JPS6258301B2 - - Google Patents

Info

Publication number
JPS6258301B2
JPS6258301B2 JP54060712A JP6071279A JPS6258301B2 JP S6258301 B2 JPS6258301 B2 JP S6258301B2 JP 54060712 A JP54060712 A JP 54060712A JP 6071279 A JP6071279 A JP 6071279A JP S6258301 B2 JPS6258301 B2 JP S6258301B2
Authority
JP
Japan
Prior art keywords
rubber
resin
vulcanization
vulcanized rubber
polyamide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54060712A
Other languages
Japanese (ja)
Other versions
JPS55152040A (en
Inventor
Toshio Honda
Masao Ogawa
Yukio Fukura
Hikari Ishikawa
Toshio Naito
Setsuo Akyama
Itsuo Tanuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP6071279A priority Critical patent/JPS55152040A/en
Priority to US06/149,596 priority patent/US4300970A/en
Publication of JPS55152040A publication Critical patent/JPS55152040A/en
Publication of JPS6258301B2 publication Critical patent/JPS6258301B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ゴムとポリアミド樹脂との接着方法
に関するものである。 近年多種多様な熱可塑性プラスチツクスが登場
して来た中でエンジニアリングプラスチツクス
(ポリアミド、ポリエステル、ポリカーボネー
ト、ポリアセタール、ポリスルフオン、ポリケイ
素、ポリフエニレンオキサイド、ポリイミド、
ABS、メタクリルなど)と呼ばれる樹脂が製造
販売されており、これらの樹脂はすぐれた機械的
強度、耐熱性、耐クリープ性、耐薬品性、電気特
性、寸法安定性などを示すものが少なくなく広範
囲にわたる使用条件下で、鉄、亜鉛、アルミニウ
ムなどの金属に代替するものが多い。 通常、工業用ゴム製品としてゴムと金属、ゴム
とプラスチツクス、ゴムと無キ物等の製品がある
が、その多くはゴムと金属からなる複合体であ
る。しかし最近それらの製品は軽量化、防錆化、
耐薬品性、耐摩耗性、電気特性、摩擦係数等の要
求からゴムとプラスチツクスの複合体の製品へと
代替する傾向にある。 これらの複合体を作るには当然のことながらゴ
ムとプラスチツクスの間の接着が十分強固なもの
でなくてはならない。 従来行なわれてきた方法として通常、射出成形
から得られた樹脂成形品の表面に含塩素系接着剤
を塗布したものに未加硫ゴムと加硫接着する方法
が行なわれている。樹脂成形品とゴムとの加硫接
着方法の欠点として成形品が加硫接着工程で冷熱
サイクルを受けたり、熱エージングされたりする
ことにより、接着強度の低下あるいは溶液成形品
にクラツクが入る等の工程上の問題、また樹脂の
種類によつて大幅に接着強度が異なる等の問題、
更に熱可塑性樹脂の中でも溶融温度の低い樹脂を
用いた場合は成形品が加硫中に受ける温度あるい
は圧力により変形したりする不都合が問題となつ
ている。 上記の諸問題を克服するため従来の方法と異な
り加硫ゴム表面を処理して特定ゴム表面領域を形
成して、これに予じめ溶融したポリアミド樹脂を
射出する方法につき種々研究の結果、接着が強力
で、寸法精度の高い成形品が得られる加硫ゴムと
樹脂の接着方法を見出し本発明に到達した。 すなわち本発明は加硫ゴム表面にポリアミド樹
脂を接着するに当り、加硫ゴム表面をトリクロロ
イソシアヌル酸の希薄溶液にて処理し特定ゴム表
面領域を形成し、この特定ゴム表面領域に加熱溶
融したポリアミド樹脂を射出もしくは押出しによ
り接着することを特徴とする加硫ゴムとボリアミ
ド樹脂の接着方法に係る。 本発明によればあらかじめ任意な形状の加硫ゴ
ムを作製し、接着する表面をトリクロロイソシア
ヌル酸の希薄溶液により表面処理を施したものを
金型に組み入れ、そこに加熱、溶融したポリアミ
ド樹脂を射出、あるいは押出成形等の方法で接着
することにより、界面が強固に接合したゴム、プ
ラスチツクスの複合体を得ることができる。ま
た、本発明にかかるゴム物品は接着する表面をサ
ンドペーパー、グラインダー等によるバフ掛け等
の機械的処理をすることなしに溶液等で処理する
ために精密、かつ複雑な形状を有する複合体を得
ることができる。 さらに処理液の濃度も薄いので処理されたゴム
表面の劣化を抑えることができ、振動等を受ける
製品として長期間に亘る使用を可能とする。 以下に本発明を詳細に説明する。 本発明に用いられる加硫ゴムのゴム成分は天然
ゴム(NR)、および構造式中に炭素−炭素二重結
合を有する合成ゴムを単独あるいは2種以上をブ
レンドしたものである。上記合成ゴムにはイソプ
レン、ブタジエン、クロロプレン等の共役ジエン
化合物の単独重合体であるポリイソプレンゴム
(IR)、ポリブタジエンゴム(BR)、ポリクロロプ
レンゴム等、前記共役ジエン化合物とスチレン、
アクリロニトリル、ビニルピリジン、アクリル
酸、メタクリル酸、アルキルアクリレート類、ア
ルキルメタクリレート類等のビニル化合物との共
重合体であるスチレンブタジエン共重合ゴム
(SBR)、ビニルピリジンブタジエンスチレン共重
