩化チタン,四臭化チタン,四ヨウ化チタ
ンがあるが、四塩化チタンが最も好ましい。
Titanium tetrahalide is represented by the general formula TiX 4 and includes titanium tetrachloride, titanium tetrabromide, and titanium tetraiodide, with titanium tetrachloride being the most preferred.

このチタンテトラハライドによる処理の際には
稀釈剤として不活性溶媒を用いてもよく、炭素数
5〜10の炭化水素が用いられうる。
In this treatment with titanium tetrahalide, an inert solvent may be used as a diluent, and a hydrocarbon having 5 to 10 carbon atoms may be used.

チタンテトラハライド処理におけるチタンテト
ラハライドの使用量はマグネシウムジハライドの
1〜10モル倍である。
The amount of titanium tetrahalide used in the titanium tetrahalide treatment is 1 to 10 times the mole of magnesium dihalide.

本発明触媒の重合での使用法は、不活性溶媒の
存在下でも不存在下でも行われうる。
The use of the catalyst of the invention in polymerization can be carried out in the presence or absence of an inert solvent.

不活性溶媒としては炭素数3〜10の炭化水素が
用いられ一般にはヘキサン,ヘプタンが用いられ
る。
Hydrocarbons having 3 to 10 carbon atoms are used as the inert solvent, and hexane and heptane are generally used.

重合における温度及び圧力は通常のチーグラー
触媒の使用条件でよく、200℃以下、常圧から50
Kg/cm2Gの範囲で行われる。
The temperature and pressure during polymerization may be the same as the conditions used for ordinary Ziegler catalysts, such as 200℃ or less, normal pressure to 50℃.
It is carried out in the range of Kg/cm 2 G.

重合に使われる触媒の使用量はチタン化合物を
チタン原子換算0.0001〜1.0ミリモル/、有機
アルミニウム化合物をアルミニウム,チタンのモ
ル比1/1〜100/1で行えばよい。トリアルキ
ルアルミニウムが本発明における最も効果のある
有機アルミニウム化合物である。
The amount of the catalyst used in the polymerization is such that the titanium compound is used in the range of 0.0001 to 1.0 mmol per titanium atom, and the organoaluminum compound is used in the molar ratio of aluminum to titanium of 1/1 to 100/1. Trialkylaluminum is the most effective organoaluminum compound in this invention.

以下に本発明を具体的な実施例で説明を行う
が、本発明はこれら実施例によつて制約をうける
ものではない。
The present invention will be explained below using specific examples, but the present invention is not limited by these examples.

実施例 1 <触媒調製> 無水の塩化マグネシウム20.0g、イソブチルビ
ニルエーテル5.5ml,四塩化ケイ素3.0mlを直径1.5
mmのステンレス鋼(SUS32)製ボール100個を収
容した内直径110mm,深さ110mmのステンレス鋼製
ボールミルポツトに窒素雰囲気下で入れ、温度23
℃,回転数120rpmで42時間接触させる。接触処
理固体は四塩化チタン150mlに懸濁させ、80℃で
2時間撹拌下に処理し、処理固体はろ過後、乾燥
したn―ヘキサンで充分に洗浄し、減圧乾燥す
る。
Example 1 <Catalyst Preparation> 20.0 g of anhydrous magnesium chloride, 5.5 ml of isobutyl vinyl ether, and 3.0 ml of silicon tetrachloride were prepared in a diameter of 1.5 g.
The pot was placed in a stainless steel ball mill pot with an inner diameter of 110 mm and a depth of 110 mm containing 100 balls made of stainless steel (SUS32) with a temperature of 23 mm.
Leave in contact for 42 hours at ℃ and 120 rpm. The contact-treated solid is suspended in 150 ml of titanium tetrachloride and treated at 80° C. for 2 hours with stirring. The treated solid is filtered, thoroughly washed with dry n-hexane, and dried under reduced pressure.

このようにして得られたチタン化合物中のチタ
ン含量は3.0wt%である。このものを用いて以下
に示す方法によつてオレフインの重合反応を行
う。
The titanium content in the titanium compound thus obtained is 3.0 wt%. Using this product, an olefin polymerization reaction is carried out by the method shown below.

