JPS6258679B2 - - Google Patents

Info

Publication number
JPS6258679B2
JPS6258679B2 JP4560982A JP4560982A JPS6258679B2 JP S6258679 B2 JPS6258679 B2 JP S6258679B2 JP 4560982 A JP4560982 A JP 4560982A JP 4560982 A JP4560982 A JP 4560982A JP S6258679 B2 JPS6258679 B2 JP S6258679B2
Authority
JP
Japan
Prior art keywords
type
layer
carrier confinement
light
striped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4560982A
Other languages
Japanese (ja)
Other versions
JPS58164282A (en
Inventor
Satoru Todoroki
Hisatoshi Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4560982A priority Critical patent/JPS58164282A/en
Publication of JPS58164282A publication Critical patent/JPS58164282A/en
Publication of JPS6258679B2 publication Critical patent/JPS6258679B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は活性層の中央部で高光出力の安定した
基本横モード発振をする高信頼度の半導体レーザ
装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a highly reliable semiconductor laser device that produces stable fundamental transverse mode oscillation with high optical output in the center of an active layer.

光フアイバ通信、光ビデオデイスク、光計測装
置等に使用される半導体レーザ装置は一般に次の
方法で製造される。すなわち(100)結晶面を有
するN型半導体基板上にN型光及びキヤリア閉じ
込め層と、N型またはP型活性層と、P型光及び
キヤリア閉じ込め層とN型キヤツプ層とを液相エ
ピタキシヤル成長法を用いて連続的に成長させた
後、所定の幅を有してN型キヤツプ層を貫き、上
記P型光及びキヤリア閉じ込め層の一部に達する
深さのストライプ状のオーミツク接触層を<110
>結晶軸方向に設ける。その後上記N型キヤツプ
層表面と前記N型半導体基板裏面にそれぞれ電極
を被着して半導体レーザ装置を製造する。この方
法で製造された半導体レーザ装置では、N型また
はP型活性層の屈折率naとそれを挾むN型及び
P型の光及びキヤリア閉じ込め層の屈折率nc
の間にはna>ncの関係があるので、電極より注
入されたキヤリアの再結晶はN型またはP型活性
層内で生じ、活性層のエネルギーギヤツプに応じ
た光が活性層内に閉じ込められる。この閉じ込め
られた光の活性層に対して垂直方向(縦方向)の
閉じ込め効果は上記の屈折率差が大きい程著しく
なるが、活性層に対して水平方向(横方向)の閉
じ込めはオーミツク接触層から前記N型半導体基
板への注入キヤリアの広がりが大きく効果がない
ため、発振しきい電流値の増大や発振横モードの
変動を生じたり高光出力レーザ発振が困難となり
長期信頼性に欠ける等の欠点を有することにな
る。
Semiconductor laser devices used in optical fiber communications, optical video disks, optical measurement devices, etc. are generally manufactured by the following method. That is, an N-type light and carrier confinement layer, an N-type or P-type active layer, a P-type light and carrier confinement layer, and an N-type cap layer are formed on an N-type semiconductor substrate having a (100) crystal plane by liquid phase epitaxial deposition. After continuous growth using a growth method, a striped ohmic contact layer having a predetermined width and penetrating the N-type cap layer and reaching a part of the P-type light and carrier confinement layer is formed. <110
> Provided in the crystal axis direction. Thereafter, electrodes are deposited on the surface of the N-type cap layer and the back surface of the N-type semiconductor substrate, respectively, to manufacture a semiconductor laser device. In the semiconductor laser device manufactured by this method, there is a difference of n between the refractive index n a of the N-type or P-type active layer and the refractive index n c of the N-type and P-type light and carrier confinement layers sandwiching it. Since there is a relationship of a > n c , recrystallization of carriers injected from the electrode occurs within the N-type or P-type active layer, and light corresponding to the energy gap of the active layer is confined within the active layer. The confinement effect of this confined light in the direction perpendicular to the active layer (vertical direction) becomes more significant as the above-mentioned refractive index difference increases, but the confinement effect in the direction horizontal to the active layer (lateral direction) is due to the ohmic contact layer. Since the spread of the injected carriers from the N-type semiconductor substrate to the N-type semiconductor substrate is large and ineffective, there are disadvantages such as an increase in the oscillation threshold current value, fluctuations in the oscillation transverse mode, difficulty in high optical output laser oscillation, and a lack of long-term reliability. will have the following.