合ゴム、アクリロニトリルブタジエン共重合ゴ
ム、アクリル酸ブタジエン共重合ゴム、メタアク
リル酸ブタジエン共重合ゴム、メチルアクリレー
トブタジエン共重合ゴム、メチルメタクリレート
ブタジエン共重合ゴム等、エチレン、プロピレ
ン、イソブチレン等のオレフイン類とジエン化合
物との共重合体、例えばイソブチレンイソプレン
共重合ゴム(IIR)、オレフイン類と非共役ジエン
との共重合体(EPDM)例えばエチレン、プロピ
レン、シクロペンタジエン三元共重合体、エチレ
ンプロピレン−5−エチリデン−2−ノルボーネ
ン三元共重合体、エチレンプロピレン−1,4−
ヘキサジエン三元共重合体、シクロオレフインを
開環重合させて得られるポリアルケナマー例えば
ポリペンテナマーやオキシラン環の開環重合によ
つて得られるゴム例えば硫黄加硫が可能なポリエ
ピクロロヒドリンゴムやポリプロピレンオキシド
ゴム等が含まれる。また前記各種ゴムのハロゲン
化物、例えば塩素化イソブチレンイソプレン共重
合ゴム(Cl−IIR)、臭素化イソブチレンイソプレ
ン共重合ゴム(Br−IIR)等も含まれる。 さらにノルボルネンの開環重合体も用いうる。
さらにブレンドゴムとしては上述のゴムにエピク
ロルヒドリンゴム、ポリプロピレンオキシドゴ
ム、クロルスルフオン化ポリエチレン等の飽和弾
性体をブレンドして用いることもできる。 本発明の加硫ゴムとはこれらのゴムに、カーボ
ンブラツク、シリカ、炭酸カルシウム、硫酸カル
シウム、クレイ、ケイソウ土、マイカ等の充填
剤、鉱物油、植物油、合成可塑剤等の軟化剤、お
よびステアリン酸等の加硫促進助剤、老化防止
剤、架橋剤、促進剤等をあらかじめ混練機によつ
て十分混練りし適正の加硫条件下で加硫されたも
のをいう。 加硫ゴムは、一般的でかつ最も重要な硫黄加硫
の他に有機イオウ化合物による加硫、例えばジチ
オジモルフオリン、チウラム加硫、過酸化物加
硫、キノイド加硫、樹脂加硫、金属塩加硫、金属
酸化物加硫、ポリアミド加硫、放射線加硫、ヘキ
サメチレンテトラミン加硫等によつて得られるも
のをすべて包含する。 トリクロロイソシアヌル酸(TCCA)は実際の
処理に際してはこれを適当な溶媒に溶解し0.1〜
10重量%、好ましくは1〜5重量%の濃度で用い
る。溶媒の具体例としては四塩化炭素、クロロホ
ルム、ジクロロメタン、などのハロゲン化炭化水
素、ベンゼン、ニトロベンゼン、ハロゲン化ベン
ゼン、トルエン、キシレンなどの芳香族炭化水
素、ジメチルエーテル、ジエチルエーテル、テト
ラヒドロフラン(THF)、ジオキサンなどの鎖状
或は環状エーテル、酢酸エチルなどのエステル
類、ペンタン、ヘキサン、ヘプタン、オクタン、
シクロヘキサンなどの脂肪族炭化水素、アセト
ン、シクロヘキサノン、メチルエチルケトン、な
どのケトン類、エタノール、エチレングリコー
ル、第3級ブチルアルコールなどのアルコール類
などを挙げることができ、中でもテトラヒドロフ
ラン、ジオキサン、アセトン、ベンゼン、トルエ
ン、四塩化炭素、クロロホルム、メチルエチルケ
トン、酢酸エチル、が好ましく用いられる。 前記処理剤でゴム表面を処理し特定ゴム表面領
域を形成する方法としては筆、刷毛による塗布、
スプレイ、浸漬など、該ゴム表面と該処理溶液を
接触させることが可能であるいかなる工業的手段
も採用することができる。 一方ポリアミド樹脂としては、ナイロン6,
11,12,66,610およびそれらの共重合物、ブレ
ンド物等であり、或はこれらポリアミドの官能基
を一部変性したものも含まれる。さらに以上のポ
リアミドにガラス繊維、炭酸カルシウム、タルク
等の無機のフイラーの添加されたものであつても
よい。 また該樹脂に加工性、接着性等を改良する為に
ポリエステル樹脂、ポリメタクリル樹脂、ポリス
チレン樹脂、ポリカーポネート樹脂、ボリ塩化ビ
ニル樹脂、ABS樹脂、その他の熱可塑性樹脂を
混合することも可能である。 ポリアミド樹脂を加硫ゴムの特定ゴム表面領域
へ接着するには予じめ樹脂を溶融しておき前記の
特定ゴム表面領域へ射出あるいは押出した後冷却
して樹脂を硬化させればよい。 次に本発明を実施例につき説明する。 実施例 1 第1表の配合内容のゴム組成物から第1図a,
bに示すASTM:D429,Metnod B,90゜剥離
用および第2図a,bに示すASTM D429,
Method Cの円錐形の引張試験用の試験片が得ら
れるような加硫ゴムを作製した(図面中試料の寸
法はミリメートル単位である)。 一方、表面処理溶液として擬ハロゲン化合物の
TCCA(トリクロロイソシアヌル酸)及び比較例
としてDCTS(N,N−ジクロロ−p−トルエン
スルホンアミド)をそれぞれ濃度2,5,10,20
重量%のアセトン溶液を作り、加硫ゴムの接着さ
せる部分の表面に刷毛塗りして処理を施した。 一方、ポリアミド樹脂として、ナイロン6(東
レ社製CM−1001)、ナイロン66(東レ社製CM−
3001N)、およびナイロン12(ダイセル社製ダイ
アミド)を用意し、それぞれ温度120℃、5mmHg
の条件下で8時間乾燥した。 その後射出成形機でナイロン6の場合(230
℃)、ナイロン66の場合(250℃)、ナイロン12の
場合(180℃)の射出条件下で、金型に前記に示
した加硫ゴム片を組み入れ、それぞれのポリアミ
ド樹脂を射出し、第1図、第2図に示すような、
ゴム、プラスチツクの複合体試験片を作製した。 その後、ASTM:D429のMethod B及び
Method Cに準じて、接着試験を行つた結果を第
2表に示す。これらの結果から無処理の場合は加
硫ゴムとポリアミド樹脂は接着せず、本発明の方
法により処理された試験片は薄い溶液であつても
両者が強力に接着することがわかる。
The present invention relates to a method of adhering rubber and polyamide resin. In recent years, a wide variety of thermoplastic plastics have appeared, including engineering plastics (polyamide, polyester, polycarbonate, polyacetal, polysulfonate, polysilicon, polyphenylene oxide, polyimide,
