JPS6258106A - Optical apparatus for detecting physical quantity - Google Patents

Optical apparatus for detecting physical quantity

Info

Publication number
JPS6258106A
JPS6258106A JP19814785A JP19814785A JPS6258106A JP S6258106 A JPS6258106 A JP S6258106A JP 19814785 A JP19814785 A JP 19814785A JP 19814785 A JP19814785 A JP 19814785A JP S6258106 A JPS6258106 A JP S6258106A
Authority
JP
Japan
Prior art keywords
fiber
optical
physical quantity
physical
pulsed light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19814785A
Other languages
Japanese (ja)
Other versions
JPH0346052B2 (en
Inventor
Akira Kobayashi
彬 小林
Kenji Kaminaga
神永 健二
Shinichi Tsuchiya
信一 土屋
Teruaki Tsutsui
筒井 輝明
Koichi Sugiyama
耕一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP19814785A priority Critical patent/JPS6258106A/en
Publication of JPS6258106A publication Critical patent/JPS6258106A/en
Publication of JPH0346052B2 publication Critical patent/JPH0346052B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To inexpensively detect stable physical quantity, by calculating the change quantity and position of physical change from the beam intensity ratio and delay time of two pulse beam. CONSTITUTION:Polarizing plane maintaining fibers 1 different in a refractive index and having two optical axes crossing at a right angle to each other are arranged in a region where physical quantity is detected. At first, the pulse beam emitted from a beam source 4 transmits through a polarizing prism 2 to be converted to the linear polarized beam coinciding with the optical axis of one fiber 1 to be incident to the fiber 1. At this time, when physical change is generated at the certain area 10 of the fiber 1, the above mentioned pulse beam is leaked to the optical axis of the other fiber 1 at the area 10 to generate crosstalk. Then, the original pulse beam and crosstalk pule beam are emitted from the fiber 1 and respectively received by beam receivers 6, 7 through the polarizing prism 3 and the intensity signals thereof are inputted to an operator 8. Because two optical axes of the fibers 1 have different refractive indices, two pulse beams generate different delay times. Subsequently, the physical quantity and position of the area 10 are calculated from a beam intensity ratio and the delay times by the operator 8.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は光ファイバをセンサ素子として用いた光学式
物理i検出装置に係り、特に光ファイバが物理的変化を
受けたときに光ファイバの屈折率を異にする2つの伝搬
経路間でクロストーク(光の漏洩)が生じることを利用
して物理量を検出するようになした光学式物理量検出装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical physical detection device using an optical fiber as a sensor element, and in particular, the present invention relates to an optical physical detection device that uses an optical fiber as a sensor element. The present invention relates to an optical physical quantity detection device that detects a physical quantity by utilizing the fact that crosstalk (light leakage) occurs between two propagation paths having different rates.

[従来の技術] 従来の光ファイバを用いた物理ω検出装置には、光源か
ら出射された光を光ファイバを通して光学結晶等の変換
素子に入射し、その透過光や反射光の変化から物理量を
検出する方式がある。
[Prior art] A conventional physical ω detection device using an optical fiber involves inputting light emitted from a light source into a conversion element such as an optical crystal through an optical fiber, and detecting a physical quantity from changes in the transmitted light and reflected light. There is a method to detect it.

また、光フアイバ自体をセンサ素子として用(Xだ物理
量検出装置には、光ファイバの物理環境(温度・圧力等
)によって生ずる屈折率変化、伸縮等に基づく光路長変
化を位相差(干渉計)や透過晃強度の変化等で検出する
方式もある。
In addition, the optical fiber itself is used as a sensor element (X).The physical quantity detection device uses a phase difference (interferometer) to measure optical path length changes based on changes in refractive index and expansion/contraction caused by the physical environment (temperature, pressure, etc.) of the optical fiber. There is also a method of detection based on changes in transmitted light intensity, etc.

[発明が解決しようとする問題点] ところが、上記の光学結晶等の変換素子を用いた方式で
は、センサ部の構造が複雑になると共に光ファイバと変
換素子との間の結合状態が長期間で変化したり、検出装
置が複雑になる等の問題がある。更に物理情報をセンサ
部の点情報としてしか(qることができないため、広範
囲な領域の物理量の平均や物理聞分布を調べる場合には
、多くのセンサを設置しければならない。
[Problems to be Solved by the Invention] However, in the above-mentioned method using a conversion element such as an optical crystal, the structure of the sensor section becomes complicated and the coupling state between the optical fiber and the conversion element remains for a long period of time. There are problems in that the detection device may change or the detection device becomes complicated. Furthermore, since physical information can only be obtained as point information from the sensor section, many sensors must be installed when examining the average or physical distribution of physical quantities over a wide area.