これらの欠点を改良した従来技術として、(a)一
層以上の半導体層基板にストライプ状の凹部また
は凸部を設け、一面をこれと接合し他面は別な半
導体層と接合するダブルヘテロ構造の三重層を設
けて発振モードの安定化を図る方法(特開昭53−
110489)、あるいは(b)半導体基板の表面にストラ
イプ状凹部を形成し、液相エピタキシヤル成長の
ときに活性領域となる層の上下にガイド層と光子
閉じ込め層とを設けることにより高出力の基本横
モードを得る方法(特開昭55−123189)、また(c)
レーザ発振波長に対し半導体レーザの中心部を導
波構造にし他の領域を非導波構造とすることによ
り、半導体レーザの中心部で安定な基本モード発
振を得る方法(特開昭55−108791)、さらに(d)
InPとIn1-XGaxAs1-yPyの縞状積層体を化学食刻
により形成し、Asを含むInの未飽和融液を用い
てメルトバツク処理後エピタキシヤル層で埋込み
高性能の埋込み型半導体装置とした方法(特開昭
55−162288)などがある。上記(a)及び(b)の従来例
ではN型半導体基板上に設けたN型光及びキヤリ
ア閉じ込め層のストライプ状凹部とその周辺部で
層厚が異るので実効的な屈折率差が生じ、横方向
の閉じ込めが行われる。しかしながらN型半導体
基板のストライプ状凹部にN型光及びキヤリア閉
じ込め層を液相エピタキシヤル成長させる際に、
該N型半導体基板表面のメルトバツクが不可能で
あるため、上記ストライプ状凹部とN型光及びキ
ヤリア閉じ込め層の界面に極めて多くの結晶欠陥
を誘発させる。またN型光及びキヤリア閉じ込め
層の結晶成長が上記ストライプ状凹部の底面コー
ナ部分から始まるため、該ストライプ状凹部の中
央部に不純物原子あるいは格子欠陥の集中による
転位あるいは内部応力の発生源となる結晶境界面
を形成し、発振動作中に該ストライプ状凹部中央
部分に、ストライプに沿つた<110>ダークライ
ン欠陥といわれる欠陥領域を生じ極めて短時間で
故障するという信頼性上重大な欠点を有する。ま
た上記(c)及び(d)の従来例では活性層の屈折率より
も小さな屈折率の半導体結晶で活性層を囲むた
め、横方向の光及びキヤリアの閉じ込めに対して
は効果が大きいが、エツチング速度が異なるN型
またはP型活性層とP型光及びキヤリア閉じ込め
層とN型キヤツプ層との各層を同一の条件でエツ
チングし上記活性層幅を精度良く制御することは
技術的に極めて困難で、安定した発振横モードを
再現性よく実現することは不可能という欠点を有
している。
As a conventional technology that improves these drawbacks, (a) a double hetero structure in which a stripe-shaped concave or convex part is provided on a semiconductor layer substrate of one or more layers, and one side is bonded to this and the other side is bonded to another semiconductor layer; Method of stabilizing the oscillation mode by providing a triple layer
110489) or (b) forming striped recesses on the surface of the semiconductor substrate and providing a guide layer and a photon confinement layer above and below the layer that will become the active region during liquid phase epitaxial growth. Method for obtaining transverse mode (Japanese Patent Application Laid-Open No. 55-123189), and (c)
A method for obtaining stable fundamental mode oscillation at the center of a semiconductor laser by making the center of the semiconductor laser a waveguide structure and the other region a non-waveguide structure for the laser oscillation wavelength (Japanese Patent Application Laid-Open No. 108791/1983) , and (d)
A striped laminate of InP and In 1 -X Ga Embedded semiconductor device method (JP-A-Sho)
55-162288). In the conventional examples (a) and (b) above, the layer thickness is different between the striped concave portion and the surrounding area of the N-type light and carrier confinement layer provided on the N-type semiconductor substrate, resulting in an effective refractive index difference. , lateral confinement is performed. However, when growing an N-type light and carrier confinement layer by liquid phase epitaxial growth in the striped recesses of an N-type semiconductor substrate,
Since meltback on the surface of the N-type semiconductor substrate is impossible, a large number of crystal defects are induced at the interface between the striped recesses and the N-type light and carrier confinement layer. In addition, since the crystal growth of the N-type light and carrier confinement layer starts from the bottom corner of the striped recess, the center of the striped recess becomes a source of dislocation or internal stress due to the concentration of impurity atoms or lattice defects in the crystal. It forms a boundary surface, and during oscillation operation, a defect region called a <110> dark line defect occurs along the stripe at the center of the striped recess, resulting in failure in an extremely short period of time, which is a serious drawback in terms of reliability. In addition, in the conventional examples (c) and (d) above, the active layer is surrounded by semiconductor crystals with a refractive index smaller than that of the active layer, which is highly effective for confining light and carriers in the lateral direction. It is technically extremely difficult to precisely control the width of the active layer by etching the N-type or P-type active layer, the P-type light and carrier confinement layer, and the N-type cap layer, which have different etching rates, under the same conditions. However, it has the disadvantage that it is impossible to realize a stable oscillation transverse mode with good reproducibility.