ABS, methacrylic, etc.) resins are manufactured and sold, and many of these resins exhibit excellent mechanical strength, heat resistance, creep resistance, chemical resistance, electrical properties, dimensional stability, etc. over a wide range of areas. Under a wide range of usage conditions, they often replace metals such as iron, zinc, and aluminum. Usually, industrial rubber products include products such as rubber and metal, rubber and plastics, and rubber and solid materials, but most of them are composites consisting of rubber and metal. However, recently these products have become lighter, rust-proof,
Due to the requirements for chemical resistance, abrasion resistance, electrical properties, coefficient of friction, etc., there is a tendency to replace rubber and plastic composite products. Naturally, to create these composites, the bond between the rubber and plastic must be strong enough. The conventional method is to apply a chlorine-containing adhesive to the surface of a resin molded article obtained by injection molding, and then vulcanize and bond it to unvulcanized rubber. A disadvantage of the vulcanization bonding method for resin molded products and rubber is that the molded products are subjected to cooling/heating cycles or heat aging during the vulcanization bonding process, resulting in a decrease in adhesive strength or cracks in the solution molded product. Problems in the process, problems such as the adhesive strength differing significantly depending on the type of resin, etc.
Furthermore, when a thermoplastic resin having a low melting temperature is used, there is a problem that the molded article may be deformed by the temperature or pressure applied during vulcanization. In order to overcome the above problems, various researches have been conducted on a method in which, unlike conventional methods, the vulcanized rubber surface is treated to form a specific rubber surface area, and pre-molten polyamide resin is injected onto this area. The present invention was achieved by discovering a method of adhering vulcanized rubber and resin that can produce molded products with strong strength and high dimensional accuracy. That is, in the present invention, when bonding a polyamide resin to a vulcanized rubber surface, the vulcanized rubber surface is treated with a dilute solution of trichloroisocyanuric acid to form a specific rubber surface area, and the heated and melted polyamide resin is applied to this specific