また、上記の光フアイバ自体をセンサ素子として用いる
方式では、物理量を光ファイバに沿った線情報として検
出することが可能であるが、物理変化が起った位置を判
定することが難しく、また測定物理量以外の外乱を受は
易く安定した測定ができないという問題があった。
In addition, with the method described above that uses the optical fiber itself as a sensor element, it is possible to detect physical quantities as line information along the optical fiber, but it is difficult to determine the position where a physical change has occurred, and it is difficult to measure. There was a problem in that it was easily susceptible to disturbances other than physical quantities, making stable measurements impossible.

[発明の目的] この発明は以上の従来技術の問題点を解消すべく創案さ
れたものであり、この発明の目的は、物理変化が生じた
位置とその量を同時にしかも容易に検出できると共に、
安定した物理は検出を安価に実施し得る物理量検出装置
を提供することにある。
[Object of the Invention] This invention was devised to solve the problems of the above-mentioned prior art, and an object of the invention is to simultaneously and easily detect the location and amount of physical change.
Stable physics lies in providing a physical quantity detection device that can perform detection at low cost.

[発明の概要] 上記の目的を達成するために、この発明は、屈折率を異
にする2つの伝搬経路を有する光ファイバと、光ファイ
バの一方の伝搬経路にパルス光を入射するための発信系
と、上記一方の伝搬経路を伝搬するパルス光とこのパル
ス光が光ファイバに与えられる物理的変化に起因して他
方の伝搬経路へとクロストークして他方の伝搬経路を伝
搬するパルス光とをそれぞれ受信し、両パルス光の光強
度比および遅延時間を検出するための受信系とを備えて
なるものであり、両パルス光の光強度比から物理的変化
の有無および物理量の変化前を求めると共に、両パルス
光の遅延時間から物理的変化が生じた位置を求めるよう
にしたものである。
[Summary of the Invention] In order to achieve the above object, the present invention provides an optical fiber having two propagation paths with different refractive indexes, and a transmitter for injecting pulsed light into one propagation path of the optical fiber. A system, a pulsed light propagating through one of the propagation paths, and a pulsed light which crosstalks to the other propagation path due to physical changes imparted to the optical fiber and propagates through the other propagation path. and a receiving system for detecting the light intensity ratio of both pulsed lights and the delay time, and detects whether there is a physical change and before the physical quantity changes from the light intensity ratio of both pulsed lights. At the same time, the position where the physical change has occurred is determined from the delay time of both pulsed lights.

[実施例] 以下に、この発明の実施例を添付図面に従って詳述する
[Examples] Examples of the present invention will be described in detail below with reference to the accompanying drawings.