本発明はこれらの欠点を除き、簡単な構造で高
出力の安定した基本横モード発振が長期間継続す
る半導体レーザ装置を得るために、あらかじめN
型半導体基板上に形成したN型光及びキヤリア閉
じ込め層のストライプ状凸部の周囲を該N型半導
体基板と同一の半導体結晶で埋めて、N型半導体
基板のストライプ状凹溝を形成することを特徴と
する。
The present invention eliminates these drawbacks and obtains a semiconductor laser device with a simple structure, high output, and stable fundamental transverse mode oscillation that continues for a long period of time.
The periphery of the striped convex portion of the N-type light and carrier confinement layer formed on the N-type semiconductor substrate is filled with the same semiconductor crystal as the N-type semiconductor substrate to form the striped groove of the N-type semiconductor substrate. Features.

すなわち本発明はN型半導体結晶を基板とした
第1のN型光およびキヤリア閉じ込め層の表面に
開孔をもつ酸化膜を設け、化学エツチングにより
上記第1のN型光及びキヤリア閉じ込め層の開孔
内に露出している部分を除去して所定の幅を有す
るストライプ状の凸部を形成し、上記酸化膜をマ
スクとしてストイプ周辺の凹部を前記N型半導体
基板と同一N型半導体層で埋めた後、上記酸化膜
を取除き、ストライプ状の第1のN型光及びキヤ
リア閉じ込め層を含む上記N型半導体層の表面を
わずかにメルトバツクしながら第2のN型光及び
キヤリア閉じ込め層と、N型またはP型活性層
と、P型光及びキヤリア閉じ込め層と、N型キヤ
ツプ層とを連続して液相エピタキシヤル成長さ
せ、前記ストライプ状の第1のN型光及びキヤリ
ア閉じ込め層に対応して上記N型キヤツプ層を貫
きP型光及びキヤリア閉じ込め層の一部に達する
深さのオーミツク接触層を設けた後、上記N型キ
ヤツプ層の表面と前記N型半導体基板の裏面とに
それぞれ電極を被着した半導体レーザ装置であ
る。
That is, the present invention provides an oxide film with openings on the surface of a first N-type light and carrier confinement layer using an N-type semiconductor crystal as a substrate, and chemically etches the first N-type light and carrier confinement layer to open the first N-type light and carrier confinement layer. The exposed portion in the hole is removed to form a striped convex portion having a predetermined width, and the concave portion around the stripe is filled with the same N-type semiconductor layer as the N-type semiconductor substrate using the oxide film as a mask. After that, the oxide film is removed, and the surface of the N-type semiconductor layer including the striped first N-type light and carrier confinement layer is slightly melt-backed and a second N-type light and carrier confinement layer is formed. An N-type or P-type active layer, a P-type light and carrier confinement layer, and an N-type cap layer are successively grown by liquid phase epitaxial growth to correspond to the striped first N-type light and carrier confinement layer. After forming an ohmic contact layer having a depth that penetrates the N-type cap layer and reaches a part of the P-type light and carrier confinement layer, an ohmic contact layer is formed on the surface of the N-type cap layer and the back surface of the N-type semiconductor substrate, respectively. This is a semiconductor laser device covered with electrodes.