<エチレン重合> よく乾燥、窒素置換した内容積2のオートク
レープに充分に酸素及び水分を除いたヘキサン1
を入れさらにトリエチルアルミニウム0.1ml上
記触媒45.3mgを装入した。次に水素を1.5Kg/cm2
G入れ、70℃でエチレンを導入して重合を開始し
た。内圧を3.0Kg/cm2Gで2時間重合を行つた。
停止後、固体成分は過し、白色粉末状のポリエ
チレン123gを得た。本触媒の活性は45300g
PE/gTi・hrであつた。
<Ethylene polymerization> In a well-dried and nitrogen-substituted autoclave with an internal volume of 2, add 1 hexane from which oxygen and moisture have been sufficiently removed.
0.1 ml of triethylaluminum and 45.3 mg of the above catalyst were added. Next, add hydrogen at 1.5Kg/cm 2
G was added, and ethylene was introduced at 70°C to start polymerization. Polymerization was carried out at an internal pressure of 3.0 Kg/cm 2 G for 2 hours.
After stopping, the solid components were filtered to obtain 123 g of white powdered polyethylene. The activity of this catalyst is 45300g
It was PE/gTi・hr.

<プロピレン重合> よく乾燥、窒素置換した内容積2のオートク
レーブに充分に酸素、及び水分を除いたヘキサン
1を入れ、さらにトリエチルアルミニウム0.1
ml上記触媒87.5mgを装入した。70℃で撹拌しなが
らプロピレンを導入して重合を開始した。内圧を
7Kg/cm2Gに調節しながら2時間重合を行つた。
停止後内容物にイソプロパノールを加え固体をろ
過した。生成した全ポリマー量(ろ液中のポリマ
ーを含む)は390gであつた。従つて本触媒の活
性は10600gPP/gTi・hr・プロピレン圧(Kg/
cm2)であり、また沸騰ヘプタン不溶分の割合
()は73%であつた。
<Propylene polymerization> In a well-dried, nitrogen-substituted autoclave with an internal volume of 2, add 1 part of hexane with sufficient oxygen and moisture removed, and add 0.1 part of triethylaluminum.
87.5 mg of the above catalyst was charged. Polymerization was started by introducing propylene while stirring at 70°C. Polymerization was carried out for 2 hours while adjusting the internal pressure to 7 kg/cm 2 G.
After stopping, isopropanol was added to the contents and the solid was filtered. The total amount of polymer produced (including the polymer in the filtrate) was 390 g. Therefore, the activity of this catalyst is 10600gPP/gTi・hr・propylene pressure (Kg/
cm 2 ), and the percentage of boiling heptane insoluble matter ( ) was 73%.

比較例 1 <触媒調製> 実施例1で粉砕時に四塩化ケイ素を入れない以
外はすべて実施例1と同様にして調製した。生成
した触媒成分中のTi含量は2.4重量%であつた。
Comparative Example 1 <Catalyst Preparation> A catalyst was prepared in the same manner as in Example 1 except that silicon tetrachloride was not added during pulverization. The Ti content in the produced catalyst component was 2.4% by weight.

<エチレン重合> 上記触媒110.2mgを使用したこと以外は実施例
1と同じ方法により重合を行いポリエチレン96g
を得た。本触媒の活性は18100gPE/gTi・hrで
あつた。
<Ethylene polymerization> Polymerization was carried out in the same manner as in Example 1, except that 110.2 mg of the above catalyst was used, and 96 g of polyethylene was obtained.
I got it. The activity of this catalyst was 18100 gPE/gTi·hr.

比較例 2 <触媒調製> 実施例1でイソブチルビニルエーテル5.5mlの
かわりにジn―ブチルエーテル7.0mlを用いた以
外はすべて実施例1と同様にして調製した。生成
した触媒成分中のTi含量は1.8重量%であつた。
Comparative Example 2 <Catalyst Preparation> A catalyst was prepared in the same manner as in Example 1 except that 7.0 ml of di-n-butyl ether was used instead of 5.5 ml of isobutyl vinyl ether. The Ti content in the produced catalyst component was 1.8% by weight.