第1図において、1は屈折率が異なる互いに直交した2
つの光学軸を有する偏波面保存ファイバであり、偏波面
保存ファイバ1は物理量(温度等)を検出する領域内に
配設される。偏波面保存ファイバ1の入射端、出射端に
は偏光子、検光子として偏光プリズム2.3が設けられ
ている。偏光プリズム2.3の透過偏光方向と反則偏光
方向とは偏波面保存ファイバ1の2つの光学軸に一致さ
せて設けられている。偏波面保存ファイバ1の入射端に
対する偏光プリズム2の透過側には光源4が設けられて
いる。光源4は、パルス発生回路5からのパルス信号に
より、短いパルス幅のパルス光を出射するようになって
いる。また、偏波面保存ファイバ1の出射端に対する偏
光プリズム3の透過側、反射側には受光器6.7がそれ
ぞれ設けられている。受光器6.7が検出した光強度信
号は演算器8に入力されるようになっている。さらに演
算器8にはその演算結果を表示する表示器9が接続され
ている。 ・ 光源4から出射されたパルス光は偏光プリズム2を透過
し偏波面保存ファイバ1の一方の光学軸に一致した直線
偏波とされて偏波面保存ファイバ1に入射される。この
とき、偏波面保存ファイバ1の物理的状態に変化がない
と、偏波面保存ファイバ1の一方の光学軸に一致して入
射された直線偏波のパルス光は、他方の光学軸へと漏洩
することがなく、一方の光学軸に合致したパルス光しか
伝搬されない。従って、偏波面保存ファイバ1から出射
される光は一方の光学軸に合致した直線偏波のパルス光
であり、このパルス光は全て偏光プリズム3を透過し受
光器6により検出され演算器8に入力される。演算器8
では受光器7からの入力がないことから、偏波面保存フ
ァイバ1に沿った測定領域の物理量に変化がないと判断
し、その結果は表示器9に表示される。
In Fig. 1, 1 is 2 orthogonal to each other with different refractive indices.
The polarization maintaining fiber 1 is a polarization maintaining fiber having two optical axes, and the polarization maintaining fiber 1 is disposed within a region where a physical quantity (temperature, etc.) is to be detected. Polarizing prisms 2.3 are provided at the input and output ends of the polarization-maintaining fiber 1 as polarizers and analyzers. The transmitted polarization direction and the reverse polarization direction of the polarizing prism 2.3 are arranged to coincide with the two optical axes of the polarization maintaining fiber 1. A light source 4 is provided on the transmission side of the polarizing prism 2 with respect to the input end of the polarization maintaining fiber 1. The light source 4 is configured to emit pulsed light having a short pulse width in response to a pulse signal from the pulse generating circuit 5. Furthermore, light receivers 6 and 7 are provided on the transmission side and the reflection side of the polarizing prism 3 relative to the output end of the polarization-maintaining fiber 1, respectively. The light intensity signal detected by the light receiver 6.7 is input to the calculator 8. Further, a display 9 is connected to the calculator 8 to display the results of the calculation. - The pulsed light emitted from the light source 4 is transmitted through the polarizing prism 2, converted into linearly polarized waves that coincide with one optical axis of the polarization-maintaining fiber 1, and input into the polarization-maintaining fiber 1. At this time, if there is no change in the physical state of the polarization-maintaining fiber 1, the linearly polarized pulsed light incident on one optical axis of the polarization-maintaining fiber 1 will leak to the other optical axis. Therefore, only pulsed light aligned with one optical axis is propagated. Therefore, the light emitted from the polarization-maintaining fiber 1 is linearly polarized pulsed light that coincides with one optical axis, and all of this pulsed light passes through the polarizing prism 3, is detected by the light receiver 6, and is sent to the arithmetic unit 8. is input. Arithmetic unit 8
Since there is no input from the optical receiver 7, it is determined that there is no change in the physical quantity in the measurement area along the polarization-maintaining fiber 1, and the result is displayed on the display 9.

偏波面保存ファイバ1のある地点ないし部位10で物理
的変化が生じたとすると、偏波面保存ファイバ1の一方
の光学軸に一致して入射された直線偏波のパルス光は、
物理的変化が生じた部位10において他方の光学軸へと
漏洩しクロストークj発生する。そして、部位10以降
では偏波面保存ファイバ1の一方の光学軸に一致して入
射された原パルス光と、原パルス光より他方の光学軸へ
と漏洩したクロストークパルス光とが2つの伝搬経路を
それぞれ伝搬し、両パルス光は偏波面保存ファイバ1の
出射端から出射される。この出射光のうちの原パルス光
は偏光プリズム3を透過して受光器6により受光され、
またクロストークパルス光は偏光プリズム3で反射され
て受光器7により受光される。受光器6,7が検知した
これらパルス光の強度信号は演算器8に入力される。偏
波面保存ファイバ1の両伝搬経路は屈折率を異にするの
で、演算器8に入力される原パルス光aとクロスト、−
クパルス光すとには、第2図に示すように遅延時間【が
生じる。この例では、一方の光学軸に一致する直線偏波
の原パルス光aを伝送する伝搬経路の屈折率がクロスト
ークパルス光すを伝送するもう一方の伝搬経路の屈折率
よりも小さい。
If a physical change occurs at a certain point or portion 10 of the polarization preserving fiber 1, linearly polarized pulsed light incident on one optical axis of the polarization preserving fiber 1 will be
At the site 10 where a physical change has occurred, the light leaks to the other optical axis and crosstalk occurs. After the part 10, the original pulsed light incident on one optical axis of the polarization maintaining fiber 1 and the crosstalk pulsed light leaked from the original pulsed light to the other optical axis are transmitted through two propagation paths. are propagated, respectively, and both pulsed lights are emitted from the output end of the polarization-maintaining fiber 1. The original pulsed light of this emitted light passes through the polarizing prism 3 and is received by the light receiver 6.
Further, the crosstalk pulse light is reflected by the polarizing prism 3 and received by the light receiver 7. Intensity signals of these pulsed lights detected by the light receivers 6 and 7 are input to a calculator 8. Since both propagation paths of the polarization maintaining fiber 1 have different refractive indices, the original pulse light a input to the calculator 8 and the cross, -
As shown in FIG. 2, a delay time occurs in the optical pulse. In this example, the refractive index of the propagation path that transmits the linearly polarized original pulse light a that coincides with one optical axis is smaller than the refractive index of the other propagation path that transmits the crosstalk pulse light.