次に本発明の実施例を図面とともに説明する。
第1図〜第4図は本発明による半導体レーザ装置
の製造工程を示す断面図である。第1図は
(100)結晶面を有するN型GaAs半導体基板1の
表面に第1のN型Ga1-xAlxAs光及びキヤリア閉
じ込め層2を液相エピタキシヤル成長させた後
に、この第1のN型Ga1-xAlxAs光及びキヤリア
閉じ込め層2の表面に開孔をもつAl2O3等の酸化
膜3を設けた状態を示す図である。第2図は化学
エツチングにより上記開孔内に露出している第1
のN型Ga1-xAlxAs光及びキヤリア閉じ込め層2
とN型GaAs基板1の一部を除去して所定のスト
ライプ幅を有する凸部(チヤネル)を形成した状
態を示す図である。第3図は上記の状態における
Al2O3等の酸化膜3をマスクとして該ストライプ
状凸部の周辺を取巻く凹部を、N型GaAs半導体
基板1と同一のキヤリア濃度及び移動度を有する
N型GaAs埋込み層4で埋めた状態を示す図であ
る。第4図は本発明の半導体レーザ装置の完成し
た状態を示す図である。第3図から第4図に示す
までの工程としては、上記したN型GaAs埋込み
層4が形成されたのち前記Al2O3等の酸化膜3を
取除き、上記ストライプ状第1のN型
Ga1-xAlxAs光及びキヤリア閉じ込め層2を含む
N型GaAs埋込み層4の表面をAsを含むGaの不飽
和溶液でわずかにメルトバツクしながら第2のN
型Ga1-xAlxAs光及びキヤリア閉じ込め層5と、
このN型Ga(1-x)AlxAs光及びキヤリア閉じ込め
層のAl混晶比(x)よりも小さなAl混晶比(y)を有す
るN型またはP型Ga1-yAlyAs活性層6と、P型
Ga(1-x)AlxAs光及びキヤリア閉じ込め層7と、
GaAsキヤツプ層8とを連続して液相エピタキシ
ヤル成長させる。次に上記ストライプ状の第1の
N型Ga1-xAlxAs光及びキヤリア閉じ込め層2に
対応して、N型GaAsキヤツプ層を貫きP型
Ga1-xAlxAs光及びキヤリア閉じ込め層7の一部
に達する深さのオーミツク接触層9をZnを拡散
して設けた後、上記N型GaAsキヤツプ層8の表
面にCr合金を用いた電極10及び前記N型GaAs
半導体基板1の裏面にGeNi合金を用いた電極1
1をそれぞれ真空蒸着法により被着して半導体レ
ーザ装置を構成する。
Next, embodiments of the present invention will be described with reference to the drawings.
1 to 4 are cross-sectional views showing the manufacturing process of a semiconductor laser device according to the present invention. FIG. 1 shows a first N-type Ga 1-x Al 1 is a diagram showing a state in which an oxide film 3 such as Al 2 O 3 having openings is provided on the surface of the N-type Ga 1-x Al x As light and carrier confinement layer 2 of No. 1. FIG. Figure 2 shows the first hole exposed in the above hole by chemical etching.
N-type Ga 1-x Al x As light and carrier confinement layer 2
FIG. 3 is a diagram showing a state in which a part of the N-type GaAs substrate 1 is removed to form a convex portion (channel) having a predetermined stripe width. Figure 3 shows the above condition.
Using an oxide film 3 such as Al 2 O 3 as a mask, the recesses surrounding the striped convex portions are filled with an N-type GaAs buried layer 4 having the same carrier concentration and mobility as the N-type GaAs semiconductor substrate 1. FIG. FIG. 4 is a diagram showing the completed state of the semiconductor laser device of the present invention. The process from FIG. 3 to FIG. 4 is that after the N-type GaAs buried layer 4 described above is formed, the oxide film 3 such as Al 2 O 3 is removed, and the striped first N-type
Ga 1-x Al
a Ga 1-x Al x As light and carrier confinement layer 5;
This N-type or P-type Ga 1-y Al y As active material has an Al composition ratio (y) smaller than the Al composition ratio (x) of the N-type Ga (1-x ) Al x As light and carrier confinement layer. Layer 6 and P type
Ga (1-x) Al x As light and carrier confinement layer 7;
A GaAs cap layer 8 is successively grown by liquid phase epitaxial growth. Next, corresponding to the striped first N-type Ga 1-x Al x As light and carrier confinement layer 2, the P-type
After providing an ohmic contact layer 9 with a depth reaching a part of the Ga 1-x Al x As light and carrier confinement layer 7 by diffusing Zn, a Cr alloy was used on the surface of the N-type GaAs cap layer 8. Electrode 10 and the N-type GaAs
Electrode 1 using GeNi alloy on the back side of semiconductor substrate 1
1 by vacuum evaporation to construct a semiconductor laser device.