rubber surface area. The present invention relates to a method of bonding vulcanized rubber and polyamide resin, which is characterized by bonding the resin by injection or extrusion. According to the present invention, vulcanized rubber of any shape is prepared in advance, the surface to be bonded is treated with a dilute solution of trichloroisocyanuric acid, and then the mold is assembled into a mold, into which heated and molten polyamide resin is injected. Alternatively, by adhering by a method such as extrusion molding, it is possible to obtain a composite of rubber and plastics whose interfaces are firmly bonded. Furthermore, since the rubber article according to the present invention is treated with a solution or the like without mechanical treatment such as buffing with sandpaper or a grinder on the surface to be adhered, a composite having a precise and complicated shape can be obtained. be able to. Furthermore, since the concentration of the treatment liquid is low, deterioration of the treated rubber surface can be suppressed, making it possible to use the product for a long period of time as a product subject to vibrations, etc. The present invention will be explained in detail below. The rubber component of the vulcanized rubber used in the present invention is natural rubber (NR) and synthetic rubber having a carbon-carbon double bond in its structural formula, either alone or in a blend of two or more. The synthetic rubbers include polyisoprene rubber (IR), polybutadiene rubber (BR), and polychloroprene rubber, which are homopolymers of conjugated diene compounds such as isoprene, butadiene, and chloroprene;
Styrene-butadiene copolymer rubber (SBR), which is a copolymer with vinyl compounds such as acrylonitrile, vinylpyridine, acrylic acid, methacrylic acid, alkyl acrylates, and alkyl methacrylates, vinylpyridine-butadiene-styrene copolymer rubber, acrylonitrile-butadiene copolymer Copolymers of olefins such as ethylene, propylene, isobutylene and diene compounds, such as rubber, acrylic acid butadiene copolymer rubber, methacrylic acid butadiene copolymer rubber, methyl acrylate butadiene copolymer rubber, methyl methacrylate butadiene copolymer rubber, Examples include isobutylene isoprene copolymer rubber (IIR), copolymers of olefins and nonconjugated dienes (EPDM), ethylene, propylene, and cyclopentadiene ternary copolymers, and ethylene-propylene-5-ethylidene-2-norbornene ternary copolymers. Polymer, ethylene propylene-1,4-
Hexadiene terpolymer, polyalkenamer obtained by ring-opening polymerization of cycloolefin, such as polypentenamer, rubber obtained by ring-opening polymerization of oxirane ring, such as polyepichlorohydrin rubber, polypropylene oxide rubber, etc., which can be sulfur-vulcanized. is included. Also included are halogenated products of the various rubbers mentioned above, such as chlorinated isobutylene isoprene copolymer rubber (Cl-IIR) and brominated isobutylene isoprene copolymer rubber (Br-IIR). Furthermore, ring-opened polymers of norbornene can also be used.
Further, as a blended rubber, a saturated elastic material such as epichlorohydrin rubber, polypropylene oxide rubber, or chlorosulfonated polyethylene may be blended with the above-mentioned rubber. The vulcanized rubber of the present invention includes fillers such as carbon black, silica, calcium carbonate, calcium sulfate, clay, diatomaceous earth, and mica, softeners such as mineral oil, vegetable oil, and synthetic plasticizers, and stearin. Vulcanization accelerators such as acids, anti-aging agents, cross-linking agents, accelerators, etc. are thoroughly kneaded in advance using a kneader and vulcanized under appropriate vulcanization conditions. Vulcanized rubber can be produced by vulcanization with organic sulfur compounds, such as dithiodimorpholine, thiuram vulcanization, peroxide vulcanization, quinoid vulcanization, resin vulcanization, and metal vulcanization, in addition to the common and most important sulfur vulcanization. It includes all those obtained by salt vulcanization, metal oxide vulcanization, polyamide vulcanization, radiation vulcanization, hexamethylenetetramine vulcanization, and the like. During actual treatment, trichloroisocyanuric acid (TCCA) is dissolved in an appropriate solvent to a concentration of 0.1~
It is used at a concentration of 10% by weight, preferably 1-5% by weight. Specific examples of solvents include halogenated hydrocarbons such as carbon tetrachloride, chloroform, and dichloromethane, aromatic hydrocarbons such as benzene, nitrobenzene, halogenated benzene, toluene, and xylene, dimethyl ether, diethyl ether, tetrahydrofuran (THF), and dioxane. Chain or cyclic ethers such as, esters such as ethyl acetate, pentane, hexane, heptane, octane,
Examples include aliphatic hydrocarbons such as cyclohexane, ketones such as acetone, cyclohexanone, and methyl ethyl ketone, and alcohols such as ethanol, ethylene glycol, and tertiary butyl alcohol, among which are tetrahydrofuran, dioxane, acetone, benzene, and toluene. , carbon tetrachloride, chloroform, methyl ethyl ketone, and ethyl acetate are preferably used. The method of treating the rubber surface with the treatment agent to form a specific rubber surface area includes application with a brush,
Any industrial means capable of contacting the rubber surface with the treatment solution can be employed, such as spraying, dipping, etc. On the other hand, polyamide resins include nylon 6,
11, 12, 66, 610, their copolymers, blends, etc., and also those in which the functional groups of these polyamides have been partially modified. Furthermore, inorganic fillers such as glass fiber, calcium carbonate, and talc may be added to the above polyamide. It is also possible to mix polyester resin, polymethacrylic resin, polystyrene resin, polycarbonate resin, polyvinyl chloride resin, ABS resin, and other thermoplastic resins with the resin to improve processability, adhesion, etc. be. In order to adhere a polyamide resin to a specific rubber surface area of vulcanized rubber, the resin may be melted in advance, injected or extruded onto the specific rubber surface area, and then cooled to harden the resin. Next, the invention will be explained with reference to examples. Example 1 From a rubber composition with the formulation shown in Table 1,
ASTM: D429, Metnod B, for 90° peeling shown in b and ASTM D429 shown in Figure 2 a, b,
A vulcanized rubber was prepared to obtain a conical tensile test specimen of Method C (dimensions of the specimen in the drawings are in millimeters). On the other hand, pseudohalogen compounds are used as surface treatment solutions.
TCCA (trichloroisocyanuric acid) and DCTS (N,N-dichloro-p-toluenesulfonamide) as a comparative example were used at concentrations of 2, 5, 10, and 20, respectively.
A % by weight acetone solution was prepared and treated by brushing the surface of the part of the vulcanized rubber to be adhered. On the other hand, as polyamide resins, nylon 6 (CM-1001 manufactured by Toray Industries, Inc.), nylon 66 (CM-1001 manufactured by Toray Industries, Inc.),
3001N) and nylon 12 (Diamid manufactured by Daicel), each at a temperature of 120℃ and 5mmHg.
It was dried under the following conditions for 8 hours. Then, in the case of nylon 6 (230
℃), nylon 66 (250℃), and nylon 12 (180℃), incorporate the vulcanized rubber pieces shown above into the mold, inject each polyamide resin, and As shown in Fig. 2,
A composite test piece of rubber and plastic was prepared. After that, ASTM: D429 Method B and
Table 2 shows the results of an adhesion test conducted according to Method C. These results show that in the case of no treatment, the vulcanized rubber and polyamide resin do not adhere to each other, and in the test piece treated by the method of the present invention, both adhere strongly even in a dilute solution.

【表】【table】

【表】 実施例 2 実施例1の第1表に示すゴム組成物から
ASTM D429、Method Cの円錐形の試験片が得
られるような加硫ゴムを作製し、一方同じく実施
例1と同一のポリアミド樹脂、ナイロン6(東レ
社製、CM−1001)、ナイロン6,6(東レ社
製、CM−3001N)、およびナイロン12(ダイセル
社製、ダイアミド)を用意した。 加硫ゴム表面を以下に示す種々の処理法にて
各々15秒間ずつ処理し、これに上記各種ポリアミ
ド樹脂を実施例1に示すと同じ各温度で射出成形
し、複合体試験片を作製した。 その後ASTMD429、Method Cに準じた接着
試験を行つた。結果を第3表に示す。 (処理法 1) トリクロロイソシアヌル酸をアセトンに溶か
し、10重量%の溶液とし、加硫ゴム試験片をこの
溶液中に15秒間浸漬し、その後50℃の温風で30秒
間乾燥する。 (処理法 2) 濃硫酸(濃度96%、比重1.84)と濃硝酸(濃度
70%、比重1.42)を体積比200:100にて混合し、
この溶液中に加硫ゴム試験片を15秒間浸漬し流水
で瞬間的に洗浄後50℃の温風で30秒間乾燥した。 (処理法 3) 室温の塩素ガス中の加硫ゴム試験片を15秒間放
置する。 (処理法 4) 水と次亜塩素酸ソーダ(塩素含量10%)と塩酸
(濃度35%)を体積比100:15:10にて混合し、こ
の溶液中に試験片を15秒間浸漬し、(流水で瞬間
的に洗浄後)50℃の温風で30秒間乾燥した。 (処理法 5) 飽和臭素水に試験片を室温で15秒間浸漬し、
(流水で瞬間的に洗浄後)50℃の温風で30秒間乾
燥した。
[Table] Example 2 From the rubber composition shown in Table 1 of Example 1
A vulcanized rubber was prepared to obtain a conical test piece of ASTM D429, Method C, and the same polyamide resin as in Example 1, nylon 6 (manufactured by Toray Industries, Inc., CM-1001), and nylon 6,6 were prepared. (manufactured by Toray Industries, Inc., CM-3001N) and nylon 12 (manufactured by Daicel Corporation, Diamid) were prepared. The surface of the vulcanized rubber was treated with the various treatment methods shown below for 15 seconds each, and then the various polyamide resins described above were injection molded at the same temperatures as shown in Example 1 to prepare composite test pieces. Thereafter, an adhesion test was conducted according to ASTMD429, Method C. The results are shown in Table 3. (Treatment method 1) Dissolve trichloroisocyanuric acid in acetone to make a 10% by weight solution, immerse a vulcanized rubber test piece in this solution for 15 seconds, and then dry it with hot air at 50°C for 30 seconds. (Treatment method 2) Concentrated sulfuric acid (concentration 96%, specific gravity 1.84) and concentrated nitric acid (concentration
70%, specific gravity 1.42) at a volume ratio of 200:100,
A vulcanized rubber test piece was immersed in this solution for 15 seconds, momentarily washed with running water, and then dried with warm air at 50°C for 30 seconds. (Treatment method 3) Leave the vulcanized rubber test piece in chlorine gas at room temperature for 15 seconds. (Treatment method 4) Mix water, sodium hypochlorite (chlorine content 10%), and hydrochloric acid (concentration 35%) at a volume ratio of 100:15:10, and immerse the test piece in this solution for 15 seconds. (After washing instantly with running water) It was dried with warm air at 50°C for 30 seconds. (Treatment method 5) Immerse the test piece in saturated bromine water for 15 seconds at room temperature,
(After washing instantly with running water) It was dried with warm air at 50°C for 30 seconds.

【表】 第3表より短時間処理でも充分な接着力を得る
ためには本発明の方法によらなければならないこ
とが明らかである。
[Table] From Table 3, it is clear that the method of the present invention must be used in order to obtain sufficient adhesive strength even during short-time treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよびbは本発明の接着方法を評価す
るための試験片の平面図および断面図、第2図a
およびbは他の試験片の側面図および断面図であ
る。 1……ポリアミド樹脂、2……ゴム。
Figures 1a and b are a plan view and a sectional view of a test piece for evaluating the bonding method of the present invention, Figure 2a is a
and b are a side view and a cross-sectional view of another test piece. 1...Polyamide resin, 2...Rubber.

Claims (1)

【特許請求の範囲】[Claims] 1 加硫ゴム表面にポリアミド樹脂を接着するに
当り、加硫ゴム表面を、トリクロロイソシアヌル
酸の希薄溶液にて処理した特定ゴム表面領域に加
熱溶融したポリアミド樹脂を射出もしくは押出し
により接着することを特徴とする加硫ゴムとポリ
アミド樹脂の接着方法。
1. In adhering the polyamide resin to the vulcanized rubber surface, the vulcanized rubber surface is bonded by injection or extrusion with heated and molten polyamide resin to a specific rubber surface area that has been treated with a dilute solution of trichloroisocyanuric acid. A method for bonding vulcanized rubber and polyamide resin.
JP6071279A 1979-05-16 1979-05-16 Adhesion of vulcanized rubber to polyamide resin Granted JPS55152040A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6071279A JPS55152040A (en) 1979-05-16 1979-05-16 Adhesion of vulcanized rubber to polyamide resin
US06/149,596 US4300970A (en) 1979-05-16 1980-05-13 Method of bonding vulcanized rubber to resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6071279A JPS55152040A (en) 1979-05-16 1979-05-16 Adhesion of vulcanized rubber to polyamide resin

Publications (2)

Publication Number Publication Date
JPS55152040A JPS55152040A (en) 1980-11-27
JPS6258301B2 true JPS6258301B2 (en) 1987-12-04

Family

ID=13150167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6071279A Granted JPS55152040A (en) 1979-05-16 1979-05-16 Adhesion of vulcanized rubber to polyamide resin

Country Status (1)

Country Link
JP (1) JPS55152040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578971B2 (en) 2021-02-12 2023-02-14 Holloway Ndt & Engineering Inc. Ultrasonic testing using a phased array

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114054A (en) * 1982-12-22 1984-06-30 株式会社ブリヂストン Manufacture of laminate
JPS59123661A (en) * 1982-12-29 1984-07-17 株式会社ブリヂストン Manufacture of laminate
JPS6032631A (en) * 1983-08-01 1985-02-19 Hayakawa Rubber Co Ltd Manufacture of rubber molded item with pattern
EP0739931A1 (en) * 1995-04-25 1996-10-30 Elf Atochem S.A. Process for overmoulding of a thermoplastic on rubber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133955A (en) * 1974-09-18 1976-03-23 Nippon Electric Co JUDENTAIKYOSHINKIOSHOSHITAMAIKUROHAFUIRUTA

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133955A (en) * 1974-09-18 1976-03-23 Nippon Electric Co JUDENTAIKYOSHINKIOSHOSHITAMAIKUROHAFUIRUTA

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578971B2 (en) 2021-02-12 2023-02-14 Holloway Ndt & Engineering Inc. Ultrasonic testing using a phased array

Also Published As

Publication number Publication date
JPS55152040A (en) 1980-11-27

Similar Documents

Publication Publication Date Title
US4300970A (en) Method of bonding vulcanized rubber to resin
JP2837901B2 (en) Curing system for sulfur vulcanizable rubber
US3658639A (en) Laminated articles from sulfur vulcanizable elastomeric blends comprising diolefin rubber and epdm terpolymers
CN104870188B (en) Composite part
US2653884A (en) Composite article
ATE109811T1 (en) PROCESS FOR THE PRODUCTION OF A CHEMICAL BONDING BETWEEN MOLDING COMPOUNDS BASED ON POLYPHENYLENETHERS ON THE ONE HAND AND PEROXIDE VULCANIZED EP(D)M RUBBER ON THE OTHER HAND.
US3972973A (en) Method of making rubber and polyester structures
JPH0284310A (en) Preparation of vulcanized rubber-synthetic resin composite
JPH0149738B2 (en)
US4121963A (en) Bonding polyamide plastics to rubber compositions
JPS6258301B2 (en)
JP2957829B2 (en) Method for producing composite material comprising vulcanized elastomer combined with thermoplastic elastomer containing polyamide block, composite material obtained by this method, and sports equipment using this material
JP3905154B2 (en) Composite member and manufacturing method thereof
US5922476A (en) Composite member and process for producing the same
JP2003211479A (en) Method for reducing rate of mold stain and method for injection-molding nitrile rubber
JP3313917B2 (en) Composite member made of plastic and rubber and method for producing the same
US4418173A (en) Vulcanizable rubber mixture and vulcanizing process for such a rubber mixture
EP0253793A2 (en) Bonding of polymers
TWI225876B (en) In situ preparation of A bis-(benzothiazolesulfen) amide in a polymeric matrix
JPS62192440A (en) Shape memory molding and use thereof
JP3966277B2 (en) Method for producing vulcanized rubber-resin composite
JPS59114054A (en) Manufacture of laminate
CA1227894A (en) Rubber compositions and articles thereof having improved metal adhesion retention
US5804658A (en) Process for producing composite article made of polyesters and elastomers
JPS62113518A (en) Manufacture of molded product of rubber or plastic