部位10の物理的変化量が大きいほどクロストークパル
ス光すの先位、即ち、光強度が増すので、演算器8では
原パルス光aとクロストークパルス光すの光強度比をと
り、この光強度比から部位10の物理量を算出する。ま
た、演算器8では、原パルス光aとクロストークパルス
光すとの遅延時間tが物理的変化があった部位10から
偏波面保存ファイバ1の出射端までのファイバ長に比例
することから、両パルス光の遅延時間tより物理的変化
が生じた部位10の位置を算出する。
The greater the amount of physical change in the part 10, the more the front of the crosstalk pulse light beam, that is, the light intensity, increases. The physical quantity of the part 10 is calculated from the intensity ratio. Furthermore, in the arithmetic unit 8, since the delay time t between the original pulsed light a and the crosstalk pulsed light is proportional to the fiber length from the part 10 where a physical change has occurred to the output end of the polarization-maintaining fiber 1, The position of the region 10 where the physical change has occurred is calculated from the delay time t of both pulsed lights.

次に、物理的変化量とクロストーク量との関係を物理的
変化として温度変化を例にして述べる。
Next, the relationship between the amount of physical change and the amount of crosstalk will be described using a temperature change as an example of a physical change.

偏波面保存ファイバは、2つの光学軸に対応する伝搬経
路の屈折率を若干変えることにより、両伝搬経路間のク
ロストーク量を少なくしているものであり、両伝搬経路
の屈折率が近づく程、クロストーク量は大きくなる。そ
こで、2つの伝搬経路の屈折率の温度係数を異なる値に
設定すれば、温度によってクロストーク量が変化するこ
ととなり、クロストーク量を検出することにより逆に温
度が検出できる。
Polarization-maintaining fibers reduce the amount of crosstalk between the two propagation paths by slightly changing the refractive index of the propagation paths corresponding to the two optical axes; the closer the refractive indices of both propagation paths are, the more , the amount of crosstalk increases. Therefore, by setting the temperature coefficients of the refractive indexes of the two propagation paths to different values, the amount of crosstalk changes depending on the temperature, and conversely, the temperature can be detected by detecting the amount of crosstalk.

なお、他の物質量についても、その物理量の変化によっ
て偏波面保存ファイバに歪が加わり、この歪により偏波
面保存ファイバの両伝搬経路の屈折率の差に変化が与え
られるようにすれば、上記のyA度検出の例と同様にし
て計測可能となる。
Regarding other physical quantities, if distortion is added to the polarization-maintaining fiber due to changes in the physical quantities, and the difference in refractive index between both propagation paths of the polarization-maintaining fiber is changed by this distortion, the above-mentioned result can be achieved. It can be measured in the same way as the example of yA degree detection.

なお、上記実施例では光ファイバとして偏波面保存ファ
イバ1を用い、その2つの光学軸方向の直線偏波のクロ
ストークを利用して物理量の検出を行なったが、同一の
クラッド層内に屈折率の異なる2本のコアが設けられた
ツインコアファイバを用い、2つのコア(伝搬経路)間
のクロストークを利用しても上記実施例と同様な計測が
可能である。
In the above example, the polarization maintaining fiber 1 was used as the optical fiber, and the physical quantity was detected using the crosstalk of the linearly polarized waves in the two optical axis directions. The same measurement as in the above embodiment is also possible by using a twin-core fiber having two cores with different values and utilizing crosstalk between the two cores (propagation paths).

[発明の効果1 以上要するにこの発明によれば次のような優れた効果を
奏する。
[Effects of the Invention 1 In summary, the present invention provides the following excellent effects.

(1)  光フアイバ自体がセンサであり、光学結晶等
の光学的変換素子を必要としない。このため、装置構成
を簡素化でき、取り扱いも容易であると共に低コストに
て提供できる。
(1) The optical fiber itself is a sensor and does not require an optical conversion element such as an optical crystal. Therefore, the device configuration can be simplified, handling is easy, and the device can be provided at low cost.

(b 物理的変化が生じた位置とその変化用とを同時に
しかも簡単且つ精度よく検出することができる。
(b) The location where a physical change has occurred and the location of the change can be simultaneously detected simply and with high accuracy.

(3)  光ファイバに沿った平均物理ωや物理量分布
を計測できる。
(3) Average physical ω and physical quantity distribution along the optical fiber can be measured.

(4)  介在素子や結合状態による損失発生要因がな
く、また外乱も受は難く、安定した低損失・長距離セン
シングが可能である。
(4) There are no loss-causing factors due to intervening elements or coupling conditions, and it is less susceptible to external disturbances, allowing stable, low-loss, long-distance sensing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る光学式物理量検出装置の一実施
例を示す構成図、第2図は同装置の光ファイバ(偏波面
保存ファイバ)から出射されるパルス光の一例を示す図
である。 図中、1は偏波面保存ファイバ・、2,3は偏光プリズ
ム、4は光源、5はパルス発生回路、6.7は受光器、
8は演算器、9は表示器、10は物理的変化が生じた部
位、aは原パルス光、bはクロストークパルス光、[は
遅延時間である。 代理人 弁理士 佐 藤 不二雄 第1図 第2図 間實
FIG. 1 is a configuration diagram showing an embodiment of an optical physical quantity detection device according to the present invention, and FIG. 2 is a diagram showing an example of pulsed light emitted from an optical fiber (polarization maintaining fiber) of the device. . In the figure, 1 is a polarization maintaining fiber, 2 and 3 are polarizing prisms, 4 is a light source, 5 is a pulse generation circuit, 6.7 is a light receiver,
8 is an arithmetic unit, 9 is a display, 10 is a part where a physical change has occurred, a is an original pulsed light, b is a crosstalk pulsed light, and [ is a delay time. Agent: Patent Attorney Fujio Sato Figure 1 Figure 2 Makoto

Claims (3)

【特許請求の範囲】[Claims] (1)屈折率を異にする2つの伝搬経路を有する光ファ
イバと、光ファイバの一方の伝搬経路にパルス光を入射
するための発信系と、上記一方の伝搬経路を伝搬するパ
ルス光とこのパルス光が光ファイバに与えられる物理的
変化に起因してクロストークして他方の伝搬経路を伝搬
するパルス光とを受信し、両パルス光の光強度比および
遅延時間を検出するための受信系とを備えたことを特徴
とする光学式物理量検出装置。
(1) An optical fiber having two propagation paths with different refractive indexes, a transmission system for inputting pulsed light into one of the propagation paths of the optical fiber, and the pulsed light propagating through one of the propagation paths and the transmission system. A receiving system for receiving pulsed light that crosstalks with a pulsed light propagating through the other propagation path due to physical changes imparted to an optical fiber, and detecting the light intensity ratio and delay time of both pulsed lights. An optical physical quantity detection device comprising:
(2)上記光ファイバが屈折率が異なる互いに直交した
光学軸を有する偏波面保存ファイバであり、上記発信系
より偏波面保存ファイバの一方の光学軸に直線偏波のパ
ルス光が入射されるように構成されていることを特徴と
する特許請求の範囲第1項記載の光学式物理量検出装置
(2) The optical fiber is a polarization-maintaining fiber having mutually orthogonal optical axes with different refractive indexes, and linearly polarized pulsed light is input from the transmission system to one optical axis of the polarization-maintaining fiber. An optical physical quantity detecting device according to claim 1, characterized in that the optical physical quantity detecting device is configured as follows.
(3)上記光ファイバが屈折率の異なる2つのコアとこ
れらを包む1つのクラッド層とからなるツインコアファ
イバであることを特徴とする特許請求の範囲第1項記載
の光学式物理量検出装置。
(3) The optical physical quantity detection device according to claim 1, wherein the optical fiber is a twin-core fiber consisting of two cores having different refractive indexes and one cladding layer surrounding them.
JP19814785A 1985-09-06 1985-09-06 Optical apparatus for detecting physical quantity Granted JPS6258106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19814785A JPS6258106A (en) 1985-09-06 1985-09-06 Optical apparatus for detecting physical quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19814785A JPS6258106A (en) 1985-09-06 1985-09-06 Optical apparatus for detecting physical quantity

Publications (2)

Publication Number Publication Date
JPS6258106A true JPS6258106A (en) 1987-03-13
JPH0346052B2 JPH0346052B2 (en) 1991-07-15

Family

ID=16386240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19814785A Granted JPS6258106A (en) 1985-09-06 1985-09-06 Optical apparatus for detecting physical quantity

Country Status (1)

Country Link
JP (1) JPS6258106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224092A (en) * 1987-03-13 1988-09-19 Toshiba Corp Data storage system
JPH0718548U (en) * 1993-09-14 1995-04-04 常雄 徳永 Pet washing machine
US9002149B2 (en) 2008-11-12 2015-04-07 Fotech Solutions Limited Distributed fibre optic sensing for event detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210620U (en) * 1985-07-05 1987-01-22

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125631A (en) * 1981-01-27 1982-08-05 Daiwa Seiko Co Handle folding apparatus of fishing reel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210620U (en) * 1985-07-05 1987-01-22

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224092A (en) * 1987-03-13 1988-09-19 Toshiba Corp Data storage system
JPH0718548U (en) * 1993-09-14 1995-04-04 常雄 徳永 Pet washing machine
US9002149B2 (en) 2008-11-12 2015-04-07 Fotech Solutions Limited Distributed fibre optic sensing for event detection

Also Published As

Publication number Publication date
JPH0346052B2 (en) 1991-07-15

Similar Documents

Publication Publication Date Title
AU747525B2 (en) Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
US7130496B2 (en) Optical fibre backscatter polarimetry
CN105865752B (en) Method and device for comprehensively judging polarization maintaining optical fiber characteristics by adopting distributed polarization crosstalk analyzer
US5359405A (en) Hybrid fiber optic sensor including a lead out optical fiber having a remote reflective end
CN101825560A (en) Device for detecting polarization-maintaining optical fiber
CN108287056B (en) System and method for evaluating coupling characteristics of optical fiber sensitive ring polarization mode
CN102183360A (en) Method and device for detecting polarization extinction ratio of optical polarizer
WO2023001207A1 (en) Optical fiber distributed polarization crosstalk rapid measurement apparatus based on optical frequency domain interference
CN106546411B (en) Polarization maintaining optical fibre Verdet constant measuring apparatus and method based on Mach-Zehnder and Michelson interferometers
CN103900799B (en) A kind of optical coherence polarimeter that suppresses interaction noise
CN111238772A (en) Optical fiber ring detection device and detection method based on polarization crosstalk principle
WO2023001158A1 (en) Optical frequency domain interference-based distributed bidirectional polarization measurement apparatus for optical fiber device
CN112082735B (en) Optical fiber sensing ring bidirectional synchronous measurement device and method based on Sagnac structure
CN111486939B (en) Ultrasonic measuring device for realizing optical path and polarization state regulation and control based on SAGNAC principle
CN105823624B (en) A kind of caliberating device and its dynamic range scaling method for optical coherence polarimetry
JPS6258106A (en) Optical apparatus for detecting physical quantity
Wuilpart et al. Fully distributed polarization properties of an optical fiber using the backscattering technique
JPH044972Y2 (en)
CN210183335U (en) Single-axis optical fiber interferometer and positioning device for eliminating optical fiber vibration blind area
CN110518967B (en) Single-axis optical fiber interferometer and positioning device for eliminating optical fiber vibration blind area
JPS63118624A (en) Optical fiber measuring device and method
KR102045831B1 (en) Apparatus for detecting light temperature using polarization maintaining optical fiber
US6495999B1 (en) Method and device for measuring a magnetic field with the aid of the faraday effect
Bock et al. Characterization of highly birefringent optical fibers using interferometric techniques
JPS62257037A (en) Optical fiber pressure sensor