本発明の半導体レーザ装置の発振動作原理は次
のとおりである。すなわち図における電極10よ
り電流を流しキヤリアを注入すると、N型または
P型のGa1-yAlyAs活性層6のAl混晶比(y)はそれ
を挾む第2のN型Ga1-xAlxAs光及びキヤリア閉
じ込め層5並びにP型Ga1-xAlxAs光及びキヤリ
ア閉じ込め層7のAl混晶比(x)よりも小さいの
で、注入されたキヤリアの再結合が主にN型また
はP型Ga1-yAlyAs活性層6内で生じ、屈折率が
高い該N型またはP型Ga1-yAlyAs活性層6内で
発生した光の一部の縦方向(活性層6に対して垂
直方向)の閉じ込めが行われる。一方、ストライ
プ状の第1のN型Ga1-xAlxAs光及びキヤリア閉
じ込め層2並びに第2のN型Ga1-xAlxAs光及び
キヤリア閉じ込め層5からなり上記N型またはP
型Ga1-yAlyAs活性層6からしみ出した光を閉じ
込める役割をもつ光及びキヤリア閉じ込め層の層
厚は前記ストライプ部分よりその周辺部が薄いた
め、前記ストライプ周辺部においてしみ出した光
はすべてN型GaAs埋込み層4に吸収される。従
つて上記活性層6の屈折率は前記ストライプ部分
よりもその周辺部における方が実効的に小さくな
るため、横方向の光の閉じ込めが行われる。そし
て前記ストライプ状の第1のN型Ga1-xAlxAs光
及びキヤリア閉じ込め層2に対応した領域のN型
またはP型Ga1-yAlyAs活性層6内に閉じ込めら
れた光の増幅利得が内部損失よりも大きくなると
レーザ光として外部に放出される。
The principle of oscillation operation of the semiconductor laser device of the present invention is as follows. That is, when a current is passed through the electrode 10 in the figure and a carrier is injected, the Al mixed crystal ratio (y) of the N-type or P-type Ga 1-y Al y As active layer 6 changes to the second N-type Ga 1 sandwiching it. -x Al x As light and carrier confinement layer 5 and P-type Ga 1-x Al x As light and carrier confinement layer 7 are smaller than the Al mixed crystal ratio (x), so recombination of injected carriers mainly occurs. The longitudinal direction of a portion of the light generated within the N-type or P-type Ga 1 -y Al y As active layer 6 and having a high refractive index. Confinement is performed (in the direction perpendicular to the active layer 6). On the other hand, it consists of a striped first N-type Ga 1-x Al x As optical and carrier confinement layer 2 and a second N-type Ga 1 - x Al
Since the layer thickness of the light and carrier confinement layer, which has the role of confining the light seeped out from the Ga 1-y Al y As active layer 6, is thinner in the peripheral part than in the stripe part, the light seeped out in the peripheral part of the stripe is thinner than the stripe part. are all absorbed into the N-type GaAs buried layer 4. Therefore, the refractive index of the active layer 6 is effectively smaller in the peripheral portion than in the stripe portion, so that light is confined in the lateral direction. The striped first N-type Ga 1-x Al x As light and the light confined within the N-type or P-type Ga 1-y Al y As active layer 6 in the region corresponding to the carrier confinement layer 2 are When the amplification gain becomes larger than the internal loss, the laser beam is emitted to the outside.