<エチレン重合> 上記触媒105.2mgを使用したこと以外は実施例
1と同じ方法により重合を行い、ポリエチレン60
gを得た。本触媒の活性は15900gE/gTi・hr
であつた。
<Ethylene polymerization> Polymerization was carried out in the same manner as in Example 1 except that 105.2 mg of the above catalyst was used, and polyethylene 60
I got g. The activity of this catalyst is 15900gE/gTi・hr
It was hot.

<プロピレン重合> 上記触媒140.3mgを使用した以外は実施例1と
同じ方法により重合を行い、ポリプロピレン161
gを得た。重合活性は4600gPP/gTi・hr・プ
ロピレン圧(Kg/cm2)、沸騰ヘプタン不溶分の割
合()は59%であつた。
<Propylene polymerization> Polymerization was carried out in the same manner as in Example 1 except that 140.3 mg of the above catalyst was used, and polypropylene 161
I got g. The polymerization activity was 4600 gPP/gTi·hr·propylene pressure (Kg/cm 2 ), and the proportion ( ) of boiling heptane insoluble matter was 59%.

実施例 2 <触媒調製> 無水の塩化マグネシウム12.0g,アリルグリシ
ジルエーテル3.0ml,四塩化ケイ素1.8mlを直径15
mmのステンレス鋼(SUS32)製ボール34個を収容
した内直径110mm,深さ110mmのステンレス鋼製ボ
ールミルポツトに窒素雰囲気下で入れ、温度23
℃、回転数120rpmで42時間、接触させる。接触
処理固体は四塩化チタン90mlに懸濁させ、80℃で
2時間撹拌下に処理し、処理固体はろ過後、乾燥
したnヘキサンで充分に洗浄し、減圧乾燥する。
このようにして得られたチタン化合物中のチタン
含量は2.1重量%であつた。
Example 2 <Catalyst Preparation> 12.0 g of anhydrous magnesium chloride, 3.0 ml of allyl glycidyl ether, and 1.8 ml of silicon tetrachloride were prepared in a diameter of 15 mm.
The pot was placed in a stainless steel ball mill pot with an inner diameter of 110 mm and a depth of 110 mm containing 34 balls made of stainless steel (SUS32) with a temperature of 23 mm.
℃ and 120 rpm for 42 hours. The contact-treated solid is suspended in 90 ml of titanium tetrachloride and treated at 80° C. for 2 hours with stirring. The treated solid is filtered, thoroughly washed with dry n-hexane, and dried under reduced pressure.
The titanium content in the titanium compound thus obtained was 2.1% by weight.

<エチレン重合> 上記触媒60mgを用いた以外は実施例1と同じ方
法で重合反応を行い、ポリエチレン75gを得た。
本触媒の活性は29800gPE/gTi・hrであつた。
<Ethylene Polymerization> A polymerization reaction was carried out in the same manner as in Example 1 except that 60 mg of the above catalyst was used to obtain 75 g of polyethylene.
The activity of this catalyst was 29,800 gPE/gTi·hr.

実施例 3 <触媒調製> 実施例2においてアリルグリシジルエーテル
3.0mlのかわりにエチルビニルエーテル2.4mlを加
えて粉砕を行う以外は実施例2と同様の操作によ
り、触媒成分を作成した。得られた触媒中のTi
含量は2.0重量%であつた。
Example 3 <Catalyst Preparation> In Example 2, allyl glycidyl ether
A catalyst component was prepared in the same manner as in Example 2, except that 2.4 ml of ethyl vinyl ether was added instead of 3.0 ml for pulverization. Ti in the obtained catalyst
The content was 2.0% by weight.

<プロピレン重合> 上記触媒98.4mgを用い、実施例1と同様の操作
により重合を行つた。重合活性は6300g/g
Ti・hr・プロピレン圧(Kg/cm2)、沸騰ヘプタン
不溶分の割合()は65%であつた。
<Propylene Polymerization> Polymerization was carried out in the same manner as in Example 1 using 98.4 mg of the above catalyst. Polymerization activity is 6300g/g
The Ti·hr·propylene pressure (Kg/cm 2 ) and the proportion of boiling heptane insolubles () were 65%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に触媒調製図(フローチヤート図)を示
す。
FIG. 1 shows a catalyst preparation diagram (flow chart).

