JPS625824B2 - - Google Patents

Info

Publication number
JPS625824B2
JPS625824B2 JP53002738A JP273878A JPS625824B2 JP S625824 B2 JPS625824 B2 JP S625824B2 JP 53002738 A JP53002738 A JP 53002738A JP 273878 A JP273878 A JP 273878A JP S625824 B2 JPS625824 B2 JP S625824B2
Authority
JP
Japan
Prior art keywords
rack
shaft
pinion
cam
rack shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53002738A
Other languages
Japanese (ja)
Other versions
JPS5497928A (en
Inventor
Hideo Oogoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP273878A priority Critical patent/JPS5497928A/en
Publication of JPS5497928A publication Critical patent/JPS5497928A/en
Publication of JPS625824B2 publication Critical patent/JPS625824B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type
    • B62D3/123Steering gears mechanical of rack-and-pinion type characterised by pressure yokes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/26Racks
    • F16H55/28Special devices for taking up backlash
    • F16H55/283Special devices for taking up backlash using pressure yokes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/26Racks
    • F16H55/28Special devices for taking up backlash
    • F16H55/283Special devices for taking up backlash using pressure yokes
    • F16H55/285Special devices for taking up backlash using pressure yokes with rollers or balls to reduce friction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)

Description

【発明の詳細な説明】 本発明は車両の舵取装置に関する。[Detailed description of the invention] The present invention relates to a steering device for a vehicle.

従来、自動車等の舵取装置には、種々の形式が
あり、大型車の多い米国ではボールねじ式が多
く、比較的小形の欧州車にはラツクピニオン式が
採用されている。我国では一部の車種にラツクピ
ニオン式が採用されている他はボールねじ式が多
い。しかし、最近の省エネルギー傾向から前輪駆
動車が増加し、あわせて操向安定性その他の問題
からラツクピニオン式が増加する傾向がある。ま
た、ボールねじ式では可変歯車比の舵取装置が普
及しているが、ラツクピニオン式でもボールねじ
式同様に可変歯車比のものを要求されるようにな
つてきている。ラツクピニオン式の可変歯車比舵
取装置は実開昭50−114827号公報、特開昭50−
150129号公報および特公昭52−29049号公報等で
提案されているが、前2者は中間歯車を有するも
ので従来のラツクピニオン式に比較してギヤボツ
クスが大形化するのをまぬかれず、小形軽量化に
逆行する結果となつている。後者のものはラツク
の構造が複雑で歯切加工が容易でない欠点があ
る。いずれにしても、構造が簡単で加工が容易で
あり、小形軽量で製造コストが低いと云うラツク
ピニオン式の特徴がそこなわれている。
Conventionally, there are various types of steering devices for automobiles and the like, and in the United States, where there are many large vehicles, the ball screw type is often used, and in relatively small European cars, the rack and pinion type is adopted. In Japan, some car models use the rack and pinion type, but most others use the ball screw type. However, due to recent energy saving trends, front-wheel drive vehicles are increasing, and there is also a tendency for rack and pinion vehicles to increase due to issues such as steering stability. In addition, although ball screw type steering devices with variable gear ratios are popular, even rack and pinion type steering devices are now required to have variable gear ratios like the ball screw type. A rack and pinion type variable gear ratio steering device is disclosed in Japanese Utility Model Application No. 114827/1983,
Although proposed in Japanese Patent Publication No. 150129 and Japanese Patent Publication No. 52-29049, etc., the former two have intermediate gears and cannot avoid having a larger gearbox compared to the conventional rack and pinion type. This is a result that runs counter to the trend toward smaller size and lighter weight. The latter has the disadvantage that the rack structure is complicated and gear cutting is not easy. In any case, the characteristics of the rack and pinion type, which are simple in structure, easy to process, small and lightweight, and low manufacturing cost, are lost.