本発明による半導体レーザ装置は上記したよう
に、N型半導体基板のストライプ状凹溝を、該N
型半導体基板上にあらかじめ設けたストライプ状
凸部(チヤネル)の周辺に上記N型半導体基板と
同一の材料を埋込むことにより形成しているた
め、上記チヤネル内における<110>ダークライ
ン欠陥の発生要因となる不純物原子等の集中によ
る転位や内部応力が生じるのを避けることができ
る。また上記ストライプ状チヤネルは主に半導体
基板上に設けた第1のN型Ga1-xAlxAs層の一層
だけを化学エツチングして作られるので、ストラ
イプ幅の制御が容易でかつ再現性に富んでいる。
従つて本発明はストライプ幅に対応した活性層内
で安定した横モードのレーザ光発振を長期間維持
でき、しかも簡単な構造で高信頼度を有する半導
体レーザ装置の製造方法を提供するものである。
As described above, in the semiconductor laser device according to the present invention, the striped grooves of the N-type semiconductor substrate are
Because the same material as the N-type semiconductor substrate is embedded around striped protrusions (channels) previously provided on the N-type semiconductor substrate, <110> dark line defects occur within the channels. It is possible to avoid the occurrence of dislocations and internal stress due to the concentration of impurity atoms and the like. In addition, since the striped channels described above are mainly produced by chemically etching only one layer of the first N-type Ga 1-x Al x As layer provided on the semiconductor substrate, the stripe width can be easily controlled and reproducible. Rich.
Therefore, the present invention provides a method for manufacturing a semiconductor laser device that can maintain stable transverse mode laser light oscillation in an active layer corresponding to the stripe width for a long period of time, and has a simple structure and high reliability. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図はそれぞれ本
発明による半導体レーザ装置の製造工程を示す図
である。 1…N型半導体基板、2…第1のN型光及びキ
ヤリア閉じ込め層、3…酸化膜、4…N型半導体
埋込み層、5…第2のN型光及びキヤリア閉じ込
め層、6…N型またはP型活性層、7…P型光及
びキヤリア閉じ込め層、8…N型キヤツプ層、9
…オーミツク接触層、10及び11…電極。
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are diagrams showing the manufacturing process of a semiconductor laser device according to the present invention, respectively. DESCRIPTION OF SYMBOLS 1... N-type semiconductor substrate, 2... First N-type light and carrier confinement layer, 3... Oxide film, 4... N-type semiconductor buried layer, 5... Second N-type light and carrier confinement layer, 6... N-type or P-type active layer, 7... P-type light and carrier confinement layer, 8... N-type cap layer, 9
...Ohmic contact layer, 10 and 11...electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 N型半導体結晶を基板とした第1のN型光及
びキヤリア閉じ込め層の表面に開孔をもつ酸化膜
を設け、上記第1のN型光及びキヤリア閉じ込め
層の開孔内に露出している部分をエツチングによ
り除去してストライプ状凸部を形成し、前記酸化
膜をマスクとしてストライプ状凸部周辺の凹部に
上記N型半導体基板と同一のN型半導体層を埋込
んだ後、前記酸化膜を取除き、上記ストライプ状
の第1のN型光及びキヤリア閉じ込め層およびそ
の周辺のN型半導体層の上に第2のN型光及びキ
ヤリア閉じ込め層と、N型またはP型の活性層
と、P型光及びキヤリア閉じ込め層と、N型キヤ
ツプ層とを順次形成してストライプ状の第1のN
型光及びキヤリア閉じ込め層に対応し、N型キヤ
ツプ層を貫き、P型光及びキヤリア閉じ込め層の
一部に達する深さのオーミツク接触層を設けた
後、上記N型キヤツプ層の表面とN型半導体基板
の裏面にそれぞれ電極を被着することを特徴とす
る半導体レーザ装置の製造方法。
1. An oxide film with openings is provided on the surface of a first N-type light and carrier confinement layer using an N-type semiconductor crystal as a substrate, and the oxide film is exposed in the opening of the first N-type light and carrier confinement layer. After removing the oxidized portion by etching to form striped convex portions, and filling the concave portions around the striped convex portions with the same N-type semiconductor layer as the N-type semiconductor substrate using the oxide film as a mask, The film is removed, and a second N-type light and carrier confinement layer and an N-type or P-type active layer are formed on the striped first N-type light and carrier confinement layer and the surrounding N-type semiconductor layer. , a P-type light and carrier confinement layer, and an N-type cap layer are sequentially formed to form a striped first N
After providing an ohmic contact layer that corresponds to the type light and carrier confinement layer, penetrates the N-type cap layer, and reaches a part of the P-type light and carrier confinement layer, the surface of the N-type cap layer and the N-type contact layer are formed. 1. A method of manufacturing a semiconductor laser device, comprising depositing electrodes on each back surface of a semiconductor substrate.
JP4560982A 1982-03-24 1982-03-24 Manufacture of semiconductor laser device Granted JPS58164282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4560982A JPS58164282A (en) 1982-03-24 1982-03-24 Manufacture of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4560982A JPS58164282A (en) 1982-03-24 1982-03-24 Manufacture of semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS58164282A JPS58164282A (en) 1983-09-29
JPS6258679B2 true JPS6258679B2 (en) 1987-12-07