Claims (1)

【特許請求の範囲】 1 チタン化合物と有機アルミニウム化合物を用
いてポリオレフインを製造するに際し、チタン化
合物として、マグネシウムジハロゲン化物を一般
式CH2=CH―CH2―O―R(Rは炭素数1〜10
のアルキル基、またはエーテル基やグリシジル基
を含んでいるものでもよい)および/または一般
式CH2=CH―O―R′(R′は炭素数1〜10のアル
キル基、またはエーテル基、グリシジル基、ハロ
ゲンを含んでいるものでもよい。)で示される不
飽和基をもつエーテル化合物(α位やβ位の水素
がアルキル基に置換されていてもよい)および一
般式SiXn(OR″)4-o(Xはハロゲン、R″はアル
キル基、nは0〜4の整数)で示されるケイ素化
合物と機械的に接触させたのち、チタンテトラハ
ライドにより処理した微粒状固体を用いることを
特徴とするポリオレフインの製造方法。 2 該有機アルミニウム化合物がトリアルキルア
ルミニウムである特許請求の範囲第1項記載の方
法。
[Claims] 1. When producing a polyolefin using a titanium compound and an organoaluminum compound, a magnesium dihalide is used as the titanium compound according to the general formula CH 2 =CH-CH 2 -O-R (R is a carbon number of 1 to Ten
or an alkyl group containing an ether group or a glycidyl group) and/or a general formula CH 2 =CH-O-R'(R' is an alkyl group having 1 to 10 carbon atoms, an ether group, or a glycidyl group). ether compounds with an unsaturated group (the hydrogens at the α- and β-positions may be substituted with an alkyl group) and the general formula SiXn (OR″) 4 -o (X is a halogen, R'' is an alkyl group, n is an integer of 0 to 4) mechanically contacted with a silicon compound, and then treated with titanium tetrahalide, using a fine particulate solid. A method for producing polyolefin. 2. The method according to claim 1, wherein the organoaluminum compound is trialkylaluminum.
JP12466678A 1978-10-12 1978-10-12 Preparation of polyolefin Granted JPS5552304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12466678A JPS5552304A (en) 1978-10-12 1978-10-12 Preparation of polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12466678A JPS5552304A (en) 1978-10-12 1978-10-12 Preparation of polyolefin

Publications (2)

Publication Number Publication Date
JPS5552304A JPS5552304A (en) 1980-04-16
JPS6259126B2 true JPS6259126B2 (en) 1987-12-09

Family

ID=14891039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12466678A Granted JPS5552304A (en) 1978-10-12 1978-10-12 Preparation of polyolefin

Country Status (1)

Country Link
JP (1) JPS5552304A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972383A (en) * 1972-11-10 1974-07-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972383A (en) * 1972-11-10 1974-07-12

Also Published As

Publication number Publication date
JPS5552304A (en) 1980-04-16

Similar Documents

Publication Publication Date Title
US4298718A (en) Catalysts for the polymerization of olefins
KR910009111B1 (en) Components and catalysts for the polymerization of olefins
JPH0832737B2 (en) Solid catalyst component for olefin polymerization
JP2514015B2 (en) Solid catalyst component for olefin polymerization
JPS6250483B2 (en)
JPS6338363B2 (en)
JPS6330328B2 (en)
JPS64404B2 (en)
JPS5825363B2 (en) Production method of α-olefin polymer
JPS6259126B2 (en)
JPS646643B2 (en)
JPS6248681B2 (en)
JP2727117B2 (en) Olefin polymerization catalyst component and olefin polymerization method
JP2525196B2 (en) Solid catalyst component for olefin polymerization
JPS647085B2 (en)
JPS6234245B2 (en)
JP2587243B2 (en) Catalyst components and catalysts for olefins polymerization
JPS646648B2 (en)
JPS5821921B2 (en) Polymerization method of α↓-olefins
JPH0772211B2 (en) Continuous propylene polymerization method
JP2630589B2 (en) Solid catalyst component for olefins polymerization
JPS59124909A (en) Production of olefin polymerization catalyst
JP2513997B2 (en) Method for producing catalyst component for olefin polymerization
JPS58154704A (en) Polymerization of alpha-olefin
JPS6225110A (en) Catalyst component for polymerizing olefin and catalyst