本発明は前記のようなラツクピニオン式舵取装
置の特徴をそこなうことなく可変歯車比舵取装置
を得る目的で開発したものである。前記目的を達
成する本発明は、一端にねじピニオン11を備え
る車両のハンドル軸に連結したピニオン軸1と、
前記ねじピニオン11に噛み合うねじラツク21
を有し、車輪の操向を行うリンクに連結し、前記
ピニオン軸1の回転に伴い軸方向に移動可能なラ
ツク軸2と、該ラツク軸2の軸方向移動に伴い、
該ラツク軸2を回転させて前記ねじピニオン11
とねじラツク21の基準ピツチによるラツク軸2
の移動量に増減する案内装置とで構成する可変歯
車比を備える車両の舵取装置である。その構成の
特徴は、従来のラツクピニオン式と対比すれば、
ラツクにかわるねじラツク軸と、ピニオンにかわ
るねじピニオン軸と、可変歯車比を与えるべく前
記ねじラツク軸の運動を案内する装置とを有する
舵取装置にある。これを図の実施例について説明
すると、第1図および第2図の第1の実施例は車
両の直進走行状態、すなわち舵取装置の中立位置
を示し、ハンドル軸に連結するピニオン軸1には
ねじピニオン11が設けられており、ねじピニオ
ン11の両側に装着した針状ころ軸受12および
玉軸受13でギヤケース3に回転自在に軸支され
ている。ねじピニオン11は鼓形をしており、ラ
ツク軸2に設けたねじラツク21と噛み合つてい
る。ねじラツク21は円周の一部を残して歯切加
工されており、一般のウオームのように全円周歯
切りされていない。ねじラツク21の回転を後述
の案内装置で規制するので、全円周歯切りする必
要がなく、このようにされている。ラツク軸2を
かこむようにして管状のカム4がラツク軸2に溶
接されており、ねじピニオン11側の管の壁は削
り取られてカム面4Aが形成されている。ピニオ
ン軸1とラツク軸2を収容したギヤケース3はラ
ツク軸2方向にのびる管部分31があり、管部分
31の両端には車両にブラケツト(図示せず)を
介して固定される固定部32,33がある。ラツ
ク軸2はギヤケース3のねじピニオン11に対向
した位置に設けられた支持部材8と、管部材31
の一端側に嵌合した軸受22とによつて支承され
ており、ラツク軸2の両端にそれぞれに固定され
た球接手23を介して車両の操向を行うリンク
(図示せず)に連結している。支持部材8は、ギ
ヤケース3に摺動可能に嵌合しており、両端をギ
ヤケース3にボルト20で固定した蓋19と支持
部材8に接したばね7を介してラツク軸2と一体
化したカム4を支承している。蓋19には調整ボ
ルト9がねじ込まれており、その先端は座金10
を介して支持部材8に接し、ねじピニオン11と
ねじラツク21の噛み合いすきまを規制してい
る。ねじピニオン11とねじラツク21の噛み合
いはピニオン軸1の一端を軸支した玉軸受13の
位置を移すことにより芯合わせが行なわれてい
る。すなわち、玉軸受13はギヤケース3にはね
じ嵌合している調整ナツト14にスナツプリング
17およびスナツプリング17がはずれるのを防
止する抜け止め部材18により軸方向のすきまな
く固定されており、従つて、調整ナツト14を進
退させることにより玉軸受13の軸方向位置が動
き、それにつれて玉軸受13の内側軌動溝を自体
に形成されたピニオン軸1が動いて、ねじピニオ
ン11とねじラツク21との中心が一致する。ね
じピニオン11の両側に隣接してカムフオロワ
5,6が設けられている。一方のカムフオロワ6
はピニオン軸1に一体に形成されているが、他方
のカムフオロワ5は別体に形成されて針状ころ軸
受12の嵌合するピニオン軸1の軸径部に嵌合し
ている。ねじピニオン11とカムフオロワ5との
間には皿ばね24が介設されている。2個のカム
フオロワ5,6はねじピニオン11と反対側が小
径となる円すい外面をもつており、この円すい外
面でカム面4Aに接触する。特に一方のカムフオ
ロワ5は皿ばね24により確実に圧接する。な
お、他方のカムフオロワ6も同様に別体に構成し
てもよいことは勿論である。カムフオロワ5,6
の円すい外面の直径はなるべくねじラツク21と
ねじピニオン11とのかみあいピツチ円径に等し
くすることが望ましく、これによりカム面4Aと
すべりの少いころがり接触をする。カムフオロワ
5,6とカム4とでラツク2の運動を案内する案
内装置を形成する。これは、ねじラツク21とね
じピニオン11との噛み合いにより、ハンドル軸
の回転を伝達されたラツク軸2は、回転運動をす
るが、案内装置により回転運動をある範囲に規制
しつつラツク軸2の軸方向運動を案内するもので
ある。すなわち、案内装置による規制されたラツ
ク軸2の回転運動は、ねじピニオン11の回転に
対しねじラツク21の軸方向の運動の遅れ、ある
いは、進みを生じさせる。その結果、ラツク軸2
の回転運動がないように規制されたねじピニオン
11とねじラツク21との基準ピツチによるラツ
ク軸2の軸方向の動き量に、このカム装置による
ラツク軸2のある範囲に規制された回転運動によ
る軸方向の動き量が増減する可変歯車比(ラツク
軸2の軸方向動き量に対しピニオン軸1の回転量
が変化する比率)のものとなる。
The present invention was developed for the purpose of providing a variable gear ratio steering system without sacrificing the features of the rack and pinion steering system as described above. To achieve the above object, the present invention includes a pinion shaft 1 connected to a handle shaft of a vehicle, which has a threaded pinion 11 at one end;
A screw rack 21 that meshes with the screw pinion 11
a rack shaft 2 connected to a link for steering the wheels and movable in the axial direction as the pinion shaft 1 rotates; and as the rack shaft 2 moves in the axial direction,
By rotating the rack shaft 2, the screw pinion 11
Rack axis 2 according to the reference pitch of screw rack 21
This is a steering device for a vehicle that has a variable gear ratio and a guide device that increases and decreases the amount of movement. The characteristics of its configuration, compared to the conventional rack and pinion type, are:
The steering device has a screw rack shaft replacing the rack, a screw pinion shaft replacing the pinion, and a device for guiding the movement of the screw rack shaft to provide a variable gear ratio. To explain this with respect to the embodiments shown in the figures, the first embodiment shown in Figs. 1 and 2 shows the straight running state of the vehicle, that is, the neutral position of the steering device, and the pinion shaft 1 connected to the steering wheel shaft is A screw pinion 11 is provided, and is rotatably supported by the gear case 3 by needle roller bearings 12 and ball bearings 13 mounted on both sides of the screw pinion 11. The screw pinion 11 has an hourglass shape and meshes with a screw rack 21 provided on the rack shaft 2. The screw rack 21 is machined with gears leaving a part of its circumference, and is not machined with gears on the entire circumference like a general worm. Since the rotation of the screw rack 21 is regulated by a guide device, which will be described later, there is no need to cut the gears around the entire circumference. A tubular cam 4 is welded to the rack shaft 2 so as to surround the rack shaft 2, and the wall of the tube on the screw pinion 11 side is shaved off to form a cam surface 4A. The gear case 3 that accommodates the pinion shaft 1 and the rack shaft 2 has a pipe section 31 extending in the direction of the rack shaft 2, and at both ends of the pipe section 31 are fixing parts 32 fixed to the vehicle via brackets (not shown). There are 33. The rack shaft 2 has a support member 8 provided at a position facing the screw pinion 11 of the gear case 3, and a pipe member 31.
It is supported by a bearing 22 fitted on one end side, and connected to a link (not shown) for steering the vehicle via ball joints 23 fixed to both ends of the rack shaft 2, respectively. ing. The support member 8 is slidably fitted into the gear case 3, and has a lid 19 fixed to the gear case 3 with bolts 20 at both ends, and a cam integrated with the rack shaft 2 via a spring 7 in contact with the support member 8. 4 is supported. An adjustment bolt 9 is screwed into the lid 19, and its tip is fitted with a washer 10.
The threaded pinion 11 contacts the support member 8 via the threaded pinion 11, and regulates the meshing clearance between the threaded pinion 11 and the threaded rack 21. The engagement between the threaded pinion 11 and the threaded rack 21 is centered by shifting the position of a ball bearing 13 that pivotally supports one end of the pinion shaft 1. That is, the ball bearing 13 is fixed to the adjusting nut 14 screwed into the gear case 3 by a snap ring 17 and a retaining member 18 that prevents the snap ring 17 from coming off, without any clearance in the axial direction. By moving the nut 14 back and forth, the axial position of the ball bearing 13 moves, and the pinion shaft 1 formed in the inner raceway of the ball bearing 13 moves accordingly, and the center of the screw pinion 11 and the screw rack 21 is moved. matches. Cam followers 5, 6 are provided adjacent to both sides of the screw pinion 11. One cam follower 6
is formed integrally with the pinion shaft 1, but the other cam follower 5 is formed separately and fits into the shaft diameter portion of the pinion shaft 1 into which the needle roller bearing 12 is fitted. A disc spring 24 is interposed between the screw pinion 11 and the cam follower 5. The two cam followers 5, 6 have conical outer surfaces with a smaller diameter on the opposite side from the screw pinion 11, and contact the cam surface 4A with this conical outer surface. In particular, one cam follower 5 is securely pressed against the disc spring 24. Note that it goes without saying that the other cam follower 6 may also be constructed separately. Cam follower 5,6
It is desirable to make the diameter of the conical outer surface equal to the diameter of the meshing pitch circle between the screw rack 21 and the screw pinion 11, thereby making rolling contact with the cam surface 4A with little slippage. The cam followers 5, 6 and the cam 4 form a guide device for guiding the movement of the rack 2. This is because the rotation of the handle shaft is transmitted to the rack shaft 2 due to the engagement between the screw rack 21 and the screw pinion 11, and the rack shaft 2 rotates, but the rotational motion is restricted within a certain range by the guide device. It guides axial movement. That is, the rotational movement of the rack shaft 2 regulated by the guide device causes the axial movement of the screw rack 21 to lag or advance relative to the rotation of the screw pinion 11. As a result, the rack axis 2
The amount of axial movement of the rack shaft 2 due to the reference pitch between the screw pinion 11 and the screw rack 21 is regulated so that there is no rotational movement, and the rotational movement of the rack shaft 2 is regulated within a certain range by this cam device. It is a variable gear ratio in which the amount of movement in the axial direction increases or decreases (the ratio at which the amount of rotation of the pinion shaft 1 changes relative to the amount of movement in the axial direction of the rack shaft 2).

第1の実施例の案内装置は、手動式可変歯車比
舵取装置のためのもので、車両の直進走行状態す
なわち舵取装置の中立位置で最低の歯車比を有
し、左右に所要角度操舵すると最高の歯車比を得
るものである。第1図に示すカム面4Aの曲線
は、中央部分と両端部分に直線部分を含むもので
ある。図は手前側のカム面を示し、裏側には手前
側のカム面の凹凸を逆にしたカム面が形成されて
いる。ラツク軸2とピニオン軸1が直交する本図
の場合は、手前側の最低部と裏側の最高部とが軸
方向の同一位置にある。次にカム面の形状と歯車
比の関係について説明する。第3図は横軸にラツ
ク軸2の軸方向移動量lをとり縦軸にカム案内に
よつて生ずるラツク軸2の回転θをとつた説明図
で、ここに示された線はカム曲線に相当する。
の線はθ=0、すなわち、ラツク軸の回転を案内
装置で零に規制した場合を示す。ねじラツク21
のピツチ円径をD、ねじラツク21のねじれ角を
β、ラツクのリードをL、円周率をπとすると、 L=π・D・tanβ ………(1) ラツク軸2の回転をさせない場合には、ピニオ
ン軸1の回転とラツク軸2の軸方向移動の関係は
一定であるので、歯車比は変化せずねじピニオン
とねじラツクの基準ピツチでラツク軸が移動する
等歯車比の舵取装置が得られる。このときの歯車
比をGoとする。
The guide device of the first embodiment is for a manual variable gear ratio steering device, and has the lowest gear ratio when the vehicle is running straight, that is, at the neutral position of the steering device, and the steering device can steer the required angle left and right. This will give you the best gear ratio. The curve of the cam surface 4A shown in FIG. 1 includes straight portions at the center and at both ends. The figure shows the cam surface on the front side, and a cam surface with the unevenness of the cam surface on the front side reversed is formed on the back side. In the case of this figure where the rack shaft 2 and pinion shaft 1 are orthogonal, the lowest part on the front side and the highest part on the back side are at the same position in the axial direction. Next, the relationship between the shape of the cam surface and the gear ratio will be explained. Figure 3 is an explanatory diagram in which the horizontal axis represents the axial movement amount l of the rack shaft 2, and the vertical axis represents the rotation θ of the rack shaft 2 caused by cam guidance, and the line shown here corresponds to the cam curve. Equivalent to.
The line .theta.=0, that is, the rotation of the rack shaft is regulated to zero by the guide device. screw rack 21
Let the pitch circle diameter be D, the torsion angle of the screw rack 21 be β, the lead of the rack be L, and the circumference be π, then L=π・D・tanβ……(1) Do not allow the rack shaft 2 to rotate In this case, the relationship between the rotation of the pinion shaft 1 and the axial movement of the rack shaft 2 is constant, so the gear ratio does not change and the rack shaft moves at the reference pitch between the screw pinion and the screw rack. A collecting device is obtained. The gear ratio at this time is Go.

次にの線は回転角θがラツク軸2の軸方向移
動量lに対して一定比で増加するもの、すなわ
ち、ラツク軸2はねじピニオン11の1回転に対
し一定角度だけ案内装置により回転を許されるも
のであつて、カム形状を第4図に示す。このカム
形状は手前側と点線で示した後側とは第1図の場
合と同じく逆になつている。
The next line indicates that the rotation angle θ increases at a constant ratio to the axial movement l of the rack shaft 2, that is, the rack shaft 2 is rotated by the guide device by a constant angle per one revolution of the screw pinion 11. A permissible cam shape is shown in FIG. The shape of this cam is reversed between the front side and the rear side indicated by dotted lines, as in the case of FIG.

ラツク軸の軸方向移動はの線の場合より進む
場合とおくれる場合とがある。すなわち、ねじラ
ツク21が左ねじで、ラツク軸2が左方向に移動
する場合にラツク軸2を第4図において右側から
みて反時計方向に回転させると進み、時計方向に
回転させるとおくれる。ラツク軸の回転によつて
生ずる、ピニオン軸1単位回転角当りのラツク軸
2の進み量が△lあるものとし、ピニオン軸単位
回転角当りのラツク軸の総移動量をl′とし、進み
量が無い場合の移動量(基準ピツチによる移動
量)をl0とすると、 l′=l0+△l ………(2) となる。
The axial movement of the rack axis may be faster or slower than that of the line. That is, when the screw rack 21 is a left-handed screw and the rack shaft 2 moves to the left, rotating the rack shaft 2 counterclockwise when viewed from the right side in FIG. 4 will advance the rack, and rotating clockwise will cause the rack shaft to retract. Assume that the amount of advance of the rack shaft 2 per unit rotation angle of the pinion shaft caused by the rotation of the rack shaft is △l, and the total amount of movement of the rack shaft per unit rotation angle of the pinion shaft is l', and the amount of advance If the amount of movement when there is no (the amount of movement due to the reference pitch) is l 0 , then l' = l 0 + △l (2).

この場合でも、ピニオン軸1の回転とラツク軸
2の軸方向移動の関係は一定であるので、等歯車
比の舵取装置が得られ、その歯車比をG1とする
と、ピニオンとラツクおよびリンク関係の諸元が
同一であれば、G1<G0である。またおくれ量△
lがある場合(例えば第4図のカム面が逆の傾斜
の場合)には l″=l0−△l ………(2)′ となり、その歯車比をG2とすると、G2>G0とな
る。
Even in this case, the relationship between the rotation of the pinion shaft 1 and the axial movement of the rack shaft 2 is constant, so a steering device with a constant gear ratio is obtained, and if the gear ratio is G1 , the pinion, rack and link If the specifications of the relationship are the same, G 1 <G 0 . The amount of delay△
When there is l (for example, when the cam surface in Fig. 4 has the opposite slope), l″=l 0 −△l ………(2)′, and if the gear ratio is G 2 , then G 2 > G becomes 0 .

この型式の舵取装置の歯車比Gは、ナツクルア
ームの回転角に対するピニオン軸1の回転角の比
であるから、ナツクルアームの長さをAとし、ピ
ニオン軸1の単位回転角1゜に対してラツク軸2
がl移動したとすると、ナツクルアームの回転角
はl/2πA×360゜であり、一方、ピニオン軸1の回 転角は単位回転角で1゜である。従つて、歯車比 と定義される。ただし、実際の機構では、ナツク
ルアームは回転運動であり、ラツク軸は直線運動
であるほか、サスペンシヨンの運動もあり、ギヤ
比の関係は複雑に変化するので、理解を容易にす
るため、単純化し、上記のG0の定義を用いた。
The gear ratio G of this type of steering device is the ratio of the rotation angle of the pinion shaft 1 to the rotation angle of the knuckle arm. Axis 2
When the rotation angle of the knuckle arm is l/2πA×360°, the rotation angle of the pinion shaft 1 is 1° in unit rotation angle. Therefore, the gear ratio is defined as However, in an actual mechanism, the knuckle arm is in rotational motion, the rack axis is in linear motion, and there is also suspension motion, and the relationship between gear ratios changes in a complex manner, so we have simplified it for ease of understanding. , using the definition of G 0 above.

同様に、 G0=2・π・A/360・l ………(4) (3)、(4)式からG/G0=l0/lすなわち、 G=G0×l/l ………(5) ピニオン軸1の単位回転角あたりのラツク軸2の
回転角をθとし、ピニオン軸1の任意の回転角
に対するラツク軸2のすすみ量△lは、ねじラツ
ク21のピツチ円径をDとすると、 △l=π・D・tanβ/360×θ………(6
) (5)式に(2)式と(6)式を代入すると、 D、βはギヤの諸元で一定であり、l0も一定値に
なるので、θのみが変数であり、定数をまとめ
てCとおくと(7)式は、 G=G0・(1/1+C・θ) ………(8) 次にの線は第1の実施例に示した可変歯車比の
場合であつて、イ−ロ、およびニ−ホの部分は直
線であり、等歯車比の範囲を示す。
Similarly, G 0 =2・π・A/360・l 0 ......(4) From equations (3) and (4), G/G 0 = l 0 /l, that is, G=G 0 ×l 0 / l ......(5) Letting the rotation angle of the rack shaft 2 per unit rotation angle of the pinion shaft 1 be θ 0 , the advancement amount Δl of the rack shaft 2 for any rotation angle of the pinion shaft 1 is If the pitch circle diameter is D, △l=π・D・tanβ/360×θ 0 ………(6
) Substituting equations (2) and (6) into equation (5), we get D and β are constant due to gear specifications, and l 0 is also a constant value, so θ 0 is the only variable, and if the constants are collectively denoted as C, equation (7) becomes G = G 0・( 1/1+C・θ 0 ) ......(8) The next line is for the variable gear ratio shown in the first embodiment, and the E-L and N-H parts are straight lines, Shows the range of equal gear ratios.

ロ−ニ間は可変歯車比の範囲を示すもので、ハ
点ではθ=0であつて、G=G0である。
The range between RO and N indicates the range of the variable gear ratio, and at point C, θ 0 =0 and G=G 0 .

ロ−ハの間は θが正の区間である。そして、ハ−ニの間は
ラツク軸の回転方向が逆転したθが負の区間で
ある。
Between Lo and Ha is an interval in which θ 0 is positive. During the hinge period, the direction of rotation of the rack shaft is reversed and θ 0 is negative.

従つて(8)式中の1/1+C・θはロ−ハの間で1
よ りも小さく、ハ−ニの間で1よりも大となるの
で、ロ−ハの間では、G<G0ハ−ニの間でG0
Gとなる。従つて、イ−ロ間で最低の一定歯車比
となりニ−ホで最高の一定歯車比、その中間のロ
−ニで漸増する歯車比が得られる。同様にラツク
軸2が中立位置から左に移動する場合には、ロと
ロ′、ハとハ′、ニとニ′およびホとホ′が対応して
同じように変化する歯車比が得られ、その歯車比
の変化の状況を第5図に示す。すなわち、直進状
態で最低の歯車比G′1であり、ピニオン軸の回転
角の大きな位置で最高の歯車比G′2となる。
Therefore, 1/1+C・θ 0 in equation (8) is 1 between loha and
is smaller than , and is larger than 1 between harini, so between roha, G < G 0 between harini, G 0 <
It becomes G. Therefore, the lowest constant gear ratio is obtained between E and E, the highest constant gear ratio is obtained between N and H, and a gradually increasing gear ratio is obtained between R and N. Similarly, when the rack shaft 2 moves to the left from the neutral position, gear ratios are obtained in which B and B', C and H', D and D', and E and E' change in the same way. , the change in gear ratio is shown in Fig. 5. That is, the gear ratio G' 1 is the lowest when the vehicle is traveling straight, and the gear ratio G' 2 is the highest at a position where the rotation angle of the pinion shaft is large.

第3図のの線も実施例を第6図に示したが
の線と同様可変歯車比の舵取装置のカム面形状を
示すもので、ラツク軸の軸方向位置l1からl2まで
θが正であり、かつ凸形の曲線にし、その前後
は直線にしてあるので、l2から先の位置で最高の
歯車比、l1−l1位置で最低の歯車比が得られる。
Similarly to the line in the embodiment shown in FIG. 6, the line in FIG. 3 shows the shape of the cam surface of the steering device with a variable gear ratio. Since 0 is a positive and convex curve, and the front and rear sides thereof are straight lines, the highest gear ratio is obtained at the position beyond l2 , and the lowest gear ratio is obtained at the l1 - l1 position.

の線は中立位置付近(直進付近)で最高の歯
車比を有し、左右位置でそれより小なる歯車比を
有する動力舵取装置用のカム面形状を示す。
The line indicates a cam surface shape for a power steering device that has the highest gear ratio near the neutral position (near straight travel) and smaller gear ratios at the left and right positions.

第7図は案内装置の他の実施例であり、カム4
0はラツク軸2の軸方向に沿つて設けた突条40
Aを有し、突条40Aは可変歯車比を得るために
ラツク軸2の軸線2Aに対し第7図において左右
にくねつて形成される。カム40はラツク軸2に
溶接されている。カムフオロワ50は支持部材8
0に軸81で回転自在に軸支されており、前記突
条40Aに嵌合する凹溝50Aを持つ転動体にな
つている。ねじピニオン11およびねじラツク2
1は第1の実施例と同様であり、ピニオン軸1の
支持構造、支持金具のギヤケース3への取付等も
同様である。第8図および第9図も案内装置の他
の実施例であつて、第7図の実施例の突状40A
に代つて凹溝140Aを設け、支持部材80に凹
溝140Aに嵌合する突起150A,250Aを
備えた転動体150,250をカムフオロワとし
たもので、転動体150はころ、転動体250は
転り軸受類似の構造としたものである。なお、こ
れらカムフオロワは転動体でなく、ギヤケース3
等に固定されたものでもよい。また、カムをギヤ
ケース3に固定し、カムフオロワをラツク軸2に
設けてもよい。さらに、ラツク軸径に強度上の余
裕があれば、ラツク軸2に凹溝を刻設してカムと
してもよい。
FIG. 7 shows another embodiment of the guide device, in which the cam 4
0 is a protrusion 40 provided along the axial direction of the rack shaft 2
A, and the protrusion 40A is formed by twisting left and right in FIG. 7 with respect to the axis 2A of the rack shaft 2 in order to obtain a variable gear ratio. The cam 40 is welded to the rack shaft 2. The cam follower 50 is a support member 8
0, and is rotatably supported by a shaft 81, and is a rolling element having a groove 50A that fits into the protrusion 40A. Screw pinion 11 and screw rack 2
1 is the same as the first embodiment, and the support structure of the pinion shaft 1, the attachment of the support fitting to the gear case 3, etc. are also the same. 8 and 9 also show other embodiments of the guide device, and the protrusion 40A of the embodiment of FIG.
Instead, a groove 140A is provided, and the rolling elements 150 and 250, which are equipped with protrusions 150A and 250A that fit into the groove 140A on the support member 80, are used as cam followers. The structure is similar to that of a bearing. Note that these cam followers are not rolling elements, but gear case 3.
etc. may be fixed. Alternatively, the cam may be fixed to the gear case 3 and the cam follower may be provided on the rack shaft 2. Furthermore, if there is sufficient strength in the diameter of the rack shaft, a groove may be carved into the rack shaft 2 to form a cam.

以上のように構成した本発明の舵取装置は、車
両のハンドル軸に連結したねじピニオンと、ねじ
ピニオンに噛み合うねじラツクとを有し車両の操
向を行うリンクに連結し、軸方向に摺動可能なラ
ツク軸と、ラツク軸の回転運動を案内する案内装
置とを有するが、ねじピニオンおよびねじラツク
は特殊な形状をしておらず、公知の歯切法により
現在のラツクおよびピニオンよりむしろ容易に加
工でき、実施例のねじラツクでは円周の一部を残
して歯切り加工されるなど工数が少なくすみ、従
来のラツクピニオン式の可変歯車比舵取装置では
ラツクの加工が困難であつたのに比較して歯切加
工がきわめて容易である。案内装置の加工工数の
増加が製造コストに影響するが、従来の可変歯車
比のラツクの加工に比較すれば比較的わずかなコ
スト上昇で足りるので、安価な可変歯車比の舵取
装置を提供できる効果がある。従来のラツクピニ
オン式の舵取装置では歯車比を大きくしようとす
ると、ピニオン径を小にしなければならないの
で、強度上問題があり、小さい車両にしか使われ
なかつた。
The steering device of the present invention configured as described above includes a threaded pinion connected to the steering wheel shaft of the vehicle, and a threaded rack that engages with the threaded pinion, and is connected to a link for steering the vehicle, and slides in the axial direction. Although it has a movable rack shaft and a guide device for guiding the rotational movement of the rack shaft, the screw pinion and screw rack do not have a special shape and, by known gear cutting methods, rather than the current rack and pinion. It can be easily machined, and the number of man-hours is reduced, as the threaded rack of the example requires gear cutting while leaving a part of the circumference, and it is difficult to machine the rack with conventional rack and pinion type variable gear ratio steering devices. Gear cutting is extremely easy compared to the previous method. Although the increase in the number of man-hours required to process the guide device will affect manufacturing costs, compared to the conventional process for manufacturing easy variable gear ratios, the cost increase will be relatively small, making it possible to provide an inexpensive variable gear ratio steering device. effective. In conventional rack and pinion type steering devices, increasing the gear ratio requires reducing the pinion diameter, which poses problems in terms of strength and was only used for small vehicles.

しかし、本発明はねじピニオンとねじラツクを
使うので、噛み合いは従来のラツクピニオンに比
較して実質的に歯丈が高くなつたことになり、噛
合率が向上し歯の強度に余裕ができかつ噛み合い
も円滑になる。さらに実施例のねじラツクでは円
周の一部を残して歯切りしてあるので切り上り部
があることになつて一層強度が向上する。このた
め、ねじピニオンの歯数を減らしたり、歯のモジ
ユールを小さくできることになり、ねじピニオン
を小形にすることができ、大きな歯車比が得られ
る利点があり、荷重条件の苛酷な車両にも使用で
きる効果がある。また、ラツクの半径方向端部に
エツジ部分がないことも強度上有利に作用してい
る。本発明では案内装置でピニオン軸の回転に対
するラツク軸の軸方向移動量を制御できる。
However, since the present invention uses a threaded pinion and a threaded rack, the tooth height is substantially higher than that of the conventional rack pinion, which improves the meshing ratio and provides more strength for the teeth. The mesh will also become smoother. Furthermore, since the threaded rack of the embodiment is toothed leaving only a part of the circumference, there is a cut-up portion, which further improves the strength. For this reason, the number of teeth on the screw pinion can be reduced and the tooth module can be made smaller, making it possible to make the screw pinion smaller.This has the advantage of providing a large gear ratio, and can also be used in vehicles with severe load conditions. There is an effect that can be done. Furthermore, the absence of an edge portion at the radial end of the rack also has an advantageous effect on strength. In the present invention, the amount of axial movement of the rack shaft relative to the rotation of the pinion shaft can be controlled by the guide device.

更に、本発明の案内装置は、ラツク軸をねじラ
ツクの部分を残して含む形状で固着し、その一部
にカム面を備えるカムと、このカム面を回転して
案内するカムフオロワとからなるので、所望する
カム特性を備えたカムが製作し易く、しかも、回
転案内によるスムーズなカム特性が得られる。
Furthermore, the guide device of the present invention is composed of a cam that is fixed to the rack shaft in a shape that includes the threaded rack portion, and has a cam surface on a part thereof, and a cam follower that rotates and guides the cam surface. It is easy to manufacture a cam with desired cam characteristics, and smooth cam characteristics can be obtained by rotational guidance.

従つて、案内装置のカム特性を選択すれば、歯
車比の可変範囲を広くすることが可能であり、従
来のラツクピニオン式やボールねじ式のように歯
形の無理な設計変更や困難な歯切加工にしわよせ
する必要がないなどの効果がある。
Therefore, by selecting the cam characteristics of the guide device, it is possible to widen the variable range of the gear ratio, and it is possible to avoid unreasonable design changes to the tooth profile and difficult gear cutting as in the conventional rack and pinion type or ball screw type. It has the advantage that there is no need to wrinkle it during processing.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は舵取装
置のラツク軸についての縦断面図、第2図は第1
図の−における横断面図、第3図はカム面の
高低をラツク軸の軸方向の各位置におけるラツク
軸の回転角で示した説明図、第4図は第3図の
の線で示すカムの側面図、第5図は第1の実施例
の案内装置により得られる歯車比の変化の状態を
示す説明図、第6図は第3図のの線で示すカム
の側面図、第7図は案内装置の他の実施例で第2
図に相当する横断面図、第8図は案内装置の他の
実施例を示す要部の横断面図、第9図は第8図同
様の他の実施例を示す要部横断面図である。 符号の説明、1:ピニオン軸、2:ラツク軸、
3:ギヤケース、4:カム、5,6:カムフオロ
ワ、11:ねじピニオン、21:ねじラツク。
The drawings show an embodiment of the present invention, and FIG.
Figure 3 is an explanatory diagram showing the height of the cam surface in terms of the rotation angle of the rack shaft at each position in the axial direction of the rack shaft. Figure 4 is a cam shown by the line in Figure 3. , FIG. 5 is an explanatory diagram showing the change in gear ratio obtained by the guide device of the first embodiment, FIG. 6 is a side view of the cam indicated by the line in FIG. 3, and FIG. is another embodiment of the guide device.
FIG. 8 is a cross-sectional view of the main part showing another embodiment of the guide device, and FIG. 9 is a cross-sectional view of the main part showing another embodiment similar to FIG. . Explanation of symbols: 1: Pinion axis, 2: Rack axis,
3: Gear case, 4: Cam, 5, 6: Cam follower, 11: Screw pinion, 21: Screw rack.

Claims (1)

【特許請求の範囲】 1 一端にねじピニオン11を備える車両のハン
ドル軸に連結したピニオン軸1と、前記ねじピニ
オン11に噛み合うねじラツク21を有し、車両
の操向を行うリンクに連結し、前記ピニオン軸1
の回転に伴い軸方向に移動可能なラツク軸2と、
該ラツク軸2の軸方向移動に伴なうラツク軸2の
回転運動を規制し、前記ねじピニオン11とねじ
ラツク21の基準ピツチによるラツク軸2の移動
量に増減する案内装置とで構成する可変歯車比を
備える車両の舵取装置であつて、前記案内装置は
前記ラツク軸2をねじラツク21の部分を残して
包む形状で固着し、その一部にカム面4Aを備え
るカム4,40と、前記カム面4Aを回転して案
内するカムフオロア5,50,150,250と
からなる車両の舵取装置。 2 前記ねじラツク21は円周の一部を残して歯
切り加工されている特許請求の範囲第1項記載の
車両の舵取装置。 3 前記カム4は、その縁にカム面4Aを有し、
該カム面4Aを回転案内するカムフオロア5は、
前記ピニオン軸1上に回転可能に軸支されている
特許請求の範囲第1項記載の車両の舵取装置。 4 前記カム40は、その中央部分に前記ラツク
軸2の軸線と平行な線に対してねじれて軸方向に
延びる突条40Aを有し、該突条40Aを回転案
内するカムフオロア50は、凹溝50Aを有し、
支持部材80に軸81で回転自在に軸支されてい
る特許請求の範囲第1項記載の車両の舵取装置。 5 前記カムは、その中央部分に前記ラツク軸2
の軸線と平行な線に対してねじれて軸方向に延び
る凹溝140A,240Aを有し、該凹溝140
A,240Aを回転案内するカムフオロアは、突
起150A,250Aを有する転動体150,2
50で、支持部材80に軸81で回転自在に軸支
されている特許請求の範囲第1項記載の車両の舵
取装置。 6 前記カムは、前記ラツク軸2を回転させて得
られた可変の歯車比が車両の直進走行時に最低と
なる形状である特許請求の範囲第3ないし第5項
のいずれかの項記載の車両の舵取装置。 7 前記カムは、前記ラツク軸2を回転させて得
られた可変の歯車比が車両の直進走行時に最高と
なる形状である特許請求の範囲第3ないし第5項
のいずれかの項記載の車両の舵取装置。
[Scope of Claims] 1. A pinion shaft 1 having a threaded pinion 11 at one end and connected to a steering wheel shaft of a vehicle, and a threaded rack 21 that meshes with the threaded pinion 11 and connected to a link for steering the vehicle, The pinion shaft 1
a rack shaft 2 that is movable in the axial direction as the rotation of the rack shaft 2;
A variable guide device that regulates the rotational movement of the rack shaft 2 as the rack shaft 2 moves in the axial direction and increases or decreases the amount of movement of the rack shaft 2 according to the reference pitch of the screw pinion 11 and the screw rack 21. The guiding device is a steering device for a vehicle equipped with a gear ratio, and the guide device is fixed to the rack shaft 2 in a shape that wraps the rack shaft 2 except for a threaded rack 21, and includes cams 4, 40 having a cam surface 4A on a part thereof. , a cam follower 5, 50, 150, 250 that rotates and guides the cam surface 4A. 2. The steering device for a vehicle according to claim 1, wherein the threaded rack 21 is machined with gears leaving only a part of the circumference. 3. The cam 4 has a cam surface 4A on its edge,
The cam follower 5 that rotationally guides the cam surface 4A is
A steering device for a vehicle according to claim 1, wherein the steering device is rotatably supported on the pinion shaft. 4. The cam 40 has a protrusion 40A in its center portion that extends in the axial direction while being twisted with respect to a line parallel to the axis of the rack shaft 2, and the cam follower 50 that rotationally guides the protrusion 40A has a concave groove. has 50A,
The steering device for a vehicle according to claim 1, wherein the steering device is rotatably supported on a support member 80 by a shaft 81. 5 The cam has the rack shaft 2 in its central portion.
It has grooves 140A and 240A that extend in the axial direction and are twisted with respect to a line parallel to the axis of the groove 140.
The cam follower that rotationally guides A, 240A has rolling elements 150, 2 having protrusions 150A, 250A.
50, a steering device for a vehicle according to claim 1, wherein the steering device is rotatably supported on a support member 80 by a shaft 81. 6. The vehicle according to any one of claims 3 to 5, wherein the cam has a shape such that the variable gear ratio obtained by rotating the rack shaft 2 is the lowest when the vehicle is traveling straight. steering gear. 7. The vehicle according to any one of claims 3 to 5, wherein the cam has a shape such that the variable gear ratio obtained by rotating the rack shaft 2 is highest when the vehicle is traveling straight. steering gear.
JP273878A 1978-01-17 1978-01-17 Automotive steering device Granted JPS5497928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP273878A JPS5497928A (en) 1978-01-17 1978-01-17 Automotive steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP273878A JPS5497928A (en) 1978-01-17 1978-01-17 Automotive steering device

Publications (2)

Publication Number Publication Date
JPS5497928A JPS5497928A (en) 1979-08-02
JPS625824B2 true JPS625824B2 (en) 1987-02-06

Family

ID=11537671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP273878A Granted JPS5497928A (en) 1978-01-17 1978-01-17 Automotive steering device

Country Status (1)

Country Link
JP (1) JPS5497928A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508961B1 (en) 1998-05-01 2003-01-21 General Electric Company Structure and method for molding optical disks
WO2020203597A1 (en) 2019-04-01 2020-10-08 信越化学工業株式会社 Self-adhesive silicone gel composition and silicone gel comprising cured product thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178782U (en) * 1984-10-31 1986-05-26

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133835A (en) * 1977-03-15 1978-11-22 Cam Gears Ltd Steering system and power transmitting system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133835A (en) * 1977-03-15 1978-11-22 Cam Gears Ltd Steering system and power transmitting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508961B1 (en) 1998-05-01 2003-01-21 General Electric Company Structure and method for molding optical disks
US6533968B1 (en) 1998-05-01 2003-03-18 General Electric Company Structure and method for molding optical disks
WO2020203597A1 (en) 2019-04-01 2020-10-08 信越化学工業株式会社 Self-adhesive silicone gel composition and silicone gel comprising cured product thereof

Also Published As

Publication number Publication date
JPS5497928A (en) 1979-08-02

Similar Documents

Publication Publication Date Title
JPH0529979Y2 (en)
JP6035852B2 (en) Vehicle suspension system
WO2012157605A1 (en) Rack-and-pinion steering gear unit
US9346490B2 (en) Tapered involute sector gear and variable ratio rack recirculating-ball style steering gearbox
US3083031A (en) Anti-lash gearing for steering mechanism
US4521141A (en) Method for cutting rack teeth
US6374693B1 (en) Variable steering ratio steering system
JPS625824B2 (en)
US20060117879A1 (en) Motion transmission gear structure
DE3602141A1 (en) DRIVE FOR AN ALL-WHEEL STEERING DEVICE
JP3233716B2 (en) Automotive steering system
US3730018A (en) Torque-balanced steering system
US4869519A (en) Rear steering control device for an automotive vehicle with four guiding wheels
JPS6230954B2 (en)
JPH1134888A (en) Electric power steering gear
CN219927778U (en) Steering wheel rotation angle limit structure and vehicle
CN221273186U (en) Steering mechanism of steering gear
JPS6125579B2 (en)
US2067969A (en) Forked sector gear
JPH0747255Y2 (en) Rack and pinion type steering device
US2675715A (en) Steering geak
JPH07132837A (en) Steering device
CN215553509U (en) Automobile steering wheel adopting floating support
CN212172341U (en) Gear-rack pair of variable transmission ratio steering gear
KR100378306B1 (en) Steering Gear for Automotive Improves Straight Safety