Family

ID=12724102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4560982A Granted JPS58164282A (en) 1982-03-24 1982-03-24 Manufacture of semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS58164282A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735074U (en) * 1993-12-14 1995-06-27 株式会社スガタ Post card holder
JPH10506746A (en) * 1995-07-13 1998-06-30 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Method and system for iterating data between logically continuous clusters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735074U (en) * 1993-12-14 1995-06-27 株式会社スガタ Post card holder
JPH10506746A (en) * 1995-07-13 1998-06-30 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Method and system for iterating data between logically continuous clusters

Also Published As

Publication number Publication date
JPS58164282A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
US5028563A (en) Method for making low tuning rate single mode PbTe/PbEuSeTe buried heterostructure tunable diode lasers and arrays
US5173913A (en) Semiconductor laser
JPH0474877B2 (en)
US4943971A (en) Low tuning rate single mode PbTe/PbEuSeTe buried heterostructure tunable diode lasers and arrays
JPS6258679B2 (en)
US4888782A (en) Semiconductor light emitting device
US5518954A (en) Method for fabricating a semiconductor laser
EP0124051B1 (en) Semiconductor laser
JPS6154280B2 (en)
CA1256550A (en) Semiconductor structure and devices and methods of making same
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPS6342871B2 (en)
JPH037153B2 (en)
JPS60217689A (en) Manufacture of semiconductor light-emitting element
JPS6361793B2 (en)
JPS60189986A (en) Semiconductor laser
CA1163350A (en) Semiconductor laser
JPH0680869B2 (en) Semiconductor laser device
JPS6373682A (en) Semiconductor laser
JPS641072B2 (en)
JPS5834988A (en) Manufacture of semiconductor laser
JPS6136720B2 (en)
JPH0537073A (en) Semiconductor laser element
JPS5931083A (en) Semiconductor laser element
JPS6354234B